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Abstract

In this paper, the heat, resolvent and wave kernels associated to the Schrédinger operator with
multi-inverse square potential on the Euclidian space R" are given in explicit forms.
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1. Introduction
This article is devoted to the explicit formulas for the Schwartz integral kernels of the heat, resolvent and wave
operators e", (Av+/12)_1 and cost,/—A, attached to the Schrodinger operator with Multiple-inverse

4

square potential on the Euclidian space R":

n 2
Av :Z_2+ ) 7 (11)
j

where v =(v;,v,,--,v,)eR".

Note that the Schrodinger operator with bi-inverse square potential in the Euclidian plane is considered in
Boyer [1] and Ould Moustapha [2].
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For future use we recall the following formulas for the modified Bessel function of the first kind 1, and the
Hankel function of the first kind Hﬁl)

1, (2)= fr(v+J/2)J [t(1-t)] " dt (1.2)
(see Temme [3], p. 237).
x/2)"
IV(X)NF((n//Jr)) X=>0 vz-1,-2,- (1.3)
(see Temme [3], p. 234).
L, (X)~e(2mx) " x> (14)
(see Temme [3], p. 240).
®(5)_ 2 v et (2 4\ Y2
HY (2) i\/;1“(1/2_‘/)(2/2) [e" (1) Tt (1.5)

(see Erdély et al. [4], p. 83).

2

@) e

Imz>0 and Zma’®z >0 (see Magnus et al. [5], p. 84). Recall also that the n variables Lauricella
hypergeometric function F." (a B.7.z) isgiven by (see Appell et al. [6], p. 114)

F,gm(a,,;,%z):zmzm

m (7)), m!

where m=(m,m,,---,m)eN", |m=m+m,+-+m, acC; B=(B.B0 ) 7r=rV27)
and z=(z,2,,-,2,) arein R".Inthe sekel we use the integral representation (see Appell et al. [6], p. 115)

apora)=of o FT -0 o [1 er‘:ulzj] w8)

j=1

.7

where
c= g H] 1F( ) (19)
[15.0(8)r (7 -5,)
For n=2 we have
&2)(051,6:712):Fz(a’ﬁlvﬂz’hv?/z’zl'zz) (1.10)

where F, is the Apple hyprgeometric function of two variables.
Recall also the foIIowing formulas for the heat kernel associated to the Schrédinger operator with inverse
4—

+1/ v: .

2

square potential L, = PV
X X

(see Calinetal. [7], p. 68).

nYy2 '
e‘va(XXZt) e |(ﬁj (1.11)

where |, is the modified Bessel function of the first kind.



M. V. 0. Moustapha

Proposition 1.1. The Schwartz integral kernel of the heat operator with multiple-inverse square potential
tA

e'™ canbewritten for p=(x,%,,",X,), P'=(X.,%,-,x)eR] and teR, as
L (ij} )]/2 —(x,ﬂxf)/ﬁ
H (t,p,p)=]]———¢ I (x:x:/2t 1.12
v( pp) :E]l: 2t "J(Jl/ ) ( )
where 1, is the modified Bessel function of the first kind and of order v;.
Proof. LI'he Formula (1.12) is a direct consequence of the Formula (1.11) and the properties of the operator
(1.1).
2. Resolvent Kernel with Multiple-Inverse Square Potential on the Euclidian
Space R"
Theorem 2.1. The Schwartz integral kernel for the resolvent operator (AV + A2 )71 is given by the formula.
[vl+n-1
1/2+v A
Gv(l'p’p) ClH]l(J J) JJ.J‘ J.
\/| 421 L XXU; (2.1)

XHHM( \/|P ol +4ZXJ Jﬁ[uj(l—uj)]vjwduj

2‘V‘7lei(nfl+‘v‘)7t/2

in+\v\72n(n72)/21—[?:1r(vj +1/2)'

Proof. We use the well known formula connecting the resolvent and the heat kernels:

where Hil) is the Hankel function of the first kind and ¢, =

G, (4, p, p’)=I:e*2‘HV (t,p;p)dt;  Rei’ <0. (2.2)

We combine the Formulas (2.2), (1.12) and (1.2) then use the Formulas (1.3) and (1.4) to appley the Fubini
theorem and in view of the Formula (1.6) we get the Formula (2.1) and the proof of the Theorem 2.1 is finished.

Theorem 2.2. The Schwartz integral kernel of the resolvent operator (AV + /12)_1 can be written as

G, (4.p.p)= CzH( ) e (st - pT) FY (@528, 2) s (2.3)
] 4x. X! .
with a=n-1/2+|v|, B, =12+v,, z, :ﬁ j=21---,n and
" —|p—-p
2n+2\v\—1ei(n—1+\v\)n/2 n F<]/2+Vj)
G = (n-1)/2 n+jv]-1 (24)
m F(3/2—n—|v|)| io1 F(2v+l)

where F (a 5,25, z) is the n-variables Lauricella hypergeometric function given in (1.7).

Proof. We use the Formulas (2.1) and (1.5) as well as the Fubini theorem to arrive at the announced Formula
(2.3).

3. Wave Kernel with Multiple-Inverse Square Potential on the Euclidian Space

It is known that the energy and information can only be transmitted with finite speed, smaller or equal to the
speed of light. The mathematical framework, which allows an analysis and proof of this phenomenon, is the
theory the wave equation. The result, which may be obtained, runs under the name finite propagation speed (see
Cheeger et al. [8]). The following theorem illustrates the principle of the finite propagation speed in the case of
the Schrodinger operator with multiple-inverse square potential.
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Theorem 3.1. (Finite propagation speed) Let W, (t, p, p’) be the Schwartz integral kernel of the wave oper-

r %, then we have
W, (t,p,p’)=0 whenever [p—p’|>t.
Proof. The proof of this result use an argument of analytic continuation from the identity
Sint\/I 1 [e"\/TV eitmj
NS WS =

We recall the formula [9], p. 50

—ta
—ut? uY2e /1/4udu

TIIE

By setting t=.,-A, and A=s in(3.3)we can write

efs\/f =i-[°°e-sz/4uu-1/zeuAvdu
0
and let P, (s, p,p’) be the integral kernel of e"™ then we can write

" _ 1 —s?/az ,-12 '
P, (s, p,p)_ﬁfoe z77*H, (z,p, p')dz

where H, (z,p,p’) is the heat kernel with the multiple-inverse square potential given by (1.12).

Consider the integral
3(#)=P (r.p.p) :% [ m, (2,02
using (1.12) we have

Hn (x x')]/

R S TS

From (3.2) we have

W, (t.x,x) :%(pv (P, p"it)—P, (p, ' -it)) :%(J (it) -3 (it)).
Now set
J(7)=3,(7)+3,(7)

where

n \Y2
Jl(T): Hj_\l/(;;nj) .[0

Y2
J,(7)= I_L:/(’—Zn),fl

a-tfasgy2ng (o4l /4SH| ( /25)

g () e

3.1

3.2)

3.3)

(3.4)

3.5)

(3.6)

3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Using the Formula (1.3) we see that the last integral J,(z) converge absolutely and is analytic in z for

n-1/2+Jv|>0.
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For the first integral J, () we obtain

n 1/2
TTL(6%5) ™ ol ysa oun Ao lpyi ,
Jl(r):TJ1 ety e glv, ((xjxj)y/Z) dy (3.12)
and from the Formula (1.4) we see that
n 12
H.: X. X o (10-pR)/44224) _apenin
Jl(f):%fl o o) seni gy (3.13)

is analytic in z and converge if Re[rz +|p- p’ﬂ >0, hence the integral J(it) is absolutely convergent

if (£it)’+|p-p >0 (ie) [p—p|>t and in view of (3.8) we have W, (t,p,p’)=0 for [p—p|>t and
the proof of the Theorem 3.1 is finished.

Theorem 3.2. The Schwartz integral kernel for the wave operator costﬁ with multiple-inverse square
potential on the Euclidian space can be written on the two following forms

[T, (X1X3 )M

W, (t,p, p') =~ ey [—L 24lp } I =y ju™Y2du 3.14
) = T [ | (el + o) [T, (314)
and
n 1/2
H (XJXI) » u 2 2
! - 4 n -1/2
w, (t,p,p')=2 o IO exp{ o (|p| +|p] - )}HI du (3.15)
where | is the first kind modified Bessel functions of order v .
Proof. We start by recalling the formula (see Magnus et al. [5], p. 73).
cosz =/nz/2J ,,(2) (3.16)
where J (.) is the Bessel function of first kind and of order v defined by (see Magnus et al. [5], p. 83).
z¥ o+ (a/Z)(t—zz/t) i
J (az)= e t™dt 3.17
(ar)=o], (317)

provided that Rea >0 and |argz| < r. Here we should note that the integral in (3.17) can be extended over a

contour starting at oo, going clockwise around 0, and returning back to oo without cutting the real negative
semi-axis.
For v =-1/2 the Equation (3.17) can be combined with Equation (3.16) to derive the following formula.

0+ (a/z)(u—zz/u)
COSaZz=—F| €
2iN2n J"°°

Putting « =1 and replacing the variable z by the symbol tJ—AV in (3.18) we obtain

u™2du. (3.18)

IO+ u/2+ /Zu

cost u™2du. (3.19)

A 2|x/ﬂ

Finally making use of (1.12) in (3.19), we get the Formula (3.14).
To see the Formula (3.15) set

! :ff;eXp{—zl:—z(|P|z+|p'|2 )}H' ( ;2’ UJU” “du (3.20)

and

=], ele’[—z%ﬂlor+|I°'|2 )}H' (;2’ J u"¥2du (3.21)
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we have
J=J,+3,+17, (3.22)
n X X
L=] exp[—zl:—z(l p|* +|p’ —tz)hllvj (%uju““du (3.23)
J = ex __L 2+ ¢2_t2 ] nl XJX] u un—l/zdu (3 24)
e R i N (A -
and

- IR BN A LI e
Js—LBeXp_ T (|P| +p t)_lj_{lvj( UJU du (3.25)
where the paths »,, y, and y, aregivenby

7 1z=re";e<r <oo(above the cut)
¥, :2=re"";00>r 2 ¢ (below the cut)
¥3:2=ee";—m <0 <m(rund the small circle)
as ¢—>0,wehave J, e g e and 3, 0.
Adding the integrals establishes the required results J = 2isin(n+1/2)=l .

Theorem 3.3. The integral kernel for the wave operator cost,/—A, with multiple-inverse square potential
on the Euclidian plane can be written as

w, (t,p,p')= C3H(xjx} )V"Wzt(t2 -|p- p’|2) F" (o, ,2,2) (3.26)
j=1

where F,E") (a,ﬁ,y, z) is the n-variables Lauricella hypergeometric function Fﬁ") given in (1.7),
a=n+12+p|, B=(B.BB), Bj=v,+Y2 and z =4xjx;/(t2—|p— p'|2)1s j<n and the con-
stant c; isgiven by

(_1)‘1/\ 2n+1+2Ml—~(n +]/2+|V|) n F(]/2+Vj)

. el ia T(2v;+1)

(3.27)

Proof. We use essetially the Formula (3.15) of Theorem 3.2, the Formulas (1.2), the Fubini theorem and the
Formula (1.8).
4. Applications and Further Studies

We give an application of the Theorem 3.3.
Corollary 4.1. The integral kernel of the heat operator e can be written in the form

©

, _C_ n , v-+]/2 7u2/4 2_ _ 12 —-a (n)
H, (t, p,p)_\/“fg(xjxj)‘ ,ﬂp,pf tu(u lp-p| ) F\" (a,f,2p,2)du
with a=n+1/2+[y|, B;=v;+1/2 and zj=4xjx;/(u2—|p—p'|z), 1<j<n and

(_1)M 2n+1+2M1—~(n +1/2+|V|) n 1“(1/2+vj)

C, = nn/2+1 5 F(ZVj +1) .

Proof. We use the transmutation formula (see Greiner et al. [10], p. 362)
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1 0 2
g :—j e /4 cosu /A du.
Jut % '

We suggest here a certain number of open related problems connected to this paper. For example the semi-
linear wave and heat equations associated to the multiple-inverse square potential and its global solution and a
possible blow up of the solution in finite times.

We can also to look for the dispersive and Strichartz estimates for the Schrodinger and the wave equations
with multiple-inverse square potential, for the case of inverse square potential (Burg et al. [11] and Planchon et
al. [12]).
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