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Abstract 
This paper proposes a novel discrete differential geometry of n-simplices. It was originally devel-
oped for protein structure analysis. Unlike previous works, we consider connection between 
space-filling n-simplices. Using cones of an integer lattice, we introduce tangent bundle-like struc- 
ture on a collection of n-simplices naturally. We have applied the mathematical framework to 
analysis of protein structures. In this paper, we propose a simple encoding method which trans- 
lates the conformation of a protein backbone into a 16-valued sequence. 
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1. Introduction 
This paper proposes a novel discrete differential geometry of n-simplices, which is originally developed for pro-
tein structure analysis [1] [2]. Discrete differential geometry is the study of discrete equivalents of the geometric 
notions and methods of classical differential geometry [3] [4]. It mainly deals with polygonal curves and poly-
hedral surfaces whose properties are analogous to continuous counterparts, where the smooth theory is estab-
lished as limit of the discrete theory. 

On the other hand, we consider connection between space-filling n-simplices. We define gradient of n-sim- 
plices and obtain a flow of n-simplices by piling up n-cubes diagonally. Second derivative along a trajectory is 
given as a binary-valued sequence for any n (>1). As a result, we could encode the shape of n-dimensional ob-
jects if we approximate them by sweeping the occupied area with a trajectory of n-simplices. 

Proteins are a sequence of amino acids linked by peptide bonds and fold into a unique three-dimensional 
structure in nature. Protein backbone structure is usually studied via manually-curated hierarchical classification 
[5] [6] but there also exist studies on differential geometric approach for protein structure analysis [7]-[11]. As 
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for discrete differential geometry of protein backbones, proteins are usually represented as a polygonal chain, 
where curvature and torsion are defined at each vertex [7]. 

In our method, protein backbone structures are approximated by a trajectory of 3-simplices (tetrahedrons). 
Particularly we consider second derivative along a trajectory to encode local protein structures. Our method 
performs comparably with more sophisticated but more time-consuming methods which are specifically de-
signed for protein structure analysis [12] [13]. In the following, we first describe the discrete differential geome-
try of n-simplices. Then, we apply the mathematical framework to analysis of protein structures and propose a 
simple encoding method which translates the conformation of a protein backbone into a 16-valued sequence.  

2. Discrete Differential Geometry of n-Simplices 
2.1. Basic Ideas 
Recall that an n-simplex is an n-dimensional polytope which is the convex hull of its n + 1 vertices. As an in-
troduction, we would consider the case of n = 2 before we give the definitions in the general case. In the case of 
n = 2, we obtain a flow of 2-simplices (triangles) by piling up unit cubes in the three-dimensional Euclidean 
space 3

  as shown in Figure 1(a). 
First, cubes are pilled up in the direction of ( )1, 1, 1− − − , where three upper faces of each unit cube are di-

vided into two triangles by a diagonal line. Then, the diagonal lines on the faces of the cubes form a drawing on 
the surface of the “peaks and valleys” of cubes. By projecting the drawing onto a hyperplane that is perpendicu-
lar to ( )1,1,1 , a flow of triangles would be obtained. For example, the grey “slant” triangles on the surface spe-
cify the closed trajectory of the grey “flat” triangles on the hyperplane in Figure 1(a). 

2.2. Differential Structure 
Because of convenience, we use monomials to represent coordinates of points. That is, point ( )1 2, , , n

nl l l ∈   
is denoted by monomial 1 2

1 2
nll l

nx x x  of n indeterminates for integer n (n > 1). 
First of all, we give the definition of “slant” and “flat” n-simplices. Let’s consider n-cube in the n-dimensional 

Euclidean space n
 . Note that the facets of n-cubes are 1n − -dimensional unit cubes. To obtain “slant” 

n-simplices, we divide each of the n facets which contain origin ( )0,0, ,0  into ( )( )1 2n n− −  1n − -sim- 
plices along diagonal as follows.  

Definition 1. For any integer n > 1, n-dimensional standard lattice nL  is the collection of all integer points 
of n

 , i.e., 

{ }1 2
1 2 for 1nll l

n n iL x x x l i n= ∈ ≤ ≤  . 

Definition 2. For any integer n > 1, the collection Sn  of all slant n-simplices is defined by  

( ) ( ){ }1 1 ,n n nnS a x x a L Symρ ρ ρ−
 = ∈ ∈  , 

where Symn  is the n-th symmetric group and ( ) ( )1 1na x xρ ρ −
 
   denotes the convex hull of n points  

( ) ( ) ( ) ( )0 1 11 1 2 1, , , n
n na a a ax a ax x xρ ρ ρ ρ− −= = = ∈    i.e., 

( ) ( ) ( ){ }1 1 00  0  s.t. 0 and 1i
i i i in i ni na x x a i nλ

ρ ρ λ λ λ− ≤ <≤ <
  = ∈ ≤ < ≥ =  ∑∏  . 

 

 
Figure 1. Discrete differential geometry of 2-simplices: (a) “Peaks and valleys” of cubes; (b) Tangent 
bundle-like structure; (c) Local trajectory; (d) Smoothness condition.                              
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Definition 3. For any integer n > 1, the collection nB  of all flat n-simplices is defined as the quotient of nS  
by “shift operator” σ  on nS , i.e, 

n nB S σ= , 

where ( ) ( )( ) ( ) ( ) ( )1 1 1 2n na x x ax x xρ ρ ρ ρ ρσ −
   =     . 

Definition 4. Tangent bundle-like structure nTB  is defined on nB  as the quotient of nS  by nσ , i.e., 

( )
,

: ,  mod mod .

n
n n

n
n n

TB S

TB B s s

σ

π π σ σ

 =


→ =
 

For example, triangle [ ]1 2a x x  specifies element [ ] 2
1 2 moda x x σ  of nTB  over element [ ]1 2 moda x x σ  of 

nB  (Figure 1(b)). 
Definition 5. Gradient Ds  of ( ) ( )1 1 nns a x x Sρ ρ −

 = ∈   is defined as a monomial of degree n − 1, i.e., 

( ) ( ) ( )1 2 1nDs x x xρ ρ ρ −=  . 

For simplicity, we occasionally denote ( ) ( )1 1nx xρ ρ −  by ( )ne xρ , where 1 2 ne x x x=  . That is ( )nDs e xρ= .  

Note that we could identify nTB  with { }1 2, , ,n nB e x e x e x×   by one-to-one correspondence 

( )mod mod ,ns s Dsσ σ∼ . 

A gradient over a flat n-simplex specifies a local trajectory at the flat n-simplex as follows.  
Definition 6. The local trajectory specified by mod n

ns TBσ ∈ , where ( ) ( )1 1 nns a x x Sρ ρ −
 = ∈  , is a col-

lection of three adjacent flat n-simplices 

{ }mod , mod , modD Us s sσ σ σ , 

where ( ) ( ) ( ) ( )1 2 1 1D ns ax x x xρ ρ ρ ρ−
 =    and ( ) ( ) ( )1 2U n ns a x x xρ ρ ρ−

 =   . 

For example, [ ] 2
1 2 2modx x TBσ ∈  specifies local trajectory [ ] [ ] [ ]{ }1 2 1 1 2 1 3mod , mod , modx x x x x x xσ σ σ  at 

[ ]1 2 2modx x Bσ ∈  (Figure 1(c)). We would obtain a flow on nB  by patching these local trajectories together. 
To define the “second derivative” along a trajectory, we would impose a kind of “smoothness condition” on 

local trajectories. 
Definition 7. (Smoothness condition). Let Γ  be a section of nTB  on { }mod , mod , modD U ns s s Bσ σ σ ⊂   

where ( ) ( )1 1 nns a x x Sρ ρ −
 = ∈  . Suppose that ( ) ( )mod nD s e xρσΓ =   . Then, we impose the following con-  

ditions on the local trajectory: 
( ) ( ) ( )

( ) ( ) ( )

1

1

mod  or ,

mod  or .

D n

U n n

D s e x e x

D s e x e x
ρ ρ

ρ ρ

σ

σ −

 Γ =  


 Γ =  
 

Remark 8. For any two consecutive n-simplices { }1 2,t t  on a trajectory, there exist na L∈  and nSymρ ∈   
s.t. ( ) ( ) ( )1 1 2 1 modn nt a x x xρ ρ ρ σ− −

 =    and ( ) ( ) ( )2 1 2 modn nt a x x xρ ρ ρ σ−
 =   . Monomial ( ) ( )1 2nx xρ ρ −  is  

uniquely determined by { }1 2,t t  and is included in both ( )1D tΓ    and ( )2D tΓ    for any section Γ  of 
nTB  on { }1 2,t t . That is, ( ) ( )1 2nx xρ ρ −  corresponds to the contact surface between two consecutive slant 

n-simplices. 
As an example, let’s consider the case of n = 2 shown in Figure 1(d), where the gradient at current triangle 
[ ]1 2 moda x x σ  is 1 2x x . Then, the gradient at next triangle [ ]1 2 1 modax x x σ  could assume either 1 2x x  or 
2 3x x . Otherwise, we couldn’t connect the two consecutive slant triangles over the trajectory “smoothly” as 

shown in the figure.  

2.3. Tangent Cone and Section of TBn 
Now we give the definition of the “peaks and valleys” of n-simplices (Figure 1(a)). 
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Definition 9. For nA L⊂ , tangent cone Cone A  of nL  is defined as follows: 

( ){ }1 2
1 2Cone  and 0 1nll l

n iA px x x p A l i n= ∈ ≥ ≤ ≤ . 

Definition 10. For tangent cone Cone w A=  ( )nA L⊂ , boundary surfaces Sd w  is defined by 

( ) ( ) ( ) ( ){ }1 1 0 0S n w ind w a x x S l a i nρ ρ −
 = ∈ = ≤ <  , 

where ( ) ( ) ( ) ( )0 1 11 1 2 1, , , n
n na a a ax a ax x xρ ρ ρ ρ− −= = = ∈    and, for nz L∈ , 

( ) ( ){ }{ }1 2
1 2 1 2max min , , ,  1   s.t.  nll l

w n i np w
l z l l l l i n x x x z p

∈
= ∈ ≤ ≤ =   . 

Then, Sd w  specifies a unique slant n-simplex over each nt B∈  and we obtain a section of nS  on nB . 
Definition 11. wΓ  is the section of nS  on nB  induced by tangent cone w , i.e., for nt B∈ , 

( )   s.t.  modw St s d w t s σΓ = ∈ = . 

Note that tangent cone w  induces a section of nTB  on nB  by { }1 2: , , ,w n nD B e x e x e xΓ →  . Patch-
ing the local trajectories specified by wDΓ  together, we would obtain a flow on nB . As an example, let’s con- 
sider the “peaks and valleys” shown in Figure 1(a), which is induced by { }1 2 1

1 2 1 2 3Cone 1, ,w x x x x x− −= . 

Let’s start from triangle [ ]1 2 modx x σ  (grey) and move downward (Figure 2): [ ] [ ]1 20 modt x x σ=  and  
[ ]( ) 1 20wD t x xΓ = . [ ]( )0wD tΓ  specifies local trajectory [ ] [ ] [ ]{ }1 2 1 1 2 1 3mod , mod , modx x x x x x xσ σ σ  at [ ]0t . 

Since we move downward, next triangle [ ]1t  is [ ]1 2 1 modx x x σ  and we obtain [ ]( ) 1 21wD t x xΓ = . Then,  
[ ]( )1wD tΓ  specifies local trajectory [ ] [ ] [ ]{ }1 2 1 2 1 2 1 1 2mod , mod , modx x x x x x x x xσ σ σ  at [ ]1t  and next train- 

gle [ ]2t  is [ ]1 2 1 2 modx x x x σ . Continuing the process, we obtain a closed trajectory of length 10. 
Finally, we consider variation of gradient, i.e., “second derivative”, along a trajectory. Thanks for the smooth- 

ness condition, variation of gradient along a trajectory could be specified as a binary valued sequence. 
Definition 12. Let [ ]{ } nt i B⊂  be a trajectory induced by wDΓ  for tangent cone w . Then, “second deriva-

tive” 2
wD Γ  of wΓ  along [ ]{ }t i  is defined as a {U, D}-valued function: 

[ ]( )
[ ]( ) [ ]( ) [ ]( )
[ ]( )

2
2

2

  if  1 ,
1

  else,
w w w

w
w

D t i D t i D t i
D t i

D t i

 Γ Γ + = ΓΓ + = 
− Γ

 

where D U− =  and U D− = . 
Then, we could encode the conformation of a trajectory by the second derivative along the trajectory. As an 

example, let’s consider the trajectory of Figure 2 again. First, set any initial value: [ ]( )2 0wD t DΓ = . Then, 
since the first two triangles [ ]0t  and [ ]1t  have the same gradient, [ ]( )2 1wD t DΓ = . The value of the second 
derivative is D until [ ]3t , where it is changed to U because the gradient of [ ]2t  is different from that of [ ]3t . 
Continuing the process, we obtain a binary sequence of length 10, DDDUDUUUDU, which describes the shape 
swept by the trajectory of triangles. 

3. Encoding of Protein Backbone Structure 
In the case of n = 3, we obtain a flow of 3-simplices (tetrahedrons), which is used for protein structure analysis. 
In this section we propose a simple encoding method which translates the conformation of a protein backbone 
into a sequence of letters from a 16-letter alphabet (called D2 codes), using the second derivative along trajecto-
ries of tetrahedrons. 

First, we consider all the fragments of five amino-acids occurred in a protein. Each fragment is approximated 
by a tetrahedron sequence of length five, where we permit translation and rotation during the process to absorb 
irregularity inherent in actual protein structures. 

Next, we compute the second derivative along the tetrahedron sequences to obtain binary-valued sequences of 
length five. We assign the binary-valued sequences, which are denoted as a base-32 number, to the center ami-
no-acid of the corresponding fragment. For example, DDDUD is denoted by “2”, DUDDU is denoted by “9”, 
DUDUD is denoted by “A”, and so on. 
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Figure 2. Closed trajectory of 2-simplices induced by { }1 2 1
1 2 1 2 3Cone 1, ,x x x x x− − .             

 

 
Figure 3. D2-encoding of a protein (transferase 1RKL).                         

 
Then, we obtain a one-dimensional representation of protein backbone structure by arranging the base-32 

numbers in the order the corresponding amino-acids appear in the protein. See [1] for detailed description of the 
algorithm. 

Figure 3 shows an example of D2-encoding of a protein. As you see, our method captures successfully not 
only recurring structural features of the protein (strand, turn, caps, helix), but also distortions (such as kink) as 
well.  

4. Discussion 
In this paper, we first describe the discrete differential geometry of n-simplices. Then, we apply the mathemati-
cal framework to analysis of protein structures and propose a simple encoding method which translates the con-
formation of a protein backbone into a 16-valued sequence.  

Unlike previous works, our version of discrete differential geometry studies connection between space-filling 
n-simplices. Considering cones of an integer lattice, we have introduced tangent bundle-like structure on 
n-simplices naturally. On notable consequence is the smoothness condition, i.e., restriction on variation of gra-
dient along a trajectory. In particular, we could encode the shape of n-dimensional objects if we approximate 
them by sweeping the occupied area with a trajectory of n-simplices. 

As for protein structure analysis, since we do not use clustering analysis to encode local structures, our ap-
proach not only provides a intuitively understandable description of protein structures, but also covers wide va-
rieties of distortions. Our method performs comparably with more sophisticated but more time-consuming me-
thods which are specifically designed for protein structure analysis. In SHREC’10 Protein Model Classification 
we achieved results comparable to more sophisticated methods, using the length of the longest common subse-
quence as the measure of structural similarity [12]. At homology level of CATH95 data set, our method per-
forms best among all the individual classifiers considered in [13]. 
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