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Abstract

In last decades, several algorithms were developed for fast evaluation of some elementary func-
tions with very large arguments, for example for multiplication of million-digit integers. The
present paper introduces a new fast iterative method for computing values ¥/x  with high accu-

racy, for fixed ke N and x e R". The method is based on compound means and Padé approxi-
mations.
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1. Introduction

In last decades, several algorithms were developed for fast evaluation of some elementary functions with very
large arguments, for example for multiplication of million-digit integers. The present paper introduces a new
iterative method for computing values §x  with high accuracy, for fixed ke N and xeR".

The best-known method used for computing radicals is Newton’s method used to solve the equation

f(t)=t“-—x=0.

Newton’s method is a general method for numerical solution of equations and for particular choice of the
equation it can lead to useful algorithms, for example to algorithm for division of long numbers. This method
converges quadratically. Householder [1] found a generalization of this method. Let d € N, be a parameter of
the method. When solving the equation f (t)=0 the iterations converging to the solution are
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L1

The convergence has order d +2. The order of convergence can be made arbitrarily large by the choice of
d . But for larger values of d it is necessary to perform too many operations in every step and the method gets
slower.

The method (3.4) presented in this paper involves compound means. It is proved that this method performs
less operations and is faster than the former methods.

Definition 1. A function P:R*xR* — R* is called mean if for every t,ueR”

min(t,u) < P(t,u) <max(t,u).
A mean P is called strict if
t#u=min(t,u)<P(t,u)<max(tu).

A mean P s called continuous if the function P is continuous.
A known class of means is the power means defined for p=0 by

1
tP+uP \p
Mp(t,u)::[ 5 j;

for p=0 we define
M, (t,u):= Li_rlgMp(t,u)=\/a.

The most used power means are the arithmetic mean A=M,, the geometric mean G =M, and the har-
monic mean H =M _, . All power means are continuous and strict. There is a known inequality between power
means

asfp=>M,<M,,
see e.g. [2]. From this one directly gets the inequality between arithmetic mean and geometric mean. For other
classes of means see e.g. [3].

Taking two means, one can obtain another mean by composing them by the following procedure.
Definition 2. Let P,Q be two means. Given two positive numbers t,u, put

a, =t, b,=u,
a,, =P(a,b,), b, =Q(a,b,),
n>0. If these two sequences converge to a common limit then this limit is denoted by
POQ(t,u):=lima, = limb,.

n—oo n—w

The function POQ:R*xR* — R" is called compound mean.
The best known application of compound means is Gauss’ arithmetic-geometric mean [4]

T

/2 do

2]0/ 2 2 2 ain?
\/t cos” @ +u”sin” @

Iterations of the compound mean then give a fast numerical algorithm for computation of the elliptic integral
(1.2).

Matkowski [5] proved the following theorem on existence of compound means.

Theorem 1. Let P,Q be continuous means such that at least one of them is strict. Then the compound mean

POQ exists and is continuous.

AOG (t,u) =

(12)
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2. Properties
We call amean P homogeneous if for every c,t,ueR"
P(ct,cu)=cP(t,u).
All power means are homogeneous. If two means are homogeneous then their compound mean is also

homogeneous.
Homogeneous mean P can be represented by its trace

p(t)=P(Lt).

Conversely, every function p:R" — R* with property

min(1,t) < p(t) <max(1,t) (2.2)

represents homogeneous mean
P(t,u) :tp(%j.
Theorem 2. If the compound mean POQ exists then it satisfies the functional equation
POQ(P(t,u),Q(t,u))=PoQ(t,u). 2.2)
On the other hand, there is only one mean R satisfying the functional equation
R(P(t.u),Q(t,u))=R(t,u).

Easy proofs of these facts can be found in [5].

. . . 2tu .
Example 1. Take the arithmetical mean A(t,u) :t+7u and the harmonic mean H (t,u) e The arith-
+u

metic-harmonic mean AOH exists by Theorem 1 and Theorem 2 implies that AOH =G . Hence the iterations
of the arithmetic-harmonic mean AOH (1,x) can be used as a fast numerical method of computation of
G (1, x) =X . This leads to a well known Babylonian method

=1 a 1 a +i
aO d n+1 2 n

aﬂ

with a quadratical convergence to lima, =+/x .

n—oo
The Babylonian method is in fact Newton’s method used to solve the equation t>—x=0. Using Newton’s
method to solve the equation t* —x =0 leads to iterations

1 X
aO =1, an+1 =E[(k —1) an +Fj (23)

with a quadratical convergence to lima, = K/x.

n—w

3. Our Method

In the present paper we will proceed similarly as in Example 1. For a fixed integer k >2 and a positive real
number x we will find a sequence of approximations converging fast to 4/x .
We need the following lemma.

Lemma 1. Let function p satisfy p“)(l):(K/i)(J)(l) for j=0,--,w andlet p™? be bounded. Let

q(t)z%(t).Assume that p and q satisfy (2.1) strictly if t=1. Then the function q satisfies

p

q(”(l): p(”(l) for j=0,--,w and q"™* isbounded. Let P and Q be the homogeneous means corre-
sponding to traces p and g, respectively. Then the compound mean POQ exists and its convergence has
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order w+1.
Proof. The assumption implies that

p(t)=¥t+o(t-2)"".

Then
t t

q(t)=—7== =

P (t) (Vﬂo(t—l)w”)k 1
t W
o1,

th +0(t-1)""
hence ' (1)=p'"(1) for j=0,--,w and g™ isbounded.

The compound mean POQ exists by Theorem 1. Let a, and b, be the iterations of P0Q. To find the
-8
™. Then

n

b
order of convergence put ¢, :=—"

a..=P(a,.a,(1+5,))=2a,(1+5,) =2, 3. j! sl+o(s8),
i—0
w q(J) 1) .

b (o, (1) = (18 =3 - ot o)
i !

and b, -a,,=0(5"")=0(b

)W+1

h~ %n o

Take the mean R, (t,u):= Y/t*'u . This mean is strict, continuous and homogeneous and it has the property

R( ) \/_ WewHIconstructtwo means P,Q suchthat R, =P0Q.
Let seN andlet p(t) be the Padé approximation of the functlon Kt of order [s,s] around t=1

ZetJ
p(t)=—=¥t+o(t-1)*". (3.1)
th‘

The exact formula for e;, f; will be derived in Lemma 15. In Lemma 20 we will prove that p satisfies
min(l,%) <p(t)< max(l,%) (3.2)

forevery teR". Hence it is a trace of a strict homogeneous mean

t“u
QY =50 (33)
and its trace is
t
t)=Q(Lt)=————.
a(t) =) = Jr g

Inequalities (3.2) imply that Q is a strict homogeneous mean too.
As in Definition 2, denote the sequences given by the compound mean POQ by a_,b , starting with

n?!>=n?



J. Sustek

3, =1 and b, = x. From (3.3) we obtain that

k-1, k-1
a, b a, b
b — a 7b — n n — n n ,
QD) e e )
hence a‘lb,.,=a“'b, =---=af'b,=x and b, :%. So the iterations of the compound mean POQ are
X j S Crksd
) 2| o dex! (af)
Ay = P(an’bn) = P{an’ﬂ] =4a, - - 7= Js=0 - (3.4)
a, s ; s—j
>o( 5] B E)
j=0 a, 1=0

Note that we don’t have to compute the sequence b, .
According to (3.1) and Lemma 1 the convergence of the sequence (3.4) to its limit ¥x hasorder 2s+1.

4. Complexity

Let M (N) denote the time complexity of multiplication of two N-digit numbers. The classical algorithm of
multiplication has asymptotic complexity M (N):O(Nz). But there are also algorithms with asymptotic
complexity

M (N):O<N'°923):O(N1-585)7
M (N)=0(Nlog N loglog N)

or
M (N)=O(NlogN2"™),

see Karatsuba [6], Schonhage and Strassen [7] or Firer [8], respectively. The fastest algorithms have large
asymptotic constants, hence it is better to use the former algorithms if the number N is not very large.

The complexity of division of two N-digit numbers differs from the complexity of multiplication only by
some multiplicative constant D . Hence the complexity of division is DM (N ) . Analysis in [9] shows that this

constant can be as small as D :% .

We will denote by o (k) the minimal number of multiplications necessary to compute the power t+— t*.
See [10] for a survey on known results about the function o .

Before the main computation of complexity we need this auxiliary lemma.

Lemma 2. Assumethat re N andthat M (N) is a function such that for some w e [1, 2] the function

M (N
f(N)= (N) is nondecreasing with
N w

f(N)=N, (4.1)

0+5

(N)
1) forevery T the image set g, ([1,T]) is bounded and
2)thereis N,(5) with g,(n)>g,(m) forevery n>m> N,(5).

Then
| log, N | N
2 M(rij 1
lim —= = .
Noe  M(N) re-1

and assume that

Forevery 6>0 put glg(N):NI
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Proof. From the monotonicity of f we have for every N

| logy N | N [log, N | N® N
2 M(J 2 mf(;j Lloge N
j=1 ro__i=r r < i< 1 _ (4.2)
M(N) wa(N) B =1 r“”_r‘”—l

Let 6>0. Then (4.1) implies hIlim gg(N)zoo. From this and properties 1 and 2 we deduce that there

exists a number N, (&) such that g,(n)>g,(m) for every n>N,(5) and every m<n. This implies for
every N >N, (5)

| logy N | Nm+5
log, N | — N
gz m(N =L plesdig N -1
e ri s\ i llogr NJ ¢ (w+8)] log, N |
I = > S . (4.3)
M(N) N Z e T
9;(N)

Inequalities (4.2) and (4.3) yield

[log, N | N |logy N | N
M| — M| —
- (r’) ,Z; (r‘j 1

<liminf 22— —— 2 <|j < :
WTMN) NPT M(N) e

rm+b‘ _

N—c

Passing to the limit § — 0 implies the result. o
Note that all the above mentioned functions M (N) satisfy all assumptions of Lemma 2 with w=2,

ow=log,3, w=1 and w =1, respectively.

Now we compute the complexity V (N) of algorithm computing x to within N digits. The functions
M(N) and V(N) have asymptotically the same order as N — oo, see for instance Theorem 6.3 in [3].
Hence all fast algorithms for comput\i/rlg &x  differ only in the asymptotic constants.

Let the algorithm for computing ¥/x
performs Z multiplications of two N-digit numbers before the iterations,
o performs A multiplications and B divisions of two long numbers in every step,

o has order of convergence r.
The accuracy to within N digits is necessary only in the last step. In the previous step we need accuracy

only to within N digits and so on. Hence
r
v(N):v(ﬁ}(m BD)M (N)+O(N).
r
The error term O(N) corresponds to additions of N-digit numbers. This and Lemma 2 imply that*

| log, N |

V(N)-(A+ED) 3 M [%}zm(w)mm)

:[(H Lo vom](as BD)+sz (N)+O(N)

=([1+ 1 1)(A+BD)+Z +o(1)jM (N).

4.1. Complexity of Newton’s Method
Newton’s method (2.3) has order 2 and in every step it performs o (k —1) multiplications (evaluation of a?)

=0(1) , see [12].

!In the last line we assume the hypothesis that all multiplication algorithms satisfy v (N)

2498
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and 1 division. So the complexity is

where
1

sV (k)= (1+—j(a(k—1)+ D).

2 -1
For the choice of multiplication and division algorithms with @ =1 and D =% we have
VY (k,N)=(20(k-1)+7+0(1))M (N).

4.2. Complexity of Householder’s Method

Consider Householder’s method (1.1) applied to the equation f(t):t"—x:O. Let deN,. An easy
calculation (see [11] for instance) leads to iterations

d . d—i
2 (@)
n -dzoﬂjxj (a:: )d*j

where 4, (k,d) and ;(k,d) are suitable constants. The method has order d +2, before the iterations it
performs d —1 multiplications of N-digit numbers (evaluation of x%,---,x") and in every step it performs
o(k)+2d -1 multiplications (evaluation of a’, then evaluations of numerator and denominator by Horner’s
method, and then the final multiplication) and 1 division. So the complexity of Householder’s algorithm is

Va' (k,N)=(sg' (k) +o(1))M (N)
where

1
(d+2)"-1

s:(k)=[1+

J(a(k)+2d -1+D)+d-1.

For the choice of multiplication and division algorithms with @ =1 and D =% we have

v (K, N)=[3d +a(k)+g+%+o(l)jM (N).

The optimal value of d which minimizes the complexity is in this case

AR

4.3. Complexity of Our Method

Given se N, our method (3.4) has order 2s+1, before the iterations it performs s—1 multiplications of
N-digit numbers (evaluation of X?,---,x°) and in every step it performs o(k)+2s-1 multiplications
(evaluation of a*, then evaluations of numerator and denominator by Horner’s method?, and then the final
multiplication) and 1 division. So the complexity of our algorithm is

V3 (K, N):(sj(k)+o(1))|v| (N)
where

“Not always Horner’s method is optimal, see [13]. In those cases Householder’s and our algorithms are faster.
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v
(2s+1)" -1

sj(k):{pr

](o-(k)+23—1+ D)+s-1.

For the choice of multiplication and division algorithms with @ =1 and D :% we have

+E+#S)+5+o(l)jM (N). (4.4)

The optimal value of s which minimizes the complexity is in this case

TR

Example 2. Compare the algorithms for computation of Yx . For k=14 we have o(k)=14 and, accord-
ing to (4.4), the optimal value of s for our algorithm is s=1. Padé approximation of the function Wt
around t=1 is

Vss(k,N)=[33+o(k)

5. Examples

3

15t +13
W = +0(t-1)".

13t +15 (t=3)

Hence the iterations of our algorithm are
15x+13a:*
=1 a,=a——:>- 5.1
% " M 13x+15a G4
with convergence of order 3. For computation of N digits of ¥/x  we need to perform

Ve (14, N):gm(l)jm (N)
operations.
Newton’s method

. o1 X
ao = 1, an+1 = ﬂ[l?:an + a—rllsj

has order 2 and for computation of N digits it needs (o (13)=5)
VY (14,N)=(17+0(1))M(N)

operations. Hence our method saves 16% of time compared to Newton’s method.
For Householder’s method the optimal value is d =1 and it leads to the same iterations (5.1) as our method.
Example 3. Compare the algorithms for computation of x . For k=179 we have o(k)=10 and,
according to (4.4), the optimal value of s for our algorithm is s=2. Padé approximation of the function
"t around t=1 is

2
9 10770t2 +42721t+10501 (t-1F.
10591t2 + 42721t +10770

Hence the iterations of our algorithm are

Qo1 a —a 10770x* +42721xa’" +10591a>*
o " 10591x° + 42721xal +10770a%°
with convergence of order 5. For computation of N digits of “J/x we need to perform

VE (179, N)=(%+o(1)jM (N)
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operations.
Newton’s method

. o1 X
aO = 1, an+l = ﬁ(l?San + FJ

n

has order 2 and for computation of N digits it needs
VY (179,N)=(27+0(1))M (N)
operations.
For Householder’s method the optimal value is d =1 and it leads to iterations

180x +178a’"
"178x+180a'"°
This method has order 3 and for computation of N digits it needs

87

v (179, N):(T+o(1)jM (N)

a, =1, a,,=a

operations.

Hence our method saves 20% of time compared to Newton’s method and saves 0.6% of time compared to
Householder’s method.

Example 4. Compare the algorithms for computation of 257801y For k =1234567890133 the exact
value of o (k) is not known. We assume that o (k)=59. According to (4.4), the optimal value of s for our
algorithmis s = 3. The iterations of our algorithm are

a, =1,
94083818620004407126666191157329760x°
+846754367579125169414786634836768160x"a23°078%01%3
+846754367578439298370880283615327200xa>%*%5780%66
4 —a +94083818619724978182852492511557517a3%%70%6703%

94083818619724978182852492511557517x°
+846754367578439298370880283615327200x%a2%¢78901
+846754367579125169414786634836768160xa2**1#70%%
+94083818620004407126666191157329760a° 05705703

with convergence of order 7. For computation of N digits of 2578013y we need to perform

V5 (1234567890133,N ) = [%+ o(l)] M(N)

operations.
For Householder’s method the optimal value is d =3 and it leads to iterations

a, =1,
1881676372394245537344489473235577128x°
+20698440096361087436794958174946153000x g 23**078%01%3
+20698440096379377331299127540851245280xa>4%13°7826°

4 —a +1881676372400342168845879261870607880a. *°'**'***

n+l "~ “n

1881676372388148905843114499415227960x
+20698440096342797542290773994226379160xa 2307890133
+20698440096397667225803282091941655928xa2**°135780%6¢
+1881676372406438800347283865320320240a7 %%




J. Sustek

This method has order 5 and for computation of N digits it needs

V;' (1234567890133, N ) = (%+ 0(1)} M (N)

operations.
Newton’s method

a, =1,
a = —l
"1 1234567890133

1234567890132
an

[1234567890132an + ;j

has order 2 and for computation of N digits it needs (assuming that o (k -1)=59)
VN (1234567890133,N ) = (125+0(1))M (N)

operations.
Hence our method saves 35% of time compared to Newton’s method and saves 7% of time compared to
Householder’s method.

6. Proofs

In this section we will prove that function p defined by (3.1) satisfies inequalities (3.2). For the sake of
brevity, will use the symbol N, for the set Zﬂ[u,oo).

6.1. Combinatorial Identities

First we need to prove several combinatorial identities. Our notation will be changed in this subsection. Here,
n will be a variable used in mathematical induction, k will be a summation index, and A,B will be
additional parameters. The change of notation is made because of easy application of the following methods
based on [14]. For a function ¢(n,k) we will denote its differences by

Ango(n,k)::go(n +1,k)—(p(n,k),

A(nk)=g(nk+1)—p(nk).
Given a function F(n,k), there is some function G(n,k) satisfying some relation between A F(n,k)
and A,G(n,k). This new function is then used for easier evaluation of sums containing F(n,k). Recall that

1 Lo
—= 0 for negative integer n.
n

For keN, and n,A,BeN,; with n>max(A B) put
(n—A)!(n+A-B)!B!A!(n—B)!(2n-B+k)!

Fl(n,k,A,B)ZZ (2“‘ B)!(n—i—A)!k!(B—k)!(n_ B+k)!(A—k)!(n—A— B+k)!’

k(ZB2 —6nB —2kB — 4B + kA— A+ 4n® + 3kn +5n + 3k +1)
(A+n+1)(B-2n-2)(B-2n-1)

R.(nk,AB):=

G, (n,k, A B):=F,(nk,AB)R,(nk, A B),

5, (n,AB):=3F (nk,AB).

k=0
Lemma 3. For every n,A BeN, satisfying n>max(A B) we have

" (n—A)(n+A—B)IBIAI(n—B)!(2n-B+k)!
S.(nAB)= g(Zn—B)!(n+A)!k!(B—k)!(n—B+k)!(A—k)!(n—A— B+k)l

Proof. From the polynomial identity



J. Sustek

(n+1-A)(n+1+A-B)(n+1-B)(2n+1-B+k)(2n+2-B+k)
—(2n+1-B)(2n+2-B)(n+1+A)(n+1-B+k)(n+1- A-B+k))
x((k+1)(n-B+k+1)(n—A-B+k+1)(A+n+1)(B—2n-2)(B-2n-1))
=((2n+1-B)(2n+2-B)(n+1+A)(n+1-B+k)(n+1- A-B+k))

x((2n-B+k+1)(B—k)(A—k)(k+1)(2B” ~6nB - 2kB ~6B + kA

+4n” +3kn+8n + 3k +4) —k(2B* —6nB — 2kB — 4B + kA— A

+4n° +3kn +5n+3k +1) (k +1)(n—B+k +1) (N~ A-B+k+1))

we immediately obtain
AF(nk,AB)

(n+1-A)(n+1+A-B)(n+1-B)(2n+1-B+k)(2n+2-B+k)
(2n+1-B)(2n+2-B)(n+1+A)(n+1-B+k)(n+1-A-B+k)
)

—1JF1(n,k,A,B)

(n+1-A)(n+1+A-B)(n+1-B)(2n+1-B+k)(2n+2-B+k)

| =(2n+1-B)(2n+2-B)(n+1+A)(n+1-B+k)(n+1- A-B+k) F(nkAB)

| (2n+1-B)(2n+2-B)(n+1+A)(n+1-B+k)(n+1-A-B+k) [ V"
(2n-B+k+1)(B—k)(A—k)(k+1)(2B* —6nB - 2kB - 6B + kA
+4n° +3kn +8n+3k +4) -k (2B - 6nB — 2kB - 4B+ kA— A
+4n° +3kn +5n+3k +1)(k+1)(n-B+k +1)(n— A~ B+k +1)

_ F.(n,k,AB)

(k+1)(n-B+k+1)(n—A-B+k+1)(A+n+1)(B-2n-2)(B-2n-1)

_ (2n-B+k+1)(B-k)(A-k) Rl(n,k+1,A,B)—Ri(n,k,A,B)JFl(nvkvAvB)

(k+1)(n-B+k+1)(n—A-B+k+1)
= F,(n,k+1,A B)R (n,k+1,AB)-F (nk,AB)R (nk,AB)
=AG,(nk,AB). (6.1)

For fixed k >n wehave max(A,B)<k andhence L = ! =0. Thus
(A-k)t (B—k)!

F(n+Lk=n+1AB)=0. (6.2)

Similarly for k=0 and k=n+1 we have

Gl(n,k:O, A,B):O (6.3)
and

G, (nk=n+1AB)=0. (6.4)

Then (6.1), (6.2), (6.3) and (6.4) imply
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A,S;(n,AB)

—F(n+Lk=n+LAB)+ YA F (nk AB)
k=0
—F(n+Lk=n+1AB)+ YAG, (nk AB) (65)
K=

0
F(n+Lk=n+1LAB)+G,(nk=n+LAB)-G, (nk=0AB)
0

If A=n and B<n then ;zo for k<B and !
(k—B)! (B—k)!

summand in S, (n,A=n,B) istheonefor k=B and

=0 for k> B. Hence the only nonzero

0!(2n-B)!B!n!(n—B)!(2n—B+k)!

S, (n,A=n,B)= =1 6.6
(AN B) = B} (2n) KB —K)(n— B+ K)i(n—K){(k_B); (65)
Similarly for A<n and B=n we obtain
S,(n,A<n,B=n)=1.
From this and (6.6) we obtain that
S,(n=max(A,B),AB)=1.
Equation (6.5) implies that S, will not change for greater n. o

For nk,AeN, with 1<A<n and k<n-A put

(1) " (n+Kk)(n+1- A)Y(n+1)!

Fo(nk A)= KI(A+Kk)!(n+1-A-k)!(2n+1-A)

_ k(A+k)
Tz(n,k,A).zm,

5, (n A) = SF, (nk, A).

k=0

Lemma4. Forevery n,AeN, with A<n

A (=1) " (n+k)(n+1-A)(n+1)!
S2(nA)= Z‘ kI(A+k)!(n+1-A-k)!(2n+1- A)

Proof. From the polynomial identity
(n+k+1)(n+1-A-k)+k(A+k)=—(n+1)(A-n-1).
we obtain for k<n—A that
(n+k+1)(n+1-A-k)+k(A+k)
(n+1)(A-n-1)

A (R (nk, AT, (nk, A)) = F, (nk, A)=F,(nk,A).

This and the fact that T,(n,k =0,A)=0 imply

Sz(n,A)::Z:FZ(n,k,A) ZA( (0K, A)T, (n k. A))
=F,(nk=n-A+LA)T,(nk=n-A+LA)-F,(nk=0,A)T,(n,k =0,A) o

()" (20— A+ (n+1- A)(n+1)(n - A+D)(n+1)
(n—A+1)!(n+1)10!(2n+1- A)l(n+1)(A-n-1)
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For nk,ABeN; with I<A<B<n and k<n-A put
(koA B) e D) (BHiMn-k-1)t
(B—k)Ik!(A+k)!{(n—A-k)!

__ () (B+K)(n-k)!
Coln kA B) = KD (AT K- (n— Ak 1)1

n-A
S;(n,AB):= ;)Fs (n,k, A B).

Lemmabs. Forevery n,A,BeN, with A<B<n

S (nAB)~ ZA (-1)" (B+K){(n—k-1)!

£ (B—K)IKI(A+K)I(n— A—K)!

Proof. From the polynomial identity

(B—n)(B+n+1)(n—A-k+1)—(n+1)(A-n-1)(n-k)
=(B+k+1)(B—k)(n—A-k+1)+(n—k)k(A+k)
we obtainfor A<B<n and k<n-A that
(-1) (B+k+1)1(n—k —1)! (-1)*(B+k)!(n—k)!
Gk A B) = g o T KI(AT K) ("= A—K)! (B=K){(K—1){(A+k-1){(n—A—Kk+D)
[ B+k+1)( MJ F,(n,k,AB)
n—-A-k+1 (6.7)

(DA BOK e o m

-n)(B+n+1)F,(n,k, A B)-(n+1)(A-n-1)F,(n+1k, A B).

For k=0 wehave G (n,k 0,A,B)=0. This and (6.7) imply
(B—n)(B+n+1)S;(n, A B)-(n+1)(A-n-1)S;(n+1,AB)

[ B+n+1

= ni\((B—n)(B+n+1) F,(n,k,AB)-(n+1)(A-n-1)F,(n+Lk, A, B))

—-(n+1)(A-n-1)F,;(n+Lk=n—-A+1,AB)

= 5°A,G, (k. A B)~(n+1)(A—n-1)F, (n+1k =n—- A+1 A B) (6.8)
k=0

=G,(nk=n-A+LAB)-G,(nk=0,AB)-(n+1)(A-n-1)F,(n+Lk =n—A+LAB)
()" (n-A+BA(A-1) (1) (n+1)(A-n-1)(n-A+B+1)Y(A-1)!
(A+B-n-1)!(n-1)n!0! (A+B-n-1)!(n—A+1)/(n+1)1!

Lemma4 for n=B implies

BZ?( )" (B+K)Y(B+1-A)Y(B+1)!
S k(A+K)!(B+1- A—k)(2B+1-A)!
hence
w8 (<) (B+k)!  (-1)""(2B+1-A)!
S K(A+K)(B+1-A—k)!  (B+1-A)(B+1)!
and
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BoAHL (-1) (B+k)!

S,(n=B+1AB)= =0. 6.9
(n=B+ ) kZ(:, kKI(A+k)!(B+1-A-k)! (69)
For n>B+1 wehave A-n-1>0 and (6.8) yields
5, (n+1A8)= B=MENY gy,
(n+1)(A-n-1)
This with (6.9) implies the result for every n>B. o

For nk,AeN, with A<n put

(2n—k)Ik!(n—A)(A+n+1)!
(k—A)(n—k)!In!(2n+1)IAl’

F(nk,A)=

(2n—k+1)1k!(n— A)l(A+n+1)!
(k=A-1)i(n—k+1)!(n+1)i(2n+3)IAl

G,(nk,A)=—

5, (n.A) = 3F, (n.k, A).

k=A
Lemma6. Forevery A neN; with A<n
(2n—k)'k!(n—A)(A+n+1)!

Sdezé -1,

% (k=A)!l(n—k)!n!(2n+1)! Al

Proof. From the polynomial identity
(2n—k+1)(2n—k+2)(n—A+1)(A+n+2)—(n+1-k)(n+1)(2n+2)(2n+3)
=(2n—k+1)(2nA-kA+2A+kn+n+k+1)(k-A)

—(k+1)(2nA—kA+ A+kn+2n+k+2)(n—-k +1)

we obtainfor 0<A<n and keN; that
A F,(nk, A)
:(2n—k+1)(2n—k+2)(n—A+1)(A+n+2)—(n+1—k)(n+1)(2n+2)(2n+3)F (k. A)
(n+1-k)(n+1)(2n+2)(2n+3) e
—(k+1)(2nA-kA+ A+kn+2n+k+2)(n—k +1)
+(2n—k +1)(2nA-kA+2A+kn+n+k+1)(k-A)

) (n—k+1)(n+1)(2n+2)(2n+3) Fu(n.k A)

B _(k+l)(2nA—kA+A+kn+2n+k+2)+(2n—k+l)(2nA—kA+2A+kn+n+k+l)(k—A)JF (nk,A)
- (n+1)(2n+2)(2n+3) (n—k+1)(n+1)(2n+2)(2n+3) A
(2n—k)I(k+1){(n— A)l(A+n+1)/(2nA—KA+ A+kn+2n+k +2)
(k=A)(n—k)!(n+1)I(2n+3)!A!
(2n—k+1)k!(n— A)l(A+n+1)/(2nA—KkA+2A+kn+n+k +1)
(k—A-1)!(n—k+1)!/(n+1)!(2n+3)!A!
=AG,(nk,A).

+

(6.10)
For k=A wehave G,(nk=A,A)=0.From this, (6.10) and the polynomial identity
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2nA—-(n+1)A+2A+(n+1)n+2n+2=(n+1)(A+n+2)
we obtain

AS,(nA)=F,(n+Lk=n+1A)+ Zn:AnF4 (n.k, A)

k=A

—F,(n+Lk=n+LA)+ YA,G, (nk A)
k=A

=F,(n+Lk=n+1A)+G,(nk+1A)-G,(nk = A A)
_ (n+1){(n+1)!(n+1-A)I(A+n+2)!
(n+1-A)10!(n+1)!(2n +3)!Al
n!(n+1)!(n—A)l(A+n+1)}(2nA—(n+1) A+2A+(n+1)n+2n+2)
- (n—A)!0!(n+1)!(2n+3)! Al
_ (n+1)!(A+n+2)! n!(A+n+1)!(n+1)(A+n+2)
(2n+3)1A! (2n+3)1A!

(6.11)

=0.

Forn=Athesum S,(n,A) contains only one nonzero summand for k= A andwe have S,(n=AA)=1.
Equation (6.11) implies that S, will not change for greater n.
For nk,ABeN;, with A<B<n put

(2B—k){(n-B+k-1)!(B—A)!(n+A)!
(k—A)(B-k)!B!(n+B){(n-B+A-1)!
(2B—k+1)i(n-B+k-1)!(B-A)!(n+A)!
(k—A-1){(B-k)!B{(n+B+1){(n-B+A)!’

F(n.k,AB):=

G;(n,k, A B):=—

B
S;(n,AB):= Z s (n.k, A B).
Lemma7. Forevery A B,neN, with A<B<n

(2B—K)!(n—B+k-1)1(B=A)(n+A)!
%(nAB)= é( A)(B=K)1B!(n+B)(n—B+A-1)I

Proof. From the polynomial identity
(n—-B+k)(n+A+1)—(n+B+1)(n-B+A)=(2B-k+1)(k—A)-(n-B+k)(B-k)
we obtainfor 0<A<B<n and keN,
F(nk, A B)
_(n=B+k)(n+A+1)-(n+B+1)(n-B+A)
- (n+B+1)(n-B+A)
n-B+k)(B-k 2B—-k+1)(k—A
:[_(n(JrB+1)(r)1(—B+?A)+(r(1+B+1)(r3(—B+,Z\)jF5(n'k’A’B)
(2B—k){(n—B+k)!{(B—A)!(n+A)!
“(k=A)(B—k-1)!1B!(n+B+1)l(n—B+A)!
(2B—k +1)i(n-B+k-1)}(B-A)!(n+A)!
"k—A-1)i(B_K)1BI(n+B11)(n—B+ A)!
=AG;, (n,k, A B).

R (n.k, A B)

(6.12)
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For k=A and k=B+1 we have
Gs(nk=AAB)=0
and
Gs(nk=B+1AB)=0.
From this and (6.12) we obtain

A,Ss(n, A B)
B B
=>AFR(nAB)=>AG(nAB) (6.13)
koA k=A

=G;(n,k=B+1LAB)-G;(nk=AAB)=0.
Lemma 6 for n=B yields

S;(N=B+1AB)
(2B-K)k!(B-A)(A+B+1)!

= =S =B,A)=1.
k:ZA (k—A)Y(B-k)!B!(2B+1)!Al o )
Equation (6.13) implies that S;(n, A,B) has the same value for greater n. o

For n,BeN, and keN, put

(-1) (n+k)!(2n+B)? (B-1)!(2n+ B—k —1)In!
(n—=k)?k!(n+B+k)!(n+B-1)(3n+B)!

Fs(n,k,B)=

Ts (n,k,B):=3nB* —kB* +3B* +24n*B* — 9knB® + 39nB° — k*B® — 6kB®
+15B% +69n°B? — 26kn?B? +151n?B? — 7k *nB? — 30knB?
+104nB? —5k*B? — 7kB? + 22B? +84n“B — 28kn°B + 225n°B
-16k*n’B —38kn?B + 211n’B — 23k’nB — 9knB + 80nB — 8k *B
+2kB +10B +37n° —10kn* +116n* —11k?n® —14kn® +136n°
—22k2n? —2kn? + 74n% —=13k*n + 2kn +19n — 2k + 2,

(-1)*(n+k)!(2n+B)?(B-1)}(2n+ B —k)n!T, (n,k, B)
(n—k+1)¥(k-1){(n+B+k)!(n+B)¥(3n+B+3)!

G (n,k,B):=

S¢(n,B)= Zn:Fe(n,k,B).
k=0
Lemma 8. For every n,BeN,

e (_l)k(n+k)!(2n+B)!z(B_1)1(2n+B—k—1)!n!_
Se(n,B)—k; (n—k)Pk!(n+B+k)!(n+B-1)F (3n+B)!

Proof. From the polynomial identity

(n+k+1)(2n+B+1)*(2n+B+2)* (2n+B—k)(2n+B -k +1)(n+1)
~(n-k+1)*(n+B+k+1)(n+B)*(3n+B+1)(3n+B+2)(3n+B +3)
=(n+k+1)T, (n,k+1B)(n—k+1)" +(2n+B k)T, (n,k,B)k(n+B+k +1)

we obtain
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A,Fs(nk,B)
(n+k+1)(2n+B+1)*(2n+B+2)*(2n+B—k)(2n+B -k +1)(n+1)

B ~(n—k+1)*(n+B+k+1)(n+B)*(3n+B+1)(3n+B+2)(3n+B+3)
| (n=k+1)’ (n+B+k+1)(n+B) (3n+B+1)(3n+B+2)(3n+B+3)

Fs

(n+k+1)T,(nk+1,B)(n—k+1)* +(2n+B k)T, (n,k,B)k(n+B+k +1)
(n+B+k+1)(n—k+1)"(n+B)’(3n+B+1)(3n+B+2)(3n+B+3)
B (n+k+1)T;(n,k+1,B)
_[(n+ B+k+1)(n+B) (3n+B+1)(3n+B+2)(3n+B+3)
(2n+B—k)Ts(n,k,B)k
(=41 (n+BY (3n+ B+1)x(3n+ B+2)(3n+ B+3)
(-1 (n+k+1)!(2n+B)*(B-1){(2n+ B~k -1)!n!T, (n,k +1,B)
- (n=Kk)Pk? (n+B+k+1)i(n+B)¥ (3n+B+3)!
(-1)*(n+k)!(2n+B)¥ (B-1)!(2n+B k)T, (n,k, B)
(n—k+1)?(k-1)Y(n+B+k)!(n+B)¥(3n+B+3)!
=AG;(n,k,B).

Fs(n.k,B)

For k=0 wehave G (n,k=0,B)=0.From this, (6.14) and the polynomial identity
Ts(n,k=n+1B)=(2n+2)(2n+ B+1)2 (2n+B+2)(n+B)

we obtain

A,Ss(n,B)=F;(n+Lk=n+1, B)+zn:AnF6 (n.k,B)
k=0

—F,(n+1k=n+1B)+YAG, (nkB)
k=0
(

=F(n+Lk=n+1B)+G;(nk=n+1B)-Gs(nk=0,B)
_ (-1)™* (2n+2)1(2n+B +2)# (B~1)/(n+B)!(n+1)!
0F(n+1)!(2n+B+2)!(n+B)¥(3n+B+3)!
(-1)™*(2n+1)!(2n+B)¥? (B-1)!(n+B-1)!n!T, (n,k =n+1,B)

(n.k,B)

Fs(n.k,B)

(6.14)

(6.15)

" 0Fn!(2n+B+1)!(n+B)¥ (3n+B+3)!

_ (1) (2n+1)!(2n+B)# (B-1)!(n+B-1)!
(2n+B+1)i(n+B)¥(3n+B+3)!

x((2n+2)(2n+B+1)* (20 +B+2)(n+B)-T, (nk =n+1B))
-0.

For n=1 we have

o (n_1g) (BDB+2)F 2(B-1)(B+2)! (B+1)(B+2)-2
o(n=18)= BF(B+3)!  BI(B+3)!  B(B+3)

Equation (6.15) implies that S, (n,B) has the same value for greater n.
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For n,ABeN, and keN, with n>2A+B put

_ (-1)" (A+k) (2A+B)!(B~1)(n—k -1)(n— A-B)!n!
F(nk AB):= (A=K)Ik!I(A+B+K)(A+B-1)(n—A-1)!(n—A-B—k){(n+A)l’

(-1)“" (A+k)!(2A+B)!(B-1)(n—k)!(n— A—B)!n!

G (nk AB):= (A=K)W(k-1)Y(A+B+k-1)(A+B+1)!(n—A)(n—A-B-k+1)i(n+A+1)l’

S, (n,AB)=3F (nk AB).

Lemma9. Forevery A B,neN, with n>2A+B

2, (<)) (A+K)i(2A+B)(B-1)!(n—k ~1)i(n— A—B)mn!
5/(nAB)= g(A—k)!k!(A+ B+k)!(A+B-1)l(n—A-1)i(n—A—B—K)l(n+A)l

Proof. From the polynomial identity
(n—k)(n—A-B+1)(n+1)—(n—-A)(n—A-B—-k+1)(n+A+1)
=(A+k+1)(A-k)(n-A-B-k+1)+(n-k)k(A+B+k)

we obtain for n,A,BeN, and keN, with n>2A+B

A,F,(n,k, A B)
(n—k)(n—-A-B+1)(n+1)—(n—-A)(n—A-B-k+1)(n+A+1)

- (n—A)(n—A-B—k+1)(n+A+1) Fr(nk.AB)
_(A+k+1)(A-k)(n-A-B-k+1)+(n-k)k(A+B+k)
- (n—A)(n—A-B-k+1)(n+A+1)

(A+k+1)(A-k) (n—k)k(A+B+k)
:((n—A)(n+ A+1) (=AY (n—A-B—k+D)(n+ A+1)J R (nk.AB)

(-1)"* (A+k+1)/(2A+B)!(B-1)!(n—k -1)/(n— A—B)!n!
~(A—k-1)Kk!(A+B+k)(A+B+1)(n-A)(n—A-B—k)!(n+A+1)!
(-1)"* (A+Kk)!(2A+B)!(B-1)!(n—k)!(n— A—B)!n!

(A—K)I(k—1)/(A+B+k-1)/(A+B+1)/(n—A)l(n—A-B—k+1)!(n+A+1)!

=AG;, (n,k,AB).

F, (n,k, A B)

(6.16)

For k=0 and k=A+1 we have
G,(nk=0,AB)=0
and
G,(nk=A+1AB)=0.

From this and (6.16) we obtain
A A
A,S;(n,AB)=>AF (nk AB)=>AG,(nk AB)
k=0 k=0 (6.17)
=G, (n,k=A+1AB)-G,(nk=0AB)=0.

For n=2A+B Lemma 8 implies
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S,(n=2A+B,AB)

A (-1)(A+k)!(2A+B)!Y(B-1)}(2A+ B~k ~1)!Al(2A+B)!
Z;(A K)k!(A+B+k)!(A+B-1)!(A+B-1)i(A—k)!(3A+B)!
=S,(n=AB)=L1.

Equation (6.17) implies that S, (n,B) has the same value for greater n. O

6.2. Formulas

Now the symbol k again has its original meaning.
For keN, and ieN, put
()" =

Joy =1 and g;, = T [1(ik-1).

i1

The numbers g;, are the coefficients of Taylor’s polynomial of the function Kt
Lemma 10. For keN, and te(0,2)

=30, (t-1)"

Proof. See for instance Theorem 159 in [15]. o
Now we prove a technical lemma that we need later.
Lemmall. For keR, seN, and j=1---s

(25— j) (25— ~
i i)Ad () =g 11 (k=)
(6.18)

5y (D (25—l lﬁ(hk 1) I (hk-1)|.

L1 (=) (s— i) i
Proof. On both sides of (6.18) there are polynomials of degree j in variable k. Therefore it suffices to
prove the equality for k — o andfor j values k:% with m=s—j+1---,s

For k — o0 we immediately have

LHS~€25—J)k’ IT h~RHS
JI(S_J) h=s-j+1

For k =% with m=s—j+1,---,5 we obtain on the left-hand side of (6.18)

— )\ s — i\l I
LHS - (2s—j)! (ﬁJ’lj: (25 j.). 1 (m+s): |
BN(s= i) hossjulm (s=j)m’ (m+s—j)
For such numbers m we have
s h
—-1|=0.
h_]sT[j+1(m J

Therefore we obtain on the right-hand side of (6.18)

e L e eI G

e e 11 em)

J-i)(s—j+i)miT g hes— j+i+l

@)
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The first product on the last line is equal to zero for i>m+1, the second product on the last line is equal to
zerofor i<m+ j—s—1. For other values of i both products contain only positive terms. Hence

(3 (2s- i) ooty 1] (hem
s "3 [ I men) T (v-m)

=m-s+] h=s—j+i+1

(Z (25— j+i)Im!(s—m)!

1 (J=)(s— j+i)m! (m=i)i(s—m— j+i)!

This implies that

R_HS:"“E"‘) (25— j+i)ml(s—m)lji(s— j)Y(m+s—j)! .
LHS iamail(j—i)(s—j+i)(m=i)(s—m—j+i)l(25—j)Y(m+s)!

For i<m-s+]j we have =0, for i>j we have =0 and for i>m we have

1 1
(s—m—j+i)! (j-i)
1

(s—i)!

=0. Then Lemma 3 implies

1=S(n=s,A=m,B=j)

ZS: (25— j+i)Iml(s—m)lj!(s—j)(m+s—j)!
S (s—j+D)(m=i)(s—m—j+i)l(25—j)(m+s)!

_mm) (25— j+i)Im!(s—m)fj!(s—j)(m+s—j)!
icmes g (= (s—j+D)(m=i)(s—m—j+i){(25—j)Y(m+s)!
_RHS
~ LHS
Hence equality (6.18) follows for k=% with m=s—j+1.-s. o

For keN,, seN, and j=0,---,s put

_2smi) .
FTEi h!_[ﬁl(hk 1),
)

S5 T (k).

(=) nsdia

For keN, and seN, put

ZS:Cj,k,s (t_l)j

Pes ()= (6.19)
Zdj,k,s (t-1)’
j=0

We will prove that (6.19) is Padé approximation of /t .

Lemma12. For keN,, seN, thenumbers c;,  and d;,  satisfy the system of equations

i
Zdj—i,k,sgi,k =Cjysr 1=0,-18.

i=0

Proof. Lemma 11 implies

@)
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_ QS_J—)!IKH li[ (hk—l)—zjl[(_l)i (25— j+i)! -

s=0)' nsdia St (J-i)(s—j+i)
xﬁ(hk—l)hslj[m(hk—l)J

SR Ny 1)+i[( B! e

Cls=0) e j—i)(s—j+i)!

< T (k-C )_1|1(hk—1)]

h=s—j+i+l = h=1

i
=d; s +Zdj—i,k,sgi,k

Lemma13. For keN,, seN, the numbers ¢ and d satisfy the system of equations

jk,s

st—i,k,sgjﬂ,k :O, ] :1’...15.
i=0

j.k,s

Proof. For j=1,---,s we obtain on the left-hand side

LHSZids—i,k,sgiJri :ZS:[ (SH)' k' (_1)i+j_l li[ (hk _l)iﬁl(hk_l)J'

S (s=tt K (i ) hmin h-1

This expression, multiplied by k', is a polynomial of degree s+ j—1 in variable k. Therefore it suffices

to prove the equality for s+ j values k:% with m=1---,s+ j.For m<s we have ]‘[(h—%):o and
h=1

hence the whole expression is equal to zero. For m>s+1 we obtain
1)1 (s i)t
LHS=| k**T](h-m j (—
[T il

The second product is equal to zero for i>m-— j, therefore the summations ends for i=m— j. Then Lemma
5 implies

(h—m).

n-j m—i—1)!
) s+ - )_ s, (n=m A= | B=5)=0
.:0( —ilil(i+ j)(m—i-j)
Lemma 14. Function p, , (t) is the Padé approximation of the function ¥/t of order [s,s] around t=1.
Proof. For t -1 Lemma 10, Lemma 12 and Lemma 13 imply

( s (t—1)‘j5ﬁ = [idm (t—l)ij(ggi,k (t—l)ij

i=0
] s s
( )] Zdj iks ik +Z(t _1)S+] st—i,k,sgj+i,k "’O(t _1)25+1
=%, (t-1) +O(t-1)*".
=0
The result follows. O

i=0 j=1 i=0

Mw s

Il
o
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Now we find the coefficients €, and f;, . of the Padé approximation

Zei,k,stI
pkvs (t) = i=0
Z:fi,k,stI
i=0
Lemma 15. Forevery seN,;, i=0,---,s and keR
6. = @ TT(hk-1) T (hk+1), (6.20)
h=i+1 h=s—i+1
fL. :@ TT(hk+1) T (hk-1). (6.21)
h=i+1 h=s—i+1

Proof. First we prove (6.21). From (6.19) we obtain

Binomial theorem then implies that

fios = jm(—l)“ dj s

j=i
Thus equality (6.21) is equivalent to
S) 2 s s (] i (25— o8
[_)H(hku) I1 (hk-1)=3 m(_l)’ Cs=DY e 1 (k=) | (6.22)
I Jh=is1 h=s—i+l =\ J!(S—j)! hes—j+1
On both sides of (6.22) there are polynomials of degree s in variable k. Therefore it suffices to prove the
equality for every k=1 with reN,;, r>s+1.
r

Lemma 7 implies

_y (5= -+ DY (s-)Y(r+i)
i=i (J-—I)'(S—-J)!S!(I‘+S)-!(r—s+|—1)!
_ Z[ IJJ J( !z(ss_—Jj))!! (r(;::;)l
=
)

ey 22 1 ()

TEIEL
L0 T (-
i[ijj(—l)“ E;’-(SS—_ J'j))!!ksih_f[jd(hk—l)

@ﬁ(hk o) I (k=)

h=i+1 h=s-i+1

hence (6.22) and (6.21) follow.
Putting k :=-k into (6.21) and applying binomial theorem in the same way we obtain (6.20). i
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6.3. Bounds

By Lemma 14 the function p, ; is Padé approximation, hence we know its properties in the neighbourhood of
1. Here we find global bounds for p, ; that are necessary for functionality of our algorithm.

We need another two technical lemmas.

Lemma16. For keR and s,meN,

s (—1)Sfi(s+i) s B s+m+i-l ) :M s )
Z(s (s + mi)! hll(hk 1) hH (hk —1) (2$+m)!(m_1)!g(hk 1),

Proof. On both sides there are polynomials of degree S in variable k. Therefore it suffices to prove the
equality for every k =% with reN,, r>2s+m.
Lemma 9 implies
1=S,(n=r,A=s,B=m)

(- 1) (s+i)l(2s+m)(m-1)(r—i-1)Y(r—s—m)!r!
S (s—i)lil(s+m+i)(s+m-1)(r—s-1)I(r—s—m—i)l(r+s)!

(D (s rits emm o) e
(( s—i)lil(s+m+i)(s+m-1)! [Le=n) 1Lt hn) J

'Mw

I
{ag

h=i+1 h=s+m h=1
s (_ )S I(S+|) (25+m) (m_]_)l s s+m+i-1 s o
= hk -1 hk -1 hk +1) ~ |.
Z(( s—i)lil(s+m+i)!(s+m-1)! hl_,L( )hgm( )hzl( +1)
This implies the result. o
Lemmal7. For keN, and jeN, with j>2s+1
Z(_l)H dyins|9jssin| >0

i=0

Proof. Put m:= j—2s>1. Then

LHS =3 ()"0,

gj s+ik

S_i S +I 1 j-s+i-1

[( (_1)5*‘(s+i)- ]i[(hk—l)j_s”_l(hk—l)]

S— I)III(J_S+|) h=i+1 =j-s

1 j—s-1
=5+ [T (hk-1);

-s
h=1

e

>

_ 1 "””<hk—1)i[ L ﬁ(hk_l)mﬁﬂl(hk_l)]'

k™ S (=)t (m+s+i)l iz h=ms

Lemma 16 implies

1 (s+m-1) mes—1
LHS = hk+1) T (hk—1)>0.
k" (2s+m)!(m—1)!g( 1) [T (hk-1)> :

Now we find lower and upper bounds for the function p, .
Lemma18.For keN,, seN, and te(0,1) wehave p,,(t)>¥t.
Proof. Put

Zalks(t 1) {z (- 1)ijt—[zd.ks(t 1) j(ﬁ(}gi'k(t—l)ij. (6.23)

@)
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Lemma 12 and Lemma 13 imply
2s . S .
Z“j,k,s (t_l)] =ZC,-,k,s(t—1)J- (6.24)
j=0 j=0

From (6.23) we obtain for j>2s+1

S

ks = ;ds-i,k,sgj_sq,k-
We have g, i, :(—1)17S+i l| 9o k| Lemma 17 implies
0 S i
3 (-1 = 3 (07 0,
j=2s+1 j=2s+1\'i=0

From (6.23), (6.24) and (6.25) we obtain

[Zd,ksa 1y ]ﬁ—Za,ksa D'+ 5 a1 <30, (01

9 ,-s+i,k|j(1—t)j <0. (6.25)

j=2s+1

Lemma 15 implies that

hence

D Cis (t-1)
Py s (t)=H)—>Vf. 0

S

Z(:)dj,k,s (t-1y’
j=

Lemma 19. Forevery keN,, seN, and x>1 wehave p,(t)>1

Proof. Directly from the definition of c;,  and d;,  we obtain

zslcj,k,s(t—l)j i((I(S_J))'I ks~ H (hk+1)J(t—1)j

k,s

Ps (1) =L =12 il 1, (6.26)
250 (t-1) i(((s_‘})'ks ] (hk—l)j(t—l)j

The inequality is strict, since for j>1 the main bracket in the numerator is greater than the main bracket in
the denominator. m

Now we prove that function p, , (t) satisfies inequalities (3.2).

Lemma 20. Forevery keN,, seN, and teR"\{1}

min(l,Vf) < Pes(t)< max(l,%).

Proof. The proof splits into four cases.
1)For O<t<1 Lemma 18 implies that &/t < Pes (t )

2) Lemma 15 implies that e;, . = f; ;. forevery jk,s.Hence
1 1
Pes [—] : : (6.27)
“ t pk,s (t)

Using this and the first case we obtain that for t>1 we have p,,(t)<¥t.

3) For t>1 Lemma 19 implies that p, (t)>1.
4) Using this and (6.27) we obtain for 0<t<1 that p, (t)<1. o
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