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Abstract 
Kinematics of moving generalized curves in a n -dimensional Euclidean space is formulated in 
terms of intrinsic geometries. The evolution equations of the orthonormal frame and higher cur- 
vatures are obtained. The integrability conditions for the evolutions are given. Finally, applica- 
tions in 2R  are given and plotted. 
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1. Introduction 
The flow of a curve is called inelastic if the arclength of this curve is preserved. Inelastic curve flows have an 
importance in many applications such as engineering, computer vision [1] [2], computer animation [3] and even 
structural mechanics [4]. Physically, inelastic curve flows give rise to motion which no strain energy is induced. 
There exist such motions in many physical applications. G. S. Chirikjian and J. W. Burdick [5] studied ap- 
plications of inelastic curve flows. M. Gage, R. S. Hamilton [6] and M. A. Grayson [7] investigated shrinking of 
closed plane curves to a circle via the heat equation. Also, D. Y. Kwon and F. C. Park [8] [9] derived the evo- 
lution equation for an inelastic plane and space curve. Latifi et al. [10] studied inextensible flows of curves in 
Minkowski 3-space. 

The connection between integrable systems and differential geometry of curves and surfaces has been im- 
portant topic of intense research [11] [12]. Goldstein and Petrich [13] showed that the celebrated mKdV equa- 
tion naturally arises from inextensible motion of curves in Euclidean geometry. Nakayama, Segur and Wadati 
[14] set up a correspondence between the mKdV hierarchy and inextensible motions of plane curves in Eucli- 
dean geometry. Integrable systems satisfied by the curvatures of curves under inextensible motions in projective 
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geometries are identified in [15]. Inextensible flows of curves in Galilean space are investigated in [16]. 
In this paper, we shall present a general formulation of evolving generalized curves in nR . The outline of 

this paper is as follows: In Section 2, we give the local differential geometry of curves in nR . In Sections 3 and 
4, we describe the motion of generalized curves in nR . In Section 5, the integrability conditions for the 
considered model are obtained. In Section 6 , we specialized the motion of curves nR  to motion of plane 
curves (curves in 2R ). Finally, Section 7 is devoted to conclusion. 

2. Geometric Preliminaries 
A generalized curve in a n -dimensional Euclidean space nR  can be regarded as a Riemannian submanifold of 
dimension 1 in nR  [17]. 

Definition 1 A differentiable manifold of dimension 1 immersed in nR  is a topological hausdorff space M  
with a differentiable structure ( ),Iβ βφ  with dimension one, where βI  is an open interval in R  and βφ  is 
a diffeomorphism mapping: 

: ,nI Rβ βφ →  
and β  belongs to some index set Λ . 

Definition 2 A Generalized curve C  in nR  is an image of a diffomorphism nRI →:φ , where I  is an 
open interval of R . The representation of C  in nR  is given by 

( ) ( ) ( ) ( )( )1 2= , , , ,n
nu I u x u x u x u Rφ∈ → ∈                       (1.1) 

where u  is called the parameter of the curve C . 
The representation (1.1) is called the regular parametric representation of C  in nR , when 

d 0, .
d

u I
u
φ
≠ ∈  

Also φ  represents an immersion in nR  if 
d 1
du
φ

= , the parameter u , in this case, is called the arclength 

parameter and is denoted by s , ( )sφ  is called arclength parametrization. 

Frenet Frame 
A Frenet frame is a moving reference frame of n  orthonormal vectors ( )ie s  which are used to describe the 
curve locally at each point ( )sφ . It is the main tool in differential geometric treatment of curves as it is far 
easier and more natural to describe the local properties (e.g. curvature and torsion) in terms of local reference 
system than using a global one like the Euclidean coordinates. 

Give a curve φ  in nR  which is regular of order n . The Frenet frame for the curve is the set of orthonormal 
vectors (Frenet vectors) ( ) ( ) ( ){ }1 2, , , ne s e s e sℑ =  , and they are constructed from the derivatives of 

( ) ( ) ( ) ( ) ( ){ }, , , , ns s s sφ φ φ φ′ ′′
 , which are linearly independent vectors, ( ) d

d
s

s
φ ′ = 
 

. 

Using the Gram-Schmidt orthogonalization algorithm which convert linearly independent vectors 
( ) ( ) ( ) ( ){ }, , , ns s sφ φ φ′ ′′

  into the orthonormal one ( ) ( ) ( ){ }1 2, , , ne s e s e s  as follows:  

( ) ( ) ( ) ( )2
1 2

2

, , , , 2, , ,i
i

i

WWe s s e s e s i n
W W

φ′= = = = 
 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

2 1 1
1,

, , , , .
n

i i
i k k

k k i
W s s s e s e s W s s s e s e sφ φ φ φ

−

= <

′′ ′′= − = − ∑  

By this way, one obtain an orthonormal n -tuple of vectors at ( )sφ , called the Frenet n -frame associated 
with the generalized curve at the point ( )sφ , with ( )ie s  is of class ikC −  if ( ) ks Cφ ∈ . The derivatives of 
the frenet n -frame at ( )sφ  satisfy the following Frenet formulas: 
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1 1 2 2 1 1 2 3 1 1 1, , , ,j j j j je k e e k e k e e k e k e− − +′ ′ ′= = − + = − +                     (1.2) 

where 01, 2, , , 0.nj n k k= = =  These equations can be written in a matrix form:  

d ,
d
E Q E
s
= ⋅                                         (1.3) 

where  

 ( )

1

1 2

2 3
1 2

2 1

1

0 0 0 0 0
0 0 0 0

0 0 0 0
, , , ,   ,

0 0 0 0
0 0 0 0 0

t
n

n n

n

k
k k

k k
E e e e

k k
k

− −

−

 
 − 
 −

= =  
 
 −
  − 









      





Q                 (1.4) 

and ( ) ( ) ( )1 1, , , ,j nk s k s k s−   are higher curvature functions or Euclidean curvatures of the curve. The m -th 
Euclidean curvature mk  gives the speed of rotation of the osculation m -plane around the osculating ( )1m − -plane. 

3. Dynamics of Curves in nR  
Consider a smooth curve in n -dimension space. Assume that u  is the parameter along the curve in nR . Let 
( ),r u t  denotes the position vector of a point on the curve at time t . The metric on the curve is: 

( ), , ,r rg u t
u u
∂ ∂

=
∂ ∂

                                     (1.5) 

The arclength along the curve is given by:  

( ) ( )
0

1, , d , ,
u

s u t g t
s ug

σ σ ∂ ∂
= =

∂ ∂∫                                (1.6) 

we use { },u t  as coordinates of a point on the curve. At ( ),r u t , consider the orthonormal frame 
{ }1 2, , , ne e eℑ =   such that 1e  is the tangent vector and 2 3, , , ne e e  denote the normal vectors at any point 

on the curve. 
Dynamics of the curve in nR  (motion of a point on the curve) can be specified by the form:  

1

d ,
d

n

j j
j

rr v e
t =

= = ∑                                        (1.7) 

where jv  are the velocities along the frame je . Consider a local motion that is the velocities jv  depend only 
on the local values of the curvatures { }1 2 1, , , , ,j nk k k k −  . 

Lemma 1 The evolution equation for the metric g  is given by:  

1
1 22 .

vg g k v
s

∂ = − ∂ 
                                      (1.8) 

Proof 1 Take the t  derivative of (1.5) and s  derivative of (1.7), and since 
u∂
∂ , 

t∂
∂  commute, then we 

have:  

1
1 1

2 , 2 , 2 , .
n n

j j
j j

j j

v eg r r r rg g g e e v
t u t u s s t s s= =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = = + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑  

Using (1.2), then we have  

1 1
2

2 , ,
n

j j
j

g g e e A eλ
=

= +∑  
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where,  

1
1 2

, 1 1 1

0

,

,

2,3, , , 0.
j j s j j j j

n

v k v
s

A v k v k v

j n k k

λ

− − +

∂ = − ∂ 
= + −

= = =

                                (1.9) 

Then  
2 .g gλ=  

Hence the lemma holds.  
Lemma 2 For a simple closed curve, the evolution of the length of the curve is given by:  

[ ]1
1 20

d , 0, .
u vL k v u L

t s
σ

∂∂  = − ∈ ∂ ∂ ∫  

Proof 2 From the definition of the length L , we have 

( )0 0
d d .

2
u uL s gg

t t t g
σ σ∂ ∂ ∂

= = =
∂ ∂ ∂∫ ∫

                       (1.10) 

Substitute from (1.8) into (1.10), then the lemma holds. 

4. Main Results 
Definition 3 An inelastic curve is a curve whose length is preserved, i.e., it doesn't evolve in time. 

0,  . ., 0.t
s i e g g
t
∂

= = =
∂

                               (1.11) 

The necessary and sufficient conditions for inelastic flow are then given by the following theorem:  

Theorem 1 The flow of the curve is inelastic if and only if 1
1 2 .

v k v
s

∂
=

∂
  

Proof 3 ( )⇒  Assume that the curve is inelastic. 
From (1.6), the variation of the arclength is  

0
d .

2
u tgss

t g
σ∂

= =
∂ ∫                               (1.12) 

Substitute from (1.8) into (1.12), then  

1
1 20

d .
u vs k v

s
σ

∂ = − ∂ ∫  

Since the curve is inelastic, so 0s = , hence  

1
1 2 .

v k v
s

∂
=

∂
 

( )⇐  Assume that 1
1 2 .

v k v
s

∂
=

∂
 Substitute from this equation into (1.8), so 0tg = , then 0s = , this means 

that the arclength of the curve is preserved, hence the curve is inelastic. 

Theorem 2 Consider an elastic curve ( ),r u t . For the curve flow 
1

d
d

n
j jj

r v e
t =
= ∑ , then  

1) The evolution for the frame ( )1 2, , , t
nE e e e=  , can be given in a matrix form:  

,tE M E= ⋅                                      (1.13) 

where M  is the evolution matrix and it takes the form:  
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( ) ( ) ( ) ( )

12 13 1

12 23 2

13 23 3

1 1 2 1 3 1 1

1 2 3

0
0

0
,

0

n

n

n

n n n n n

n n n

M M M
M M M
M M M

M M M M

M M M
− − − −

 
 − 
 − −
 =
 
 − − −
 
 − − − 







    





M  

where the elements of the matrix M  are given explicitly by:  

( ) ( )( ) ( )( ) ( )( )

1 , 1 1 1

1 21 , 1 1 1 1 2

0

,

2,3, , .

1 ,

2, , 1,

, 0.

j j j s j j j j

s

n

M A v k v k v

j n

M M k M k M k M
k

n

n k k

αµ µ µ αα µ α µ α µ α µ
µ α

α

α µ

− − +

− −− − − − + −
−

= = + −

=

= + − +

= −

< ≤ = =





             (1.14) 

2) The evolution equations for the curvatures take the form:  

( ) ( )

1, 12, 1 2 13

, , 1 11 1

,
.

t s

t s

k M k k M
k M k k M k Mα αµ α α αα µ α µ

λ

λ − +− +

= − −

= − + −
                               (1.15) 

Proof 4 Consider the elastic curve ( ),r u t  i.e., ( )0g ≠ . Take the u  derivative of (1.7), then we have: 

1
2

,
n

tu ts j j
j

r gr g e A eλ
=

 
= = + 

 
∑                                (1.16) 

Since 1u sr gr ge= = , take the t  derivative of this equation, then we have 

1 1, .
2

t
ut t

g
r g e e

g
 

= + 
 

                                  (1.17) 

Since  
.= tuut rr                                         (1.18) 

Substitute from (1.9), (1.16) and (1.17) into (1.18), then we have  

1,
2

.
n

t j j
j

e A e
=

= ∑                                       (1.19) 

Take the u  derivative of (1.19), then we have:  

( ) ( ) ( )1, 1 2 1 2, 2 3 2 , 1 1 1
3

.
n

tu s j s j j j j j
j

e g k A e A k A e A k A k A e− − +
=

 
= − + − + + − 

 
∑                (1.20) 

Since ( )1, 1, 1 2u se ge g k e= = , take the t  derivative of this equation, then we have  

1, 1 1, 2 1 2, .
2

t
ut t t

g
e g k k e k e

g
  

= + +  
  

                           (1.21) 

Since  

1, 1, .ut tue e=                                          (1.22) 

Substitute from (1.20) and (1.21) into (1.22), then we have  



N. H. Abdel-All et al. 
 

 
2386 

( )

1, 2, 1 2 3

2, 2 1
3

, 1 1 1
1

,

,

1 , 3, , .

t s

n

t j j
j

j j s j j j j

k A k k A

e A e B e

B A k A k A j n
k

λ

=

− − +

= − −

= − +

= + − =

∑



                      (1.23) 

Since ( )2, 2, 1 1 2 3u se ge g k e k e= = − + , take the t  derivative of this equation, then we have  

( ) ( ) ( )2, 1 1, 1 1 2 2 1 3 2 2, 3 2 3, 1
4

.
n

ut t t t j j
j

e g k k e k A e k A k k e k e k A eλ λ
=

 
= − + − + − + + + − 

 
∑             (1.24) 

Take the u  derivative of (1.23), then we have  

( ) ( ) ( )(
( ) ( ) )

2, 2, 1 1 2 2 3 2 3, 3 4 3 4, 3 3 4 5 4

1, 2 2 1 1 , 1 1         .

tu s s s

n s n n n n n n s n n n

e g A e k A k B e B k B e B k B k B e

B k B k B e B k B e− − − − − − −

= − − + + − + + − +

+ + − + +



     (1.25) 

Since  

2, 2, .ut tue e=                                         (1.26) 

Substitute from (1.24) and (1.25) into (1.26), and use the first equation of (1.23), then we have 

( )

2, 3, 2 3 4 1 3

3, 3 1 3 2
4

, 1 1 1 1
2

,

,

1 , 4, , .

t s

n

t j j
j

j j s j j j j j

k B k k B k A

e A e B e C e

C B k A k B k B j n
k

λ

=

− − +

= − − +

= − − +

= + + − =

∑



            (1.27) 

Take the u  derivative of the second equation of (1.27), then we have  

( ) ( ) ( ) ( ) ( )(
( ) ( ) )

3, 3, 1 3 1 3, 1 3 2 2 3 3 4 3 4, 4 5 4 5, 4 4 5 6 5

1, 2 2 1 1 , 1 1         .

tu s s s s

n s n n n n n n s n n n

e g A k B e B k A e k B k C e C k C e C k C k C e

C k C k C e C k C e− − − − − − −

= − + − + − + + − + + − +

+ + − + +



(1.28) 

Since ( )3, 3, 2 2 3 4u se ge g k e k e= = − + , take the t  derivative of this equation and use the first equation of 
(1.27), then we have  

( ) ( )3, 2 2 1 3, 3 4 1 3 2 2 3 3 3 3, 2 4 4 3 4, 2
5

.
n

ut s t t j j
j

e g k A e B k B k A e k B e k k k B e k e k B eλ
=

 
= + − + − − + + − + − 

 
∑  (1.29) 

Since  

3, 3, .ut tue e=                                       (1.30) 

Substitute from (1.28) and (1.29) into (1.30), then we have  

( )

3, 4, 2 4 3 4 5

4, 4 1 4 2 4 3
5

, 2 1 1 1
3

,

,

1 , 5,6, , .

t s

n

t j j
j

j j s j j j j j

k C k B k k C

e A e B e C e D e

D C k B k C k C j n
k

λ

=

− − +

= + − −

= − − − +

= + + − =

∑



                   (1.31) 

By using the mathematical induction, we can extend the previous results to n -dimensional space as follows:  
,tE M E= ⋅  
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where ( )1 2, , , t
nE e e e=  , and  

2 3 4 5

2 3 4 5

3 3 4 5

4 4 4 5

0
0

0
.

0

0

n

n

n

n

n n n n

A A A A A
A B B B B
A B C C C
A B C D D

A B C D

 
 − 
 − −

=  
− − − 
 
  − − − − 









      

 

M                         (1.32) 

We can rewrite (1.9) and the third equation of (1.23), (1.27) and (1.31) as follows:  

1

2

3

4

, 1 ,

, 2 ,

, 3 ,

, 4 .

j j

j j

j j

j j

A M j n

B M j n

C M j n

D M j n

= < ≤

= < ≤

= < ≤

= < ≤

                                  (1.33) 

Hence  

( ) ( )( ) ( )( ) ( )( )
1 , 1 1 1

1 21 , 1 1 1 1 2

0

, 2,3, ,

1 ,

2, , 1, 3, , , ,
0.

j j j s j j j j

s

n

M A v k v k v j n

M M k M k M k M
k

n n
k k

αµ µ µ αα µ α µ α µ α µ
µ α

α µ α µ

− − +

− −− − − − + −
−

= = + − =

= + − +

= − = <
= =



 

         (1.34) 

So we can rewrite (1.32) in the following form:  

( ) ( ) ( ) ( )

12 13 1

12 23 2

13 23 3

1 1 2 1 3 1 1

1 2 3

0
0

0

0

n

n

n

n n n n n

n n n

M M M
M M M
M M M

M M M M

M M M
− − − −

 
 − 
 − −
 =
 
 − − −
 
 − − − 







    





M                    (1.35) 

By using the mathematical induction, we can extend the results in the first equation of (1.23), (1.27) and (1.31) 
as follows:  

( ) ( )

1, 12, 1 2 13

, , 1 11 1

,
,

t s

t s

k M k k M
k M k k M k Mα αµ α α αα µ α µ

λ

λ − +− +

= − −

= − + −
                      (1.36) 

Hence the theorem holds.  
Lemma 3 If the curve flow (1.7) is inelastic, then the evolution equations for curvatures (1.36) take the form:  

( ) ( )

1, 12, 2 13

, , 1 11 1

,
,

t s

t s

k M k M
k M k M k Mα αµ α αα µ α µ− +− +

= −

= + −
                         (1.37) 

Proof 5 If the curve flow (1.7) is inelastic, then  
0, . ., 0.tg i e λ= =                                         (1.38) 

Then, substitute from (1.38) into (1.36), then the lemma holds. 

5. Integrability Conditions 
Theorem 3 The curve ( ),r u t  is inelastic curve ( )0tg =  if and only if the integrability condition (sometimes 
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called the zero curvature condition) is given by: 

[ ], 0,t sQ M Q M− + =                                      (1.39) 

where [ ],Q M Q M M Q= ⋅ − ⋅  is the Lie bracket. 
Proof 6 Consider the Frenet frame ( )1 2, , , ,t

nE e e e=   that satisfy (1.4) and (1.35). Since  

.u sE gE g Q E= = ⋅                                      (1.40) 

Take the t  derivative of (1.40) and use (1.13), then we have  

.
2

t
ut t

g
E g Q Q Q M E

g
 

= + + ⋅ ⋅ 
 

                              (1.41) 

Differentiating (1.13) with respect to u  and use (1.40), then  

( ) .tu sE g M M Q E= + ⋅ ⋅                                      (1.42) 

From (1.41) and (1.42), then  

[ ], .
2

t
ut tu t s

g
E E g Q Q M Q M E

g
 

− = + − + ⋅ 
 

                             (1.43) 

( )⇒  First, If the curve is inelastic, so ( )0tg =  and u  and t  commute, then ut tuE E= , hence  

[ ], 0.t sQ M Q M− + =  

( )⇐  Second, Assume that the integrability condition (the zero curvature condition) is satisfied, then  

[ ], 0.t sQ M Q M− + =                                    (1.44) 

From (1.4) and (1.35), we have  

[ ]

2 13 13, 1 ,

2 13 1 13 3 24 2 ,

1 1, 2 1, 3 1, 2 2

1 , 2 , 31 ,

0
0

, .

0

s n s

n s

n s n s n s n n n

n s n s n s

k M M M
k M k M k M M

Q M
M M M k M
M M M

− − − − −

 
 − − + 
 =
 
− − − − 
 − − − 





    





                   (1.45) 

Differentiating (1.4) with respect to t  and (1.35) with respect to s  and use (1.36), then we have  

2 13 1 13, 1 ,

2 13 1 2 1 13 3 24 2 ,

1( 1), 2( 1), 3( 1), 1 2 ( 2)

1 , 2 , 3 ,

0
0

.

0

s n s

n s

s t

n s n s n s n n n n

n s n s n s

k M k M M
k M k k k M k M M

M Q
M M M k k M

M M M

λ
λ λ

λ− − − − − −

− + 
 − + − − + 
 − =
 

− − − − − 
 − − − 





    





    (1.46) 

Substitute from (1.45) and (1.46) into (1.44), then we have 

1

1 2

1

0 0 0 0
0 0 0

0 0 0 0
0 0 0 0 0

n

k
k k

k

λ
λ λ

λ −

   
   −   
   =
   

−   
   
   





     





                          (1.47) 

Hence  

1 2 10, 0, , 0.nk k kλ λ λ −= = =  

Since 0,≠mk  for 1, 2, , 1m n= − . Then 0λ = . Hence 0g = , constantg =  i.e., the arclength is 
preserved. Hence the curve is inelastic. 
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Theorem 4 In n -dimensional Euclidean space, consider inelastic curve ( ),r u t . If the matrices Q  and 
M  are abelian, then the elements in the evolution matrix M  take the form: 

( )1 0, 2,3, , 1, 1.M nα µ α µ α− = = − = +  

Proof 7 Since the matrices Q  and M  are abelian, so [ ], 0Q M = , then the integrability condition (1.39) 
takes the form: 

0.s tM Q− =                                        (1.48) 

Since the curve is inelastic, so 0λ = , then  

2 13 13, 1 ,

2 13 1 13 3 24 2 ,

1( 1), 2( 1), 3( 1), 2 ( 2)

1 , 2 , 3 ,

0
0

.

0

s n s

n s

s t

n s n s n s n n n

n s n s n s

k M M M
k M k M k M M

M Q
M M M k M

M M M
− − − − −

 
 − − + 
 − =
 
− − − − 
 − − − 





    





             (1.49) 

Substitute from (1.49) into (1.48), then for 10n = , we have  

13 35 57 79 24 46 68 8(10)0, 0,M M M M M M M M= = = = = = = =  

By using the mathematical induction, we can extend the previous results to n -dimensional space, then we 
have  

( )1 0, 2,3, , 1, 1M nα µ α µ α− = = − = +  

6. Applications 
Here we give some applications for time evolution equations for plane curve. We are in a position to derive time 
evolution of geometrical quantities. For 2n = , and from (1.13), we have motion of the Frenet frame of the 
curve in the plane.  

Lemma 4 In 2 -dimensional Euclidean space, consider an elastic curve ( ),r u t . The time evolution equation 
for the frame ( )1 2, tE e e=  is given by  

1 12 1

2 12 2

0
0t

e M e
e M e
    

=    −    
 

where,  

12 2, 1 1.sM v k v= +  

Lemma 5 The time evolution equation for the curvature of the curve in 2R  is given explicitly by  

 2
1, 2, 1 2 1 1,t ss sk v k v v k= + +                                      (1.50) 

This equation represents a quasilinear parabolic partial differential equation (PDE). This result coincide with 
[18].  

Example 1 If  
2

1 1 2 1,, .sssv k v k= =  

Then (1.50) takes the form:  
2 2

1, 1, 1 1, 1 1, .t sssss sss sk k k k k k= + +                            (1.51) 

The solution of the PDE (1.51) is  

( )1 1
4, 10 sech ,
4 2
s tk s t c + 

= − 
 
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where 1c  is constant. The curvature ( )1 ,k s t  of the curve is plotted as a function of s  and t  (Figure 1(a)), 
and for different values of t , the curvature ( )1k s  is plotted (Figure 1(b)).  

Example 2 If  
2

1 1 2 1,, .sv k v k= = −  

Then (1.50) takes the form:  

1, 1, .t sssk k= −                                      (1.52) 

The solution of the PDE (1.52) is  

( ) ( ) ( )( )1 1 2 3
1, e e ,s t s tk s t c c cλ λ λ λ

λ
− − −= − +  

where 321 ,, ccc  and λ  are constants. The curvature ( )1 ,k s t  of the curve is plotted as a function of s  and 
t  (Figure 2(a)), and for different values of t , the curvature ( )1k s  is plotted (Figure 2(b)).  

Example 3 If  
2

1 1 2 1,, .sv k v k= =  

Then (1.50) takes the form:  
2

1, 1, 1 1,2 .t sss sk k k k= +                                 (1.53) 

The solution of the PDE (1.53) is  

( ) ( )3
1 2 1 1, 3 sech ,k s t c c s c t= + +

 
 

where 1c  and 2c  are constants. The curvature ( )1 ,k s t  of the curve is plotted as a function of s  and t  
(Figure 3(a)), and for different values of t , the curvature ( )1k s  is plotted (Figure 3(b)). 
 

            
(a)                                                         (b) 

  Figure 1. The curvature of the curve for [ ] [ ]1 0.01, 1,1 , 0,1 .c s t= ∈ − ∈                              
 

               
(a)                                                         (b) 

Figure 2. The curvature of the curve for [ ] [ ]1 2 31, 0.04, 0.4, 0.9, 0.5,0.5 , 0,1 .c c c s tλ = = = = ∈ − ∈    
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(a)                                                         (b) 

Figure 3. The curvature of the curve for [ ] [ ]1 21.2, 1.5, 0.5,0.5 , 0,1 .c c s t= = ∈ − ∈                     

7. Conclusion 
In this paper, we have discussed the motion of curves in n -dimension Euclidean space. We derived the 
evolution equations of the orthonormal frame and evolution equations for the higher curvatures. We get the 
integrability conditions for the evolutions. Moreover, we give some examples of motions of elastic curves in the 
plane.  
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