Applied Mathematics, 2014, 5, 2381-2392 #%%* Scientific
Published Online August 2014 in SciRes. http://www.scirp.org/journal/am ’02:0 Research
http://dx.doi.org/10.4236/am.2014.515230

Evolution of Generalized Space Curve as a
Function of Its Local Geometry

Nassar H. Abdel-AllL, Samah G. Mohamedl, Mariam T. Al-Dossary?

'Mathematics Department, Faculty of Science, Assiut University, Assiut, Egypt
’Mathematics Department, Girls College of Science, University of Dammam, Dammam, KSA
Email: samah gaber2000@yahoo.com

Received 19 May 2014; revised 28 June 2014; accepted 11 July 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

Kinematics of moving generalized curves in a n-dimensional Euclidean space is formulated in
terms of intrinsic geometries. The evolution equations of the orthonormal frame and higher cur-
vatures are obtained. The integrability conditions for the evolutions are given. Finally, applica-

tionsin R’ are given and plotted.
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1. Introduction

The flow of a curve is called inelastic if the arclength of this curve is preserved. Inelastic curve flows have an
importance in many applications such as engineering, computer vision [1] [2], computer animation [3] and even
structural mechanics [4]. Physically, inelastic curve flows give rise to motion which no strain energy is induced.
There exist such motions in many physical applications. G. S. Chirikjian and J. W. Burdick [5] studied ap-
plications of inelastic curve flows. M. Gage, R. S. Hamilton [6] and M. A. Grayson [7] investigated shrinking of
closed plane curves to a circle via the heat equation. Also, D. Y. Kwon and F. C. Park [8] [9] derived the evo-
lution equation for an inelastic plane and space curve. Latifi et al. [10] studied inextensible flows of curves in
Minkowski 3-space.

The connection between integrable systems and differential geometry of curves and surfaces has been im-
portant topic of intense research [11] [12]. Goldstein and Petrich [13] showed that the celebrated mKdV equa-
tion naturally arises from inextensible motion of curves in Euclidean geometry. Nakayama, Segur and Wadati
[14] set up a correspondence between the mKdV hierarchy and inextensible motions of plane curves in Eucli-
dean geometry. Integrable systems satisfied by the curvatures of curves under inextensible motions in projective
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geometries are identified in [15]. Inextensible flows of curves in Galilean space are investigated in [16].

In this paper, we shall present a general formulation of evolving generalized curves in R". The outline of
this paper is as follows: In Section 2, we give the local differential geometry of curves in R". In Sections 3 and
4, we describe the motion of generalized curves in R". In Section 5, the integrability conditions for the
considered model are obtained. In Section 6, we specialized the motion of curves R" to motion of plane
curves (curves in R?). Finally, Section 7 is devoted to conclusion.

2. Geometric Preliminaries

A generalized curve ina n-dimensional Euclidean space R" can be regarded as a Riemannian submanifold of
dimension 1in R" [17].

Definition 1 A differentiable manifold of dimension 1 immersed in R" is a topological hausdorff space M
with a differentiable structure (Iﬂ,gﬁﬂ) with dimension one, where 1, is an open interval in R and ¢, is
a diffeomorphism mapping:

Gyl > R",
and S belongs to some index set A .

Definition 2 A Generalized curve C in R" is an image of a diffomorphism ¢:1 — R", where 1 is an

open interval of R . The representation of C in R" is given by

uel > g(u)=(x(u),x(u),x (u))eR", (1.1)

where u is called the parameter of the curve C.
The representation (1.1) is called the regular parametric representation of C in R", when

d—¢¢0,
du

d¢

U =1, the parameter u, in this case, is called the arclength
u

uel.

Also ¢ represents an immersion in R" if

parameter and is denoted by s, ¢(s) is called arclength parametrization.

Frenet Frame

A Frenet frame is a moving reference frame of n orthonormal vectors e (s) which are used to describe the
curve locally at each point ¢(s). It is the main tool in differential geometric treatment of curves as it is far
easier and more natural to describe the local properties (e.g. curvature and torsion) in terms of local reference
system than using a global one like the Euclidean coordinates.

Give acurve ¢ in R" which is regular of order n. The Frenet frame for the curve is the set of orthonormal

vectors (Frenet vectors) I={e (s).e,(s),:.e,(s)}, and they are constructed from the derivatives of
{¢(s),¢’(s),¢”(s),...,¢(”) (s)} , which are linearly independent vectors, (qﬁ’(s) =%) :

Using the Gram-Schmidt orthogonalization algorithm which convert linearly independent vectors
{¢'(s),¢"(s),---,¢(”)(s)} into the orthonormal one {e, (s).e,(s),---.e,(s)} as follows:

=d'(s). e, (s :&1...,3 S :%,i: e,
6(5)=4(5). & () =pir e (S) =i =2
where
W, (5)=47(5)~("(5) & (5))a. (5) - W (5)=0" (5)= 3 (9 (5).e4(5))eu ().

By this way, one obtain an orthonormal n -tuple of vectors at ¢(s), called the Frenet n -frame associated
with the generalized curve at the point ¢(s), with e (s) is of class C*' if ¢(s)eCk. The derivatives of
the frenet n-frame at ¢(s) satisfy the following Frenet formulas:
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e =ke,,e; =k +Kk,e, -8 =k ,e; ; +K;e;,, (1.2)
where j=1,2,---,n,k, =k, =0. These equations can be written in a matrix form:
g _ Q-E, (13
ds
where
0 k 0 O 0 0
-k 0 k, O 0 0
0 -k, 0 ky - 0 0
E:(euez’"’ven)l' Q=| . :2 : :3 : : Sk (14)
0o 0 0 - -k, 0 k.
o o o0 - 0 -k, O

and ki (s),--,k;(s),-,k,_y(s) are higher curvature functions or Euclidean curvatures of the curve. The m-th
Euclidean curvature k,, gives the speed of rotation of the osculation m-plane around the osculating (m —1) -plane.
3. Dynamics of Curves in R"

Consider a smooth curve in n-dimension space. Assume that u is the parameter along the curve in R". Let
r(u,t) denotes the position vector of a point on the curve at time t. The metric on the curve is:

g(u,t):<ar 8r>’ (L5)

au'ou

The arclength along the curve is given by:
u o 1 0
)= tdo, —=——, 1.6
s(u,t) Jo,lg(a )do s \/gau (1.6)

we use {u,t} as coordinates of a point on the curve. At r(u,t), consider the orthonormal frame
3= {el,ez,---,en} such that e, is the tangent vector and e,,e;,---,e, denote the normal vectors at any point
on the curve.

Dynamics of the curve in R" (motion of a point on the curve) can be specified by the form:

,odr &
i :_:Z\/jej, .7
0|
where v, are the velocities along the frame e; . Consider a local motion that is the velocities v; depend only

on the local values of the curvatures {k, Ky, kK, 1} .
Lemma 1 The evolution equation for the metric g is given by:

. oV,
g =Zg(a—sl—klv2j. (1.8)

Proof 1 Take the t derivative of (1.5) and s derivative of (1.7), and since ai % commute, then we
u

. 0g or o or or 0 or n, OV, n, O
=—=2({—,——)=20({—,——)=20(e,| D, —¢e +QpV.— | ).
9% <au atau> g<as s at> g<l[jz_1 os ! ]Zl, s

Using (1.2), then we have

have:

g= Zg<e1,/1e1 +ZAjej>,
i=2
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where,
oV,
A :(a—sl—klvzj,
A =V +Kivi kv, (1.9
j=23--,n, k,=k,=0.
Then

g=2g4.
Hence the lemma holds.

Lemma 2 For a simple closed curve, the evolution of the length of the curve is given by:

oL ufov,
L [g—klvzjda, uelo.L],
Proof 2 From the definition of the length L, we have

o_os_po i
E_ at _IO at (\/a)dd J.O 2\/§d0' (110)

Substitute from (1.8) into (1.10), then the lemma holds.

4. Main Results

Definition 3 An inelastic curve is a curve whose length is preserved, i.e., it doesn't evolve in time.

0S .
—=0, ie, =¢=0. 1.11
ot 9,=9 (1.11)

The necessary and sufficient conditions for inelastic flow are then given by the following theorem:

Theorem 1 The flow of the curve is inelastic if and only if % =kv,.
S

Proof 3 (=) Assume that the curve is inelastic.
From (1.6), the variation of the arclength is

s,_aS_ u g

=5 Om

. puf OV,
$=, (a_sl_klvzjda'

Since the curve is inelastic, so $ =0, hence

do. (1.12)

Substitute from (1.8) into (1.12), then

oV,
a_sl =kyv,.

(<:) Assume that %: k,v,. Substitute from this equation into (1.8), so g, =0, then $=0, this means
S

that the arclength of the curve is preserved, hence the curve is inelastic.

dr _
dt
1) The evolution for the frame E = (el,ez,m,en )‘, can be given in a matrix form:

Theorem 2 Consider an elastic curve r(u,t) . For the curve flow Z'}:lvj e then

E, =M -E, (1.13)
where M is the evolution matrix and it takes the form:
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0 My, M M;,
My, 0 Mo M,
M = l\:/|13 l\{lzs 0 Mzan ,
_Ml(n—l) -M 2(n-1) _Ms(n—l) M(n—l)n
_Mln _MZn _MSn 0

where the elements of the matrix M are given explicitly by:

My =A =V, +K v, =KV,

j=2.3-n.
M = L M k M k M k _,M
ay__( (a—l)y,s+ -1 (a—l)(y—l)_ u (a—l)(u+1)+ a2 (a—Z)y)’
u—a
a=2,--,n=-1

a<pu<n, k, =k, =0.
2) The evolution equations for the curvatures take the form:
kl,t = Mlz,s —kA-k,My,

ka,t = Mau,s - ka/l + ka—lM(zz—l)y - ka+1Ma(;z+l)'

(1.14)

(1.15)

Proof 4 Consider the elastic curve r(u,t) i.e., (g=0).Takethe u derivative of (1.7), then we have:

e =/0r, a@(ﬂeﬁZA,-e,},
=2

Since r, = \/Ers = \/Eel, take the t derivative of this equation, then we have

29
Since
rut = rTU'
Substitute from (1.9), (1.16) and (1.17) into (1.18), then we have
e =2 Ag;.
j=2

Take the u derivative of (1.19), then we have:
€ = \/E((_klAZ )el +(A2,s - szs)ez + Z(Aj,s +kiLuAL - ijj+1)ej J
j=3
Since e, = \/531,5 = \/g(klez), take the t derivative of this equation, then we have

€ = \/a{(zg_t k1 + kl,t jez + klez,t J
g
Since
€t = €

Substitute from (1.20) and (1.21) into (1.22), then we have

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)
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k=A, —kiA-kA,
e, =—Ag + iBjeJ , (1.23)
B =kil(Ajvs +K 1AL~k AL ), §=8n,
Since e,, = \/Eez‘S = @(—klel + k2e3) , take the t derivative of this equation, then we have

€y = @[—(klm ko )e = (KA, )&y +(—k Ay ko A+, ey +koey, —kijilAjej ] (1.24)
Take the u derivative of (1.23), then we have

€ = \/E(_Az,sel _(klAZ +szs)ez +(Bs,s _k3B4)ez +(B4,s +ksBs _k4Bs)e4 e

(1.25)
+(Byys +kooBy o — kB, )e, +(B, . +k, B )e, )
Since
Cut =2 (1.26)
Substitute from (1.24) and (1.25) into (1.26), and use the first equation of (1.23), then we have
Ky = By —KA—k;B, + KA,
€3, =—Ae —Bse, + J_Zn;lc i€ (1.27)

c.:ki(sj,s+k1Aj+kjlejfl—kB ), i=4-n.

] joi+l
2

Take the u derivative of the second equation of (1.27), then we have

€ = \/5((_'6‘35 + le3)e1 _(Bs,s + klAs)ez _(kz Bs + k3C4)e3 + <C4,s - I(4(:5 )e4 + (Cs,s + I(404 - ksce )es tee
+ (Cn—l,s + kn—ZCn—Z - kn—lcn )en—l + (Cn,s + I(n—lcn—l)en )

(1.28)

Since €, = \/533,5 = \/E(—kzez +k3e4), take the t derivative of this equation and use the first equation of

(1.27), then we have

n

€y = \/E(szzel +(=By +ksB, —k Ay )&, —kyBug, +(KyA+ Ky, —kyBy e, +kse, —k, > Bje; ] (1.29)
j=5
Since
e3,ut = e3,tu' (130)
Substitute from (1.28) and (1.29) into (1.30), then we have
Ky, =C,, +k,B, —k;A -k,C;,
€, =—Ag —B&, ~C,e;+ D De;, (1.31)

i=5
_1 C,.+k k. ,C k.C j=5,6
D; _k_( s T KBy + K Ciy K j+1)’ 1=56,--n.
3
By using the mathematical induction, we can extend the previous results to n -dimensional space as follows:
E, =M -E,
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where E =(e,e,,€,),and

o A A A A - A
_AZ O BS BA BS ' Bn
- -B 0o C, C C
M — A3 3 4 5 n (1-32)
-A, -B, -C, 0 D D,
_Ah _Bn _Cn _Dn 0
We can rewrite (1.9) and the third equation of (1.23), (1.27) and (1.31) as follows:
A =My, l<j<n,
B.=M,,, 2<j<n,
o : (1.33)
C; =My, 3<j<n,
Dj=|\/|4,-. 4<j<n
Hence
My, =A =V +K v —Kv, J=23-n
1
May = k_<M(a—l),u,S + kﬂflM(a—l)(y—l) - kﬂM(a—l)(;Hl) + kaHZM(a—Z),u )’ (1 34)
u—a .
a=2,---,n=-1 u=3,--.n a<y,
k, =k, =0.
So we can rewrite (1.32) in the following form:
0 MlZ M13 Mln
MlZ O M23 MZn
-M -M 0 o M
M = : ” : ” : : :3n (1.35)
_Ml(n—l) _Mz(n—l) _Ms(n—l) Ivl(n—l)n
_Mln _MZH _M3n 0

By using the mathematical induction, we can extend the results in the first equation of (1.23), (1.27) and (1.31)
as follows:

k1,1 = Mlz‘s - kl/l_kZMB’

Ko =My, Kk, A+k, M (1.36)

k,. M

a—l);z_ a+l' " a(u+1)?

Hence the theorem holds.
Lemma 3 If the curve flow (1.7) is inelastic, then the evolution equations for curvatures (1.36) take the form:
k1,t = MlZ,s —Kk,My,

(1.37)
ka,t = May,s + ka—lM(

-k

a+l

M

a-1)u a(u+l)’

Proof 5 If the curve flow (1.7) is inelastic, then
g,=0,ie,1=0. (1.38)
Then, substitute from (1.38) into (1.36), then the lemma holds.
5. Integrability Conditions

Theorem 3 The curve r(u,t) is inelastic curve (g, = O) if and only if the integrability condition (sometimes
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called the zero curvature condition) is given by:
Q -M,+[Q,M]=0,

where [Q,M]=Q-M —M-Q isthe Lie bracket.
Proof 6 Consider the Frenet frame E = (el,ez,-n,en )I , that satisfy (1.4) and (1.35). Since

Eu =\/§ES =\/§QE
Take the t derivative of (1.40) and use (1.13), then we have
E, a@[zg—émq +Q~MJ~E.
Differentiating (1.13) with respectto u and use (1.40), then

E, =49 (M, +M-Q)-E.
From (1.41) and (1.42), then
E,-E, =\/§(29—£JQ+Q1 ~M, +[Q,M ]j. E.
(=) First, If the curve is inelastic, so (g, =0) and u and t commute, then E, =E,, hence
Qt—M5+[Q,M]:O.
(«<) Second, Assume that the integrability condition (the zero curvature condition) is satisfied, then
QI—MS+[Q,M]=O.
From (1.4) and (1.35), we have

0 kles M13,s M1n,s
_kzM13 0 _k1M13 +k3M24 MZn,s
[QM]=| : : )
_Mln—l,s -M 2n-1,s -M 3n-1s _knfz M n-2n
-M -M -M 0

In,s 2n,s 3in,s

Differentiating (1.4) with respectto t and (1.35) with respectto s and use (1.36), then we have

0 _klea +/1k1 M13,s Mln,s
—k,M; + 1k, 0 —Ak, =K M; +k,M,, - M,
M, -Q = : : : : :
_Ml(n—l),s _MZ(n—l),s _Ms(n—l),s _lknf1 - kn—ZM(n—Z)n
-M -M -M 0

in,s 2n,s 3n,s

Substitute from (1.45) and (1.46) into (1.44), then we have

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

0 ik 0 - 0 0
Ak, 0 -2k, - 0 0
0 0 0 -2k, 4 0
0 0 0 0 0
Hence
Ak, =0,2k, =0,---, 2k _, =0.
Since k, =0, for m=12,---,n-1. Then A=0. Hence §=0, g=constant i.e., the arclength is

preserved. Hence the curve is inelastic.

2388
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Theorem 4 In n-dimensional Euclidean space, consider inelastic curve r(u,t). If the matrices Q and
M are abelian, then the elements in the evolution matrix M take the form:

My, =0 @=23-n-Lu=a+l

(e-1)

Proof 7 Since the matrices Q and ™M are abelian, so [Q, M ] =0, then the integrability condition (1.39)
takes the form:

M, -Q, =0. (1.48)
Since the curve is inelastic, so 4 =0, then
0 kles M13,s Mln,s
_kles 0 _k1M13 +k3Mz4 M2n,s
M,-Q = : : : : (1.49)
_Ml(n—l),s _MZ(n—l),s _M3(n—1),s _kn—ZM(n—Z)n
-M -M -M 0

in,s 2n,s 3n,s

Substitute from (1.49) into (1.48), then for n=10, we have
M13 = M35 = M57 = M79 =0, M24 = M46 = Me& = M8(10) =0,

By using the mathematical induction, we can extend the previous results to n-dimensional space, then we
have

My, =0, @=23-n-Lu=a+l

(a1

6. Applications

Here we give some applications for time evolution equations for plane curve. We are in a position to derive time
evolution of geometrical quantities. For n=2, and from (1.13), we have motion of the Frenet frame of the
curve in the plane.

Lemma 4 In 2 -dimensional Euclidean space, consider an elastic curve r(u,t). The time evolution equation

for the frame E =(e,,e,) is given by

where,
My, =V, +kV,.
Lemma 5 The time evolution equation for the curvature of the curve in R? is given explicitly by
Kip =V, + KV, +ViKy (1.50)

This equation represents a quasilinear parabolic partial differential equation (PDE). This result coincide with
[18].
Example 1 If
v, =k, v, =k

1,88 *

Then (1.50) takes the form:
kl,t =k

1,55858

+kZk

1,855 + klz kl (1-51)

S°

The solution of the PDE (1.51) is

4s+t
k (s,t)=+10sech| ¢, ——— |,
(5)= 0 sch| - 2221
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where c, is constant. The curvature k (s,t) of the curve is plotted as a function of s and t (Figure 1(a)),
and for different values of t, the curvature k, (s) is plotted (Figure 1(b)).
Example 2 If

2
v, =k, Vv, = _kl,s'

Then (1.50) takes the form:
=-k

1,555 "

(1.52)

1t

The solution of the PDE (1.52) is
1 VA(s-t) A (s-at)
s,t =—( e -c,e )+c,
k(st)=—rl 2 3

where ¢,,c,,c, and A are constants. The curvature k, (s,t) of the curve is plotted as a function of s and
t (Figure 2(a)), and for different values of t, the curvature k, (s) is plotted (Figure 2(b)).
Example 3 If
v =k, v, =k

Then (1.50) takes the form:
k., =k

1,558

+2k7K, . (1.53)
The solution of the PDE (1.53) is
k (s,t) = v/3 sech (c2 +C,8 +cft),

where ¢, and c, are constants. The curvature k, (s,t) of the curve is plotted as a function of s and t
(Figure 3(a)), and for different values of t, the curvature k; (s) is plotted (Figure 3(b)).

t=0.1
t=0.5

=0.9

Figure 2. The curvature of the curve for 1 =1,c, =0.04,c, =0.4,c, =0.9,s €[-0.5,0.5],t €[0,1].
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Figure 3. The curvature of the curve for ¢, =1.2,c, =1.5,5 €[-0.5,0.5],t [0,1].

7. Conclusion

In this paper, we have discussed the motion of curves in n-dimension Euclidean space. We derived the
evolution equations of the orthonormal frame and evolution equations for the higher curvatures. We get the
integrability conditions for the evolutions. Moreover, we give some examples of motions of elastic curves in the
plane.
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