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Abstract 
Though well-known for its simplicity and efficiency, Newton’s method applied to a complex 
polynomial can fail quite miserably, even on a relatively large open set of initial guesses. In this 
work, we present some analytic and numerical results for Newton’s method applied to the 
complex quartic family ( ) ( )( )( )( )1 1λ λ λp z z z z z= + − − −  where λ ∈  is a parameter. The sym- 

metric location of the roots of pλ  allows for some easy reductions. In particular, when λ  is 
either real or purely imaginary, standard techniques from real dynamical systems theory can be 
employed for rigorous analysis. Classifying those λ -values where Newton’s method fails on an 
open set leads to complex and aesthetically intriguing geometry in the λ -parameter plane, com- 
plete with fractal-like figures such as Mandelbrot-like sets, tricorns and swallows. 
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1. Introduction 
One of the most common iterative algorithms for finding solutions to an equation is Newton’s method. Given an 
equation ( ) 0f x =  and an initial guess 0x , Newton’s method attempts to locate a better approximation, 1x , 
given by  

( ) ( )
( )

0
1 0 0

0

.f

f x
x N x x

f x
= = −

′
 

Here, the numerical technique uses information about the first derivative of f  at 0x  to obtain an improved 
approximation 1x . The process then begins anew from 1x , generating a sequence of numbers 0 1 2, , ,x x x   
intended to converge to a solution of the equation. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.515231
http://dx.doi.org/10.4236/am.2014.515231
http://www.scirp.org/
mailto:trevor@cs.brown.edu
mailto:groberts@holycross.edu
http://creativecommons.org/licenses/by/4.0/


T. M. O’Brien, G. E. Roberts 
 

 
2394 

Interestingly, though perhaps of little surprise to those familiar with iterative algorithms, numerical methods 
such as this have a tendency for failing in unpredictable manners. For example, applying Newton’s method to 
find the roots of ( ) 4 26 11p z z z= − −  leads to an entire region of the complex plane for which initial seeds 
eventually bounce back and forth between 1  and 1− , neither of which is a solution to ( ) 0p z = . In this case, 

1z =  and 1z = −  lie on a super-attracting cycle of period two for the map pN . It is this failure of Newton’s 
method to converge on an open set of initial guesses that is investigated in this work. 

The notion of studying the failure of Newton’s method applied to a complex polynomial dates back to the 
pioneering work of Curry, Garnett and Sullivan in 1983 [1]. Focusing on Newton’s method applied to a par- 
ticular family of cubic polynomials, the authors amazingly discover one of the most famous fractals of all, the 
Mandelbrot set, lurking throughout the parameter plane. Each parameter value in these special sets corresponds 
to a “bad” polynomial where Newton’s method fails on an open region in the complex plane due to the exis- 
tence of an extraneous attracting cycle distinct from the roots. Similar results in the case of a complex cubic 
were later obtained by Blanchard [2], Head [3], Lei [4], Roberts and Horgan-Kobelski [5] (also verifying the 
phenomenon for Halley’s method), and Haeseler and Kriete [6] who applied quasiconformal surgery to prove 
the existence of rogue attractors for relaxed Newton’s method. The existence of Mandelbrot-like sets in the 
parameter plane and the connection with quadratic-like dynamics was thoroughly explained by Douady and 
Hubbard using their theory of polynomial-like mappings [7]. 

In this work, we study Newton’s method applied to the complex quartic family 

( ) ( )( )( )( )1 1 ,p z z z z zλ λ λ= − + − −  

where λ ∈  is a complex parameter. The symmetric placement of the four roots is motivated by the 
nearest-root principle, the notion that initial seeds “typically” converge to the closest root. This is precisely the 
case for Newton’s method applied to a complex quadratic map with two distinct roots 1r  and 2r . The only 
points that fail to converge to either root under iteration lie on the perpendicular bisector l  of the segment 
joining 1r  and 2r . These initial seeds cannot decide which root to converge toward and consequently, remain 
on l  for all time. For any other initial guess 0z , Newton’s method converges to the root located on the same 
side of l  as 0z . In general, the invariance of l  occurs whenever there is a line of symmetry amid the 
configuration of roots. For the family pλ , the real axis is a line of symmetry and is therefore invariant under 
Newton’s method. This will play a key role in studying the dynamics as it allows for a reduction to a map of one 
real variable. 

The primary difference between the cubic and quartic cases is the number of “free” critical points. In addition 
to the roots of a polynomial, its inflection points also turn out to be critical points of the Newton map. Unlike the 
fixed roots, these points can iterate freely around the complex plane. There is only one such point for a cubic 
map, but two free critical points for the quartic case since the second derivative is quadratic. Not surprisingly, 
due to the identical numbers of critical points, our problem turns out to have many similarities with the general 
complex cubic. In [8], Milnor classifies the types of hyperbolic components possible in the parameter plane for 
the general cubic, obtaining fractal-like figures such as Mandelbrot-like sets and tricorns as well as swallow and 
product configurations. The distinguishing element between these fractal-like sets is the type and behavior of the 
critical points. Following Milnor’s work, we are able to locate and explain the existence of these same types of 
fractals in the parameter plane for Newton’s method applied to pλ . 

The main tool in our analysis is the reduction to a map in one real variable. This occurs in the cases where λ  
is real or purely imaginary due to the invariance and symmetry described above. We apply standard arguments 
from real dynamical systems theory to prove that there are no extraneous attracting cycles in the case λ ∈ . 
Using a bisection algorithm, we numerically locate an abundance of values β  such that Newton’s method 
applied to ipβ  contains a super-attracting n -cycle. Bifurcations are explored as β  varies. Whether the free 
critical points lie on the same or distinct periodic cycles for these special parameter values has important 
consequences for the resulting figures in the λ -parameter plane. 

2 Newton’s Method and Complex Dynamics 
Let ( )nf z  denote the n -fold composition of f  with itself. Given some 0z ∈ , we define the orbit of 

0z   

to be the sequence of points ( ){ }0 0

n

n
f z

∞

=
 where ( )0

0 0f z z= . We refer to 0z  as the initial seed of the orbit. 
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A point 0z  is said to be a periodic point if ( )0 0
nf z z=  for some n∈ , and the smallest such n  is known 

as the period of 0z . In this case, we say that 0z  lies on an n -cycle or periodic orbit of period n . A periodic 
point of Period 1 is known as a fixed point. 

A periodic point 0z  with period n  is said to be attracting if ( )( )0 1nf z′ <  and repelling if 

( ) ( )0 1nf z′ > . It is straight-forward to show that seeds in a sufficiently small neighborhood of an attracting  

periodic orbit are attracted to that orbit under iteration. A periodic point 0z  with period n  is said to be  

neutral if ( ) ( )0 1nf z′ = . Finally, a periodic point 0z  satisfying ( ) ( )0 0nf z′ =  is called super-attracting, a  

title that corresponds to the rate at which nearby points converge. 
Definition 1 Suppose that O  is an attracting periodic orbit of period n . Then the open set A  containing 

all points z∈  such that ( )nf z , ( )2nf z ,   converges to some periodic point in O  is called the basin 
of attraction for O .  

We now restrict our attention to studying Newton’s method applied to a complex polynomial p . For a fixed 
p , this produces a rational map of the extended complex plane   denoted pN  and given by  

( ) ( )
( )

.p

p z
N z z

p z
= −

′
 

Studying the convergence of Newton’s method is equivalent to investigating the orbits of initial seeds under 
iteration of the map pN , placing our study squarely in the field of complex dynamical systems. 

There are two complimentary sets used to describe the dynamics of a map in complex dynamics, the Julia set, 
where the interesting and chaotic behavior occurs, and its tame cousin, the Fatou set, where attracting periodic 
cycles and their basins of attraction lie. The Julia set for a rational map is the closure of the set of repelling 
periodic points [9]. This is an invariant, perfect and fractal-like set displaying sensitive dependence on initial 
conditions. Any neighborhood of a point in the Julia set is mapped under iteration to cover all of the extended 
complex plane except at most two points. For Newton’s method, this implies that arbitrarily close to any point in 
the Julia set are seeds that will iterate to each root of p . Thus, choosing an initial seed in the Julia set of pN  
is not a major difficulty since a small perturbation will ensure convergence toward a root. 

The roots of ( )p z  and their basins of attraction are in the Fatou set. It is easy to see that if ( )0 0p z = , then 
( )0 0pN z z= , so that the root 0z  is a fixed point of the dynamical system pN . Moreover, a short calculation 

gives  

( ) ( ) ( )
( ) 2= .p

p z p z
N z

p z
′

′′

′  
                             (1.1) 

If 0z  is a simple root of p , then it follows that ( )0 0pN z′ =  and thus 0z  is a super-attracting fixed point. 
This is certainly a good property for a numerical root-finding algorithm to possess as it implies that nearby 
points are strongly attracted towards a root of the polynomial. However, equation (1.1) is significant for another 
reason, for it indicates that inflection points of p  are also critical points of pN . Since these inflection points 
are typically not roots of p  (and thus not fixed), we will refer to them as the free critical points of pN . In 
complex dynamics, it is the orbit of the critical point that governs the behavior of the underlying dynamics. In 
particular, we have the following important theorem of Fatou and Julia (see [9] [10]) for rational maps on  : 

Theorem 1 Every attracting cycle of a rational map attracts at least one critical point.  
In the case of Newton’s method, the critical points corresponding to roots are themselves attractors. Ge- 

nerically, we also expect the free critical points to be attracted towards the roots. However, an intriguing 
situation occurs when one or more of the free critical points converges to an extraneous attracting cycle, that is, 
a cycle distinct from one of the roots of the polynomial. The basin of attraction for such a cycle is an entire 
region in C  for which initial seeds never converge to a root. In this case, the roots elude detection, for a small 
perturbation of a failing initial seed may not lead to convergence to one of the roots. The dynamical plane for 
such an example is displayed in Figure 1. These “bad’’ polynomials, with elusive zeros and extraneous at- 
tracting cycles, are the main focus of this paper. 
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Figure 1. The dynamical plane for Newton’s method 
applied to pλ  with 0.4438656912iλ ≈ . Initial seeds are 
colored according to the root they converge to. Points col- 
ored black iterate toward a super-attracting period 2-cycle.              

3. A Symmetric Fourth-Degree Family of Polynomials 
We now restrict our investigation to applying Newton’s method to the family of fourth degree polynomials 
defined by  

( ) ( )( )( )( )1 1 ,p z z z z zλ λ λ= + − − −  

where λ ∈  is a complex parameter. This family was briefly considered by Sutherland at the end of his 
doctoral thesis [11]. By expanding pλ , we find that  

 ( ) ( ) ( )( ) ( ) ( ) ( )2 2 22 2 4 3 21 2Re 2Re 1 2Re ,p z z z z z z z zλ λ λ λ λ λ λ= − − + = − + − + −          (1.2) 

and thus pλ  always has real coefficients. 
For the remainder of this work, we will denote Nλ  as the complex rational map obtained by applying New- 

ton’s method to pλ . The free critical points for Nλ , arising as the inflection points of pλ , are given by  

( ) ( )( ) ( )2 22Re Re 1
3 .

2
c

λ λ λ
±

± − −
=                            (1.3) 

Note that by Theorem 1, there can be at most two distinct extraneous attracting cycles. If we let a biλ = + ,  

then the discriminant ( )( ) ( )2 22Re 1
3

δ λ λ= − −  in Equation (1.3) simplifies to  

( )2 21 2 2 .
3

a bδ = − +  

The equation 0δ =  defines a hyperbola in the λ -parameter plane and serves as an important boundary to 
the possible types of free critical points c±  described below and in Figure 2: 

• 0δ > ⇒  two real free critical points equidistant from 
( )Re
2
λ

, 
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Figure 2. The hyperbola that distinguishes the λ -para- 
meter plane in terms of the critical points of Nλ . 
Within the curves, the two free critical points are real, 
while outside, they form a complex conjugate pair.                

 

• 0δ = ⇒  single real (repeated) free critical point at ( )Re
2

z
λ

= , 

• 0δ < ⇒  two free critical points as a complex conjugate pair with real part 
( )Re
2
λ

.  

Using equation (1.2), we compute directly that  

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2 2 2 24 3 2 4 3 2

2 23 2 3 2

2Re 1 2Re 3 4Re 1

4 6Re 2 1 2Re 4 6Re 2 1 2Re

z z z z z z z
N z z

z z z z z z
λ

λ λ λ λ λ λ λ

λ λ λ λ λ λ

− + − + − − + − +
= − =

− + − + − + − +
 (1.4) 

While this rational map may appear imposing, it possesses certain symmetries under conjugacy that signi- 
ficantly reduce the size of the λ -parameter plane. 

Lemma 1 For any λ ∈ ,  
i) the real axis is invariant under Nλ , 
ii) N Nλ λ= , and 
iii) Nλ  is topologically conjugate to N λ−  via the conjugacy ( )h z z= − . 
Proof Since pλ  is a polynomial with real coefficients, so is its derivative. This leads to all coefficients in 

Nλ  being real and the invariance of the real axis. To prove item (ii), note that p pλ λ= , since the roots of 
pλ  are left unchanged when λ  is replaced by λ . It follows that N Nλ λ=  by definition. Finally, item (iii) 

follows from Equation (1.4) by verifying that  

( ) ( ) ( ) ( ) ,N h z N z N z h N zλ λ λ λ− −= − = − =   

as desired. □   
Since attracting cycles are preserved under conjugacy, the symmetries described in items (ii) and (iii) above 

enable us to restrict the parameter plane to the region ( ) ( ){ }: Re 0, Im 0 .S λ λ λ= ∈ ≥ ≥  Being only con- 
cerned with those λ -values for which λN  possesses an extraneous attracting orbit, it suffices to follow the 
orbit of the free critical points for Sλ ∈ . There is an important additional symmetry when λ  is purely ima- 
ginary, as indicated by the following lemma. 

Lemma 2 iNβ  is conjugate to 1 i
N

β

 via the conjugacy ( ) zh z
iβ

= .  

Proof It is straight-forward to show that two systems arising from Newton’s method applied to polynomials 
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whose roots differ by an affine map, are topologically conjugate (see [5] for example). Since h  is an affine 
map and a bijection between the roots of ipβ  and the roots of 1 i

p
β

, the result follows. Alternatively, direct 
substitution into Equation (1.4) shows that 1 ii

N h h Nβ
β

= 
. □   

3.1. The Case λ  Real 
Restricting to the case λ ∈  leads to some nice reductions that allow for a complete classification of the orbits 
of the free critical points. We will show that the orbits of c±  converge to one of the roots of pλ  and con- 
sequently, there are no extraneous attracting cycles for Nλ  when λ  is real. 

For λ ∈ , Nλ  now contains the repeated root λ  in addition to the roots 1  and 1− . Because λ  is a 
repeated root, it is not super-attracting in this case. The Newton map simplifies to  

( ) ( )
3 2

2

3 .
2 2 1
x x xN x

x xλ
λ λ

λ
− − −

=
− −

 

Since the free critical points are real for λ ∈ , we restrict the domain of the Newton map to the real axis, 
hence the use of the variable x  as opposed to z . The free critical points are  

2 2
3

2
c

λλ
±

+
±

=  

and the two poles of Nλ , denoted p+  and p− , are given by  
2 8 .

4
p λ λ
±

± +
=  

For later use, we have  

( )
( )( )( )

( )

2

22

3 1
.

2 1

x x c x c
N x

x x
λ

λ

− +− − −
′ =

− −
                        (1.5) 

Theorem 2 For all λ ∈ , the orbits of the two free critical points under Nλ  always converge to roots of 
pλ . Specifically, we distinguish the following two cases:  

1) For ( )0 1, lim k

k
N xλλ λ

→∞
≤ < =  for all [ ],x c c− +∈ . 

2) For ( )1, lim 1k

k
N cλλ −→∞

≥ =  and ( )lim k

k
N cλ λ+→∞

= . 

Proof Due to item (iii) of Lemma 1, it suffices to consider the case 0λ ≥ . We begin with the case 0 1λ≤ < , 
where a series of straight-forward estimates show that the critical points, poles and roots of pλ  are arranged 
in the following manner:  

2 0 1.
2

p c c pλ− − + +− < < < ≤ < < <                         (1.6) 

Next, using  

( ) ( )
( )

( )( )
( )

2

2

1

2 2 1

x xp x
N x x

p x x x
λ

λ
λ

λ

λ

− −
− = − = −

′ − −
 

and the ordering described in inequality (1.6), we see that ( )N c cλ − −>  while ( )N c cλ + +< . Moreover, it fol- 
lows from equation (1.5) that Nλ  is strictly increasing on the open interval ( ),c c− +  and that ( ) 1 2Nλ λ′ = . 
Thus, for [ ),x c λ−∈ , we have ( )x N xλ λ< <  while for ( ],x cλ +∈ , we have ( )N x xλλ < <  (see Figure 
3). 

It follows that for [ ),x c λ−∈ , the orbit of x  under Nλ  is a strictly increasing sequence bounded above by 
the fixed point λ  and for ( ],x cλ +∈ , the orbit of x  is a strictly decreasing sequence bounded below by the 
fixed point λ . Since the only other fixed points for Nλ  are 1−  and 1 , standard arguments using the con- 
tinuity of Nλ  on [ ],c c− +  show that all points in [ ],c c− +  converge to the attracting fixed point at λ . 
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Figure 3. On the left is a representative graph of ( )N xλ  for 0 1λ≤ < . To the right is an orbit diagram showing 

the convergence of c+  and c−  to the root λ .                                                        
 

For the case 1λ = , the Newton map reduces even further since pλ  has the root 1  with multiplicity three 
in addition to the simple root 1− . In this case, Nλ  becomes ( ) ( )2

1 3 2 1 4 2N x x x= + + +  and 1c+ =  while 
0c− = . The pole p+  vanishes and 1 2p− = − . Here, the free critical point +c  has been transformed into an 

attracting fixed point with derivative 2 3 . A simple web-diagram of 1N  shows that the orbit of 0c− =  
converges to the repeated root at 1λ = . 

To prove the rest of item (ii), we compute that for 1 5λ< < ,  

2 0 1
2

p c p c λ− − + +− < < < < < < <  

while for 5λ > ,  

2 0 1 .
2

p c p c λ− − + +− < < < < < < <  

At 5λ = , we have 1c− =  (super-attracting fixed point). The major change between these two inequalities 
and inequality (1.6) is that the two roots λ  and 1 have interchanged positions. For 1λ > , the super-attract- 
ing fixed point 1 lies between the two poles, while for 0 1λ≤ < , it is the super-attracting fixed point at λ  that 
is located between the two poles. In addition, the critical point c+  jumps to the other side of the pole +p , be- 
coming a local min instead of a local max (see Figure 4). However, the dynamical behavior of the critical points 
is unchanged. Similar arguments as with case (i) show that the orbit of +c  monotonically increases as it 
converges to λ  for 1λ > . The orbit of c−  monotonically increases as it converges to 1 for 1 5λ< <  and 
monotonically decreases to 1 for 5λ > . As before, the continuity of Nλ  on the appropriate intervals in 
addition to the number and location of the fixed points allows us to prove these convergence results. □   

3.2. The Case λ  Pure Imaginary 
Due to Theorem 2, the interesting Newton maps occur when λ  becomes complex. However, the reduction to a 
real map in the previous subsection suggests a practical approach to investigating the case where λ  is purely 
imaginary. 

Consider the case iλ β=  with β ∈ . By Lemma 2, we can restrict to the regime 0 1β< ≤ . For ease of 
notation, we let Nβ  correspond to Newton’s method applied to ipβ . In this case, the roots lie on the vertices of 
a rhombus in the complex plane. Based on previous work applying Newton’s method to cubics [1] [2] [5], the 
symmetry of this configuration suggests that Newton’s method may fail badly for certain β -values. We shall 
see that this is indeed the case. The driving force behind the interesting dynamics is that initial seeds on the real-  
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Figure 4. On the left is a representative graph of Nλ  for 1 5λ< < . To the right is an orbit diagram showing the con- 

vergence of c−  to the root 1  and c+  to the root λ .                                                         
 
axis are equidistant from the two imaginary roots. If these seeds are far enough away from the roots at 1  and 

1− , their orbits bounce around the real axis, unable to converge to a root. 
For the special case 1β = , the roots of ip  are the four roots of unity and as a result of this symmetry, the 

only “free” critical point is 0  of multiplicity two. However, 0  is also a pole for the Newton map and 
therefore iterates to ∞  which is a repelling fixed point. Thus, there can be no extraneous attracting cycles for 
the case 1β = . 

For 0 1β< < , the critical points of Nβ  are real and given by  
21 .

6
c β
±

−
= ±  

Due to the invariance of the real axis under our Newton map, this implies that any extraneous attracting cycle 
must lie on the real axis. As with the case λ ∈ , this allows us to restrict our study to a rational map Nβ  of 
one real variable,  

( )
( )

( )
4 2 2 2

3 2

3 1
.

4 2 1

x x
N x

x xβ

β β

β

+ − +
=

+ −
 

Of particular importance is the fact that Nβ  is an odd function whose critical points are symmetric about the 
origin. If the orbit of c+  lies on or converges to an attracting n -cycle, then so will its partner c− . However, it 
may be the case that +c  and −c  lie on or converge to the same attracting orbit, a phenomenon that will be 
critical to understanding the larger parameter plane picture. 

The poles of Nβ  are 0  and p± , where 3p c± ±= . Using some basic estimates for the regime 0 1β< < , 
we have  

1 10 .
2 2

p c c p− − + +− < < < < < <  

Moreover, for 0 x p+< < , Nβ  is concave down with a local maximum at c+  and ( )N x xβ < . For x p+> , 
Nβ  is concave up with a local minimum at the super-attracting fixed point 1 . It follows that each ( ),x p+∈ ∞  
converges to the root 1  under iteration of Nβ . Since Nβ  is odd, we also have that each ( ),x p−∈ −∞  con- 
verges to the root 1− . Thus, the interesting dynamics of Nβ  occurs between the poles p−  and p+ . 

The following lemma captures some key information about the behavior of the critical points as β  varies. 
Lemma 3 For 1 3 1β≤ < , the orbits of the free critical points ±c  converge to the roots 1  or 1− . Spe- 

cifically, we have the following: 
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(i) For 0 1β< < , ( )N cβ +  is strictly decreasing with respect to β , while ( )N cβ −  is strictly increasing 
with respect to β . 

(ii) For 1 3 1β≤ < , ( ) 1N cβ + ≤ −  and ( ) 1N cβ − ≥ . 
(iii) For 1 3 1β≤ < , +c  converges to 1−  while c−  converges to 1  under iteration of Nβ .  
Proof Since Nβ  is an odd function and c c− += − , we see that ( ) ( )N c N cβ β− += − . Thus, to prove item (i), 

it suffices to show that ( )N cβ +  is decreasing with respect to β . We first compute  

( ) ( )
2 2

3 2

1
12

4
3 6

N c N cβ β

γ β

γ
− +

−
= − =  

where 21γ β= − . Taking the derivative of ( )N cβ +  with respect to β  and simplifying the numerator gives  

( )( ) ( )1 2 2d 1Num 4 2 ,
d 33 6

N cβ
β γ β

β +
   = − + +     

 

which is clearly negative, proving that ( )N cβ +  is decreasing with respect to β . 
To prove item (ii), letting 1 3β = , we see that ( )1 3 1N c+ = − . Using part (i), it follows that for 

1 3 1β≤ < , ( ) 1N cβ + ≤ − . The second inequality follows since Nβ  is odd. 
Item (iii) follows easily from (ii) and the fact that all points in ( ),p+ ∞  converge to 1  under iteration while 

all points in ( ), p−−∞  converge to 1− . □   
Our goal is to search for attracting cycles of Nβ  distinct from roots when ( )0,1 3β ∈ . While it is difficult 

to make precise calculations locating specific examples, there are three values worthy of mention. 
• For ( )2 2 5 3 11 0.4438656912β = − ≈ , c+  and c−  lie on the same super-attracting 2-cycle. 

• 1
1 1247 464 13 116 271 86 13 0.3835690508
29

β = + − + ≈ , 

has c+  and c−  lying on distinct super-attracting 2-cycles. 
• For ( ) ( )0 2 3 0.2679491924, 0N c N cβ ββ + −= − ≈ = = .  
The first value is derived by solving the equation ( )N c cβ + −=  for β . Since Nβ  is odd, it follows that 
( )N c cβ − +=  and thus the free critical points lie on the same super-attracting 2-cycle (see Figure 5). The 

calculation shows that this is the only β -value in ( )0,1 3  with this property. By Lemma 2, the same 
phenomenon occurs for ( )21 2 5 3 11β β= = + . We note that the constant 2

2A β=  agrees with the value 
given in Exercise 10, Chapter 13 of Devaney’s undergraduate textbook [12]. The second value, 1β , is found by 
solving ( )2N c cβ + +=  for β . This leads to an even eighth-degree polynomial that can be solved using Ferrari’s 
formula for a quartic equation (calculated using Maple [13]). It is the only new solution (other than its reciprocal 

11 β .) Thus, 1β  and 2β  are the only parameter values in ( )0,1 3  for which the critical points are pe- 
riodic of period two. The value 0β  is significant in that it defines a regime 00 β β< <  with more com- 
plicated dynamics for the free critical points. This will be apparent in some of our numerical investigations. 

Due to the challenges of studying higher iterations of Nβ  analytically, a computer program was written in 
C++ to locate super-attracting periodic points numerically. For a fixed period 2n ≥ , the program commences 
with 0.58β = , which is slightly greater than our upper bound of 1 3 . Using a bisection method, solutions to 
the equation ( ) 0nN c cβ + +− =  are located as β  decreases. (Using Newton’s method to investigate Newton’s 
method was a bit too paradoxical for us!) The values located, shown in Table 1 up to 5n = , are β -values 
where the free critical points lie on super-attracting periodic cycles. Thus, Newton’s method for these cases will 
fail on an open set of initial conditions in the complex plane. As the period n  increases, the number of periodic 
orbits increases exponentially. Letting the program run exhaustively on period 16 yields 2525 periodic points. It 
should also be noted that error checking devices were used to ensure that poles were not mistaken for periodic 
points. These values were also confirmed using Maple. 

From this numerical evidence, we observe some noteworthy behavior. For instance, a period-doubling cas- 
cade to chaos is readily apparent from our data, as shown in Table 2. These values correspond well to the 
universal rate of doubling given by Feigenbaum’s constant. The period doubling can also be seen in the bi- 
furcation diagram obtained by following the orbits of both free critical points (see Figure 6). 



T. M. O’Brien, G. E. Roberts 
 

 
2402 

 
Figure 5. The orbit diagram for Nβ  with                 

( )= 2 5 3 11 0.4439β + ≈  showing a super-attracting 2- 

cycle between c+  and c− .                             
 

 
Figure 6. The bifurcation diagram for Nβ  showing the 
asymptotic behavior of both free critical points under iteration 
as a function of β . The horizontal line segments at the top 
and bottom of the figure are 1  and 1− , respectively, re- 
presenting β -values where the free critical points converge 
to those roots. The significant gap in the center of the figure 
begins at a β -value slightly less than 0 2 3β = − .           

 
The value 0 2 3 0.268β = − ≈  is a key divider for much of the interesting dynamical behavior. For example, 

due to the structure of the graph of βN , there can be no super-attracting cycles of odd period until 0β β< . For  
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Table 1. A table listing the β -values where Newton’s method applied to ipβ  contains a super-attracting cycle of period 

n , for 2 5n≤ ≤ . These values are accurate to within 710− .                                                        

n  β  n  β  n  β  n  β  

2 0.4438657 4 0.2158228 5 0.2275661 5 0.1125293 

2 0.3835691 4 0.2113013 5 0.2249682 5 0.0917168 

3 0.2291104 4 0.1134352 5 0.1846443 5 0.0570865 

3 0.1341463 4 0.0616596 5 0.1577120 5 0.0298646 

4 0.3642913 5 0.2299713 5 0.1301919   

4 0.3363840 5 0.2296915 5 0.1289676   

 
Table 2. A table illustrating the typical period-doubling route to chaos. Each β -value corresponds to a super-attracting 
period n  cycle for the corresponding Newton map.                                                            

n  β  n  β  

2 0.3835689425 32 0.3590471745 

4 0.3642913699 64 0.3590059280 

8 0.3601377606 128 0.3589970469 

16 0.3592396379   

 
0β β> , the signs of each element in the orbit of either critical point must alternate, thus making only even 

periodic cycles possible. This is indicated clearly in Table 1 for 3n =  and 5n = . Moreover, for β -values 
close to 2 3− , the image of both free critical points is close to the pole at zero and consequently, further 
iteration leads to convergence to either 1  or 1− . As long as the image of the critical points is trapped close to 
the pole at zero, the long-term behavior will be convergence to roots. This explains the gap in the center of 
Figure 6. 

It is important to note that in most cases, the free critical points lie on disjoint periodic orbits of the same 
period. Except for ( )2 2 5 3 11 0.4438657β = − ≈  and 4 0.2158226β ≈ , all the parameter values in Table 
1 are for two disjoint periodic cycles. This is always the case when the period is odd. 

Lemma 4 For β -values corresponding to super-attracting periodic cycles of odd period, c+  and c−  do 
not lie on the same orbit.  

Proof Without loss of generality, suppose ( )nN c cβ + +=  for some primitive odd period n . By contradiction, 
suppose that c−  and c+  lie on the same periodic orbit. This implies that ( )kN c cβ + −=  for some k n< . 
However, since Nβ  is an odd function and c c+ −= − , this also implies that ( )kN c cβ − += . Then, by a simple 
substitution we have  

( ) ( )( ) ( )2 .k k k kN c N N c N cβ β β β+ − −= =  

However, we also have that ( )kN c cβ + −= . Therefore, we see that c−  is periodic with even period 2k . 
Again, given the symmetry of Nβ , this also implies that c+  is periodic with even period 2k . Since k n<  
and n  is the least period of the orbit, it follows that 2k n= . But this contradicts the fact that n  is odd. □   

The birth of two disjoint super-attracting period n -cycles usually arises from a pitch-fork bifurcation. In the 
rare case when there is a single cycle containing both free critical points on the orbit, a saddle-node bifurcation 
occurs (see Figure 7). These two types of bifurcations transpire remarkably close together in parameter space, 
with the saddle-node bifurcation taking place first. For example, when 2n = , the successive values are 

2 0.4439β ≈  (same cycle) followed by 1 0.3836β ≈  (different cycles). For period 4 , the parameter values are 
only 0.0045  apart. 

4. The General Case for Nλ  
Unfortunately, once we leave the real and imaginary axes in the λ -parameter plane, we are no longer able to 
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work with the simplified versions of our Newton map. Using a computer, we follow the orbits of both free 
critical points under Nλ  as λ  varies, producing an intriguing picture of the parameter plane (indicated on the 
left in Figure 8). The deeper red colors indicate faster convergence to a root, while the lighter colors indicate a 
slower convergence. Black represents λ -values where one or both critical points fails to converge to within 

610−  of a root after 100 iterations. The same color scheme is used for all figures shown in the parameter plane. 
Much of the analytic work we have done up to this point will be useful in explaining the general structure and 

interesting figures in the parameter plane for Nλ . Although quite intricate, there are a few phenomena that can 
be explained via connections with the work of Milnor on the general case of a complex cubic polynomial [8]. 
We find a striking similarity between the dynamical behavior of Nλ  and that of a general complex cubic- 
 

 
Figure 7. Graphs of the second iterate of Nβ  for 2 0.4439β β= ≈  (left) and 1 0.3836β β= ≈  (right). The left figure 
arises out of a saddle-node bifurcation (one super-attracting orbit) while the right graph occurs after a pitch-fork bifurcation 
(two distinct super-attracting 2-cycles).                                                                          
 

 
Figure 8. On the left is the λ -parameter plane for Nλ  following the orbit of both free critical points (window 

[ ] [ ]1,1 ,i i− × − ). On the right is an example of Milnor’s swallow configuration in the parameter plane for Nλ , centered at 

the bitransitive value 2 2 0.4439i iλ β= ≈ .                                                                       
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polynomial. This is not entirely surprising, since a generic cubic map has two free critical points, exactly the 
case for Nλ . In [8], Milnor classifies four types of hyperbolic components in the parameter plane for the 
generic cubic based on the orbits of the critical points. These four cases are referred to as adjacent critical points, 
bitransitive, capture and disjoint periodic sinks. Only the second and fourth cases are relevant to our study. We 
adapt Milnor’s definition to our problem. 

Definition 2 (Milnor [8]) Suppose that both free critical points c±  converge toward attracting periodic orbits 
O±  distinct from the roots of pλ . Let U ⊂   be the open set of all points in the basin of attraction of O± . 

Bitransitive: The two free critical points belong to different components 0U  and 1U  of U , but there exist 
natural numbers p  and q  such that ( )0 1

pN U Uλ =  and ( )1 0
qN U Uλ = . We assume that p  and q  are 

primitive, so that both 0U  and 1U  have period p q+ . 
Disjoint Periodic Sinks: The two free critical points belong to different components 0U  and 1U , where no 

forward image of 1U  is equal to 0U  and vice versa. In this case, there exist natural numbers p  and q  
with ( )0 0

pN U Uλ =  and ( )1 1
qN U Uλ = . 

Milnor characterizes the types of fractal-like figures we should expect to see in the parameter plane for each 
case, along with a prototype map. Not surprisingly, there are different figures depending on the type and 
behavior of the critical points. In the bitransitive case, one finds either a swallow configuration (indicated on the 
right in Figure 8) or a three-pointed configuration Milnor refers to as a tricorn (indicated on the left in Figure 
9). For the swallow configuration, the prototypical dynamical system is the family of real maps 

( )22
1 2x x c c+ +  with parameters 1 2,c c ∈  (so the model swallow lives in 2

 ). For our Newton map 
Nλ , the center point of each swallow configuration appears to correspond to the situation where the two real 
free critical points lie on the same periodic cycle. As discussed in Section 3.2, this occurs for the parameter 
values 2 2 0.4439i iλ β= ≈  and 4 4 0.2158i iλ β= ≈ . Moreover, since the free critical points are real inside the 
hyperbolas displayed in Figure 2, we only see swallow configurations in this part of the parameter plane. 

For the tricorn, the model is the complex map ( )22 ,z z c c c+ + ∈  . The tricorn actually contains three 
embedded copies of the Mandelbrot set, where the cusp of each has been stretched out over a triangular region, 
joining them in a peculiar fashion. The difference between the tricorn and swallow configuration is the type of 
critical points. For the swallow, we have real distinct critical points, while for the tricorn, we have a complex 
conjugate pair. Due to Lemma 2, inverting the key parameter values 2β  and 4β  on the imaginary axis gives 
a conjugate dynamical system. However, the real, symmetric free critical points are mapped to a pure-imaginary 
conjugate pair under the conjugacy. This explains why we see tricorns in the parameter plane centered at the λ - 
values ( )21 iβ  and ( )41 iβ  and swallow configurations at their inverted counterparts. 
 

 
Figure 9. On the left is a tricorn in the parameter plane centered at ( )21 iβ . On the right is a Mandelbrot-like set in the 

parameter plane at ( )31 iβ , the inversion of the parameter value 3 0.2291i iλ β= ≈ , a disjoint periodic sink of Period 3.     
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In the case of disjoint periodic sinks, there is either a product configuration (two long, thin, black strips 
stretched across each other) or an actual copy of the Mandelbrot set itself (indicated on the right in Figure 9). 
The defining map for the product configuration consists of the two disjoint real functions 

2 2
1 2,x x c y y c+ +   with 1 2,c c ∈ . As with the swallow configuration, this involves two real critical 

points as well, although now they are free to find distinct periodic cycles. Enlarging the parameter plane about 
the value 0.2291iλ ≈  yields such a configuration because the free critical points of Nλ  are real and lie on 
two distinct super-attracting period 3-cycles. According to Milnor’s work, we see a Mandelbrot-like set at the 
inversion of this value, ( )1 0.2291 iλ = , because the free-critical points are mapped to a pure-imaginary 
conjugate pair under the conjugacy ( ) ( )h z z iβ=  and this pair lie on distinct attracting cycles. In this case, the 
prototype map is simply 2z z c+  with c∈ , the usual defining map for the Mandelbrot set. The disjoint 
periodic sink cases yield ``simpler’’ dynamical phenomenon because the orbits of the critical points stay away 
from each other, leading to the decoupled prototype maps. 

Throughout our discussion, we see that the different possible orbits of the free critical points determine the 
types of fractal-like figures found in the parameter plane. Our detailed analysis of the special case restricting λ  
to the imaginary axis has provided a useful guide explaining the locations of these figures. However, there are 
some exceptions worth mentioning. For example, there are disjoint periodic sink values very close to bitransitive 
values that are contained inside a swallow configuration. Given our limited resolution and computational 
resources, we are unable to numerically substantiate the claim that every parameter value corresponding to a 
disjoint periodic sink lies at the center of a product configuration or a Mandelbrot-like set. This discrepancy is 
most likely attributable to the fact that Nλ  is a cubic-like map, as introduced by Douady and Hubbard [7], and 
not an actual cubic polynomial. Nevertheless, after plotting the long-term behavior of each critical point 
separately and investigating the location of several swallow configurations, we have obtained strong numerical 
evidence in support of the following conjecture: 

Conjecture 1 Each bitransitive λ -value corresponding to the two free critical points sharing the same 
super-attracting n -cycle lies at the center of a swallow configuration in the parameter plane.  

5. Conclusions 
In conclusion, we point out one more feature of the parameter plane that can be analytically derived. The yellow 
diamond shaped boundary that encompasses the interesting dynamical behavior in the parameter plane (in- 
dicated on the left in Figure 8) is defined by those λ -values where both pλ′  and pλ′′  simultaneously vanish. 
Letting a biλ = + , this occurs on the algebraic curve Γ  defined by the equation  

 ( ) ( )3 22 2 2 22 2 27 1 0.a b a b− + − + =  

For any parameter value on Γ , one or both of the free critical points coincide with poles of Nλ  and thus 
map to the fixed point at ∞ . Taking successive pre-images of these curves appears to define the sequence of 
intertwining yellow “leaves” that approach the real axis. 

We have analytically and numerically investigated Newton’s method Nλ  applied to a highly symmetric 
family of fourth degree complex polynomials. Using techniques from both real and complex dynamical systems 
theory, we were able to study some reductions of our Newton map that shed significant light on the varied 
dynamical behavior of this system. Remarkably, we find quite intricate and complicated fractal-like figures 
throughout the parameter plane for this simple system. Milnor’s work on the complex cubic polynomial com- 
bined with our understanding of the dynamics for Nλ  with λ  purely imaginary provided some rationale for 
the location and types of fractals encountered. 
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