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Abstract

In this paper, we will see that some k -Fibonacci sequences are related to the classical Fibonacci
sequence of such way that we can express the terms of a k -Fibonacci sequence in function of some
terms of the classical Fibonacci sequence. And the formulas will apply to any sequence of a certain
set of k -Fibonacci sequences. Thus we find k’-Fibonacci sequences relating to other k -Fibonacci

k+vk?+4

sequences when o, islinearly dependentof o, = 2
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1. Introduction

k -Fibonacci sequence {Fk,n}n>0 was found by studying the recursive application of two geometrical trans-

formations used in the well-known four-triangle longest-edge (4TLE) partition. This sequence generalizes the
classical Fibonacci sequence [1] [2].

1.1. Definition

For any positive real number k, the k -Fibonacci sequence, say {Fkv”}neN is defined recurrently by
Fen = kB, +F ., for n>1 withinitial conditions F ,=0, F,=1

From this definition, the polynomial expression of the first k -Fibonacci numbers are presented in Table
l.

If k=1, the classical Fibonacci sequence {0,1,1,2,3,5,8,---} appears and if k=2, the 2-Fibonacci se-
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Table 1. Polynomial expression of the first k-Fibonacci numbers.

F.=1
F.=kK
Foa=k +1
Foa =k +2k

Fes=k'+3k*+1

quence is the classical Pell sequence {0,1,2,5,12,29,70,---} .

1.2. Metallic Ratios

The characteristic equation of the recurrence equation of the definition of the k -Fibonacci numbers is

k+vk?+4 _k—vk*+4
2 2

r’—kr-1=0 and its solutions are o, = and oy

As particulars cases [3]:
1) If k=1,then o =# is known as Golden Ratio and it is expressed as @ .

2) If k=2,then o, =1++/2 is known as Silver Ratio.

- 1 - .
3) If k=3,itis o, = 3+;/§ and it is known as Bronze Ratio.
From now on, we will represent the classical Fibonacci numbersas F, instead of F, .

. . . _ O-l? _(O-Iz )n - r_ 2
Binet identity takes the form [1] F  =———— with o, -0, =Vk" +4.

k Ok

1.3. Theorem 1
Power oy for n>1 isrelatedto o, by mean of the formula
0 = Fen0y + Fona @

Proof. By induction. For n=1, it is obvious. Let us suppose this formula is true until: oy = FenOw +Fona-
Then, and taking into account &7 —ko, —1=0:
+1
o’ =0¢ 0y :(Fk,nak + Fk,n—l)o-k
= kR noy + Fnaoi + By = Rnuoc + R,

Obviously, the formulas found in [1] [2] can be applied to any k -Fibonacci sequence. For example, the Iden-
tities of Binet, Catalan, Simson, and D’Ocagne; the generating function; the limit of the ratio of two terms of the
sequence, the sum of first “ n ” terms, etc. However, we will see that some k -Fibonacci sequences are related to
a first k -Fibonacci sequence so that we will can express the terms of a k -Fibonacci sequence according to
some terms of an initial k -Fibonacci sequence. And the formulas will be applicable to any sequence of a given
set of k -Fibonacci sequences. For instance, we will express the terms of the 4-Fibonacci sequence in function
of some terms of the classical Fibonacci sequence and these formulas will be applied to other k -Fibo-naccise-
quences, as for example if k =11,29,76,199,..-

2. k'-Fibonacci Sequences Related to the k -Fibonacci Sequence

In this section, we try to find the relationships that can exist between the values of k’ and the coefficients “a”
and “b ” such that o, =a+bg, .
We can write this last equation as

)
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' [ 2 1,2
ol KANKTHA bkt |2( +4—>k’+\/k’2+4:2a+b(k+\/k2+4)

K 2

k' = 2a+bk
_){k’z+4=b2(k2+4)—>(k2+4)b2—k'2 -4

because k’'eN.
Main problem is to solve the quadratic Diophantine equation (k2 +4)b2 —k'?=4 for “k’” and “b ” for
each value of “k ”.

2.1. Theorem 2
2n+1

The positive characteristic root boy generates new k -Fibonacci sequences, for n=1,2, Proof. From
Formula (1) it is obtained o™ = F, ,, + Fy 50,10 -

For n=1 itis
of = oyt Fogor, =k (k2 42) 4 VZI(ZM':%(k(kZ +3)+ (K2 +1) k2+4)

S 9

Then, o} generates the k(k* +3)-Fibonacci sequence.

In the same way, we can prove that o, generates the k(k*+5k?+5)-Fibonacci sequence, o, gene-
rates the k(k6+7k4 +14k2+7) -Fibonacci sequence, etc. Particularly, @ (kzl) generates the sequences
Fl' F4’ an Fzgv"'-

2.2. Theorem 3
For n>2 itis verified
ot = (K 42) o o @
Proof. Taking into account both Table 1 and Formula (1), Right Hand Side (RHS) of Equation (2) is
(RHS) = ((k2 + 2)o-k2 —1)0'5"‘3 = ((k2 + 2)(ko-k +1)—1)c:-k2”‘3 = ((k3 + 2k)o-k +(k2 +1))o-k2”‘3
= (Feaoi +Fes)oi ™ = ooy = o™

It is worthy of note that Equation (2) is similar to the relationship between the elements of the k -Fibonacci
sequence F ., = (k2 +2)Fk,n —F, ., Other versions of this equation will appear in this paper. Moreover, if
we are looking for the characteristic roots of this equation, then we find

K2k + Ak kP 4a +1_{ko-k +1=0} }

rz—(k2+2)r+1:0—>r: : . -

' 2
ko, +1=0,

And F will be function of o} with the coefficients depending of initial conditions for n=0 and

k,n+2
n=1.

2.3. k-Fibonacci Sequences Related to an Initial f~Fibonacci Sequence

From two previous theorems, the k -Fibonacci sequences related to an initial k -Fibonacci sequence have as
the positive characteristic root af”*l or that is the same, the sequence of characteristic roots
{af””} :{ak,alf,af,---} generates the k -Fibonacci sequences related to the first k -Fibonacci sequence.

The values of the parameter of these sequences are
{k,} = {k,k(k2 +3),k (k* +5k? +5),k(k5 +7K* +14k? +7),---} and Equation (2) for this sequence takes the
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similar form k., = (k? +2)k, =k, ;.
Next we present the first few values of the parameter K, :
a) k =k
b) k, =k®+3k
c) k, =k®+5k>+5k
d) k, =k’ +7k®+14k> + 7k
e) ks =k®+9k’ +27k® +30k* + 9k
But these polynomials verify the relationship
Ky = Fon+ Feana ®3)

where F _ areexpressed in Table 1.

The coefficients of these polynomials generate the triangle in Table 2:

Last column is the sum by row of the coefficients, and it is a bisection of the classical Lucas sequence
{2,1, 3,4,7,11,18, 29, 47,"-} and we will see again in this paper.

C
If a . isaterm of this table, then a, . =a_ ,+> a_ .. Forinstance, 1+5+14+30 of the second
j=0

diagonal plus 27 of the row 5 is the 77 of the row 6.

All the first diagonal sequences are listed in [4], from now on OEIS, but the unique antidiagonal sequences
listed in OEIS are:

a) {L1,1,1,1,---}: A000012

b) {3,5,7,9,11,---} : A005408 — {1}
¢) {5,14,27,44,65,---} : A014106
d) {7,30,77,156,275,---} : A030440

From this study, it is easy to find the values of “b ” mentioned at the beginning of this section, because

k? +4
b, = \/m =Fona-

Sequence {bn} also verifies the recurrence law given in Equation (2): b, , = (kz + 2)bn -b, ;.

In this case, the triangle of coefficients is in Table 3 and the formto generate these numbers is the same as in
table of k. This triangle is formed by the odd rows of 2-Pascal triangle of [2]. The sequence of the last column
is a bisection of the classical Fibonacci sequence {1,1, 2,3,5,8,13, 21,--'} .

First diagonal sequences and the antidiagonal sequences are listed in OEIS.

k, —bk
Finally, for the values of a, isenoughtodo a, =—" > ' and therefore, applying Formula (3) and the de-

finition of the k -Fibonacci numbers, a $=F,, ,.

Table 2. Triangle of the coefficients of k.

1 1 1
2 1 3 4
3 1 5 5 11
4 1 7 14 7 29
5 1 9 27 30 9 76
6 1 11 44 77 55 11 199
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In this case, the triangle of the coefficients of the expressions of a, isin Table 4.
Last column is the other bisection of the classical Fibonacci sequence.

The diagonal sequence {1,n,---} indicates the number of terms in the expansion of (X, +X, +---+ xn)j and

o n+j-1
itis a;, = j .

In this table, it is verified:

r

a) ar,c = z ar—j,c—j—l + ar—l,c—l

j=0
b) D 8y, —>.8,=01-1,if n=012 (mod3), respectively.
¢) The diagonal sequences are listed in OEIS.

n+2r
d) The elements of rth diagonal sequence, for r =0,1,2,--- verify the relation a,, = (2 1]
’ r+

Then we will apply the results to the k -Fibonacci sequences, for k =1,2,3,4.

3. k -Fibonacci Sequences Related to the Classical Fibonacci Sequence

In this section we try to find the relations that could exist between the values of “k ” and “a ” and “b ” in order
that the positive characteristic root o, is o, =a+hb®.
k=2a+b

In this case, Equation (2) takes the form .
k? +4 =5b> —5b* —k* =4

3.1. Integer Solutions of Equation 5b° —k* =4

The integer solutions of Equation 5b*—k?>=4 are b, =F,,, Kk, =L,,.,, being L, the classical Lucas se-
quence {2,1,3,4,7,11,18,29,47,---}.
Proof. Applying Binnet Identity, and taking into account L, =F,,+F _, —> L, =®"+(-®) ", itis

5h2 — 4 — ((D2n+1 _ (_cD)—Zn-l )2 _4= @2 _ 2(_1)2ﬂ+1 LD _ 4= @2 _o pin-2
_ (q)2n+1 +(_q))—2n—1)2 _ L§n+1

Table 3. Triangle of the coefficients of by,.

1 1 1
2 1 1 2
3 1 3 1 5
4 1 5 6 1 13
5 1 7 15 10 1 34
6 1 9 28 35 15 1 89
Table 4. Triangle of the coefficients of a,.

1 1 1

2 1 2 3

3 1 4 3 8

4 1 6 10 4 21

5 1 8 21 20 5 55

6 1 10 36 56 35 6 144
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Consequently, the values of the parameter “k ” can also be expressed as k, =F,, +F,,., = L., -

l+«/§

Integer solutions of this equation are expressed in Table 5, where o, = — - @ is the Golden Ratio.

3.2. On the Sequences {a,}, {b,},and {k }

We will show some properties of the sequences of Table 5.

The sequence of values of “a”, {0,1, 3,8,21,~~-} , A001906 is the sequence {an} of even Fibonacci num-
bers, and is known as Bisection of Fibonacci sequence. Its elements, a,, have the property that 5a% +4 are
perfect squares and these humbers form the sequence {2,3,7,18, 47,---},A005248 that is the Bisection of
the classical Lucas sequence. The sequence of sums of two consecutive terms of this sequence is 5 times the
following sequence.
The sequence of values of “b ”, {1, 2,5,13,34,---},A001519 is the sequence of odd Fibonacci numbers,
{an+1} , and is also known as Bisection of Fibonacci sequence. The sequence of sums of two consecutive
terms of this sequence is the preceding sequence A005248—{2} .
The sequence of values of “k”, {1,4,11, 29, 76,~--},A002878 is the sequence of odd Lucas numbers, or,
that is the same, is the sum of two even consecutive Fibonacci numbers, {F, +F,, ,} and is known as
Bisection Lucas Sequence. The sequence of sums of two consecutive terms of this sequence is 5 times the
preceding sequence A001906—{0} .
All these sequences verify the recurrence law given in Equation (2), p,., =3p, — P,_;-

As a consequence of this situation, if we represent as {Gl’n}neN the sequence of values of o, then, Equation

(2) isthe relation o,, =F,,,,0c+F,, .

3.3. Relationships between the Kk -Fibonacci SequencesIf k=L, ,, and the Classical

Fibonacci Sequence

Applying Subsection 2.3 when k =1 in Equation (3), the sequence {d),cID?’,d)S,u}:{cI)Z"”} . is the se-

quence {0,,0,,01,,05, "} -

€

Consequently:

o) —(-o,)" @ —(—<1))_3n = 1
F, = 2 = =" 5 F, =2{0,2,8,34,144,.--
4,n \/E 2\/§ F3 4 2{ }

_ o7y _(_0_11)_n _ @ _(_q))_sn _ F _l
Fiin = = =" F, =-{0,5,55,610,-}
' 125 55 F, 5

ol —(~0,0) " <I)7”—(—(D)_7n F 1
Fop = — (Com) _ =" F,y =—{0,13,377,10946, -
29,n \/% 13\/5 F7 29 13{ }

4, k -Fibonacci Sequences Related with the Pell Sequence

Repeating the previous process, we can solve the Diophantine equation 8b>—k®=4 and being
k=2a+2b.

Table 5. Integer solutions of the Diophantine equation 5b% — k? = 4.

Kn = Lant bn = Fonet an=Foy Gin
1 1 0 0,=0+10,
4 2 1 o,=1+20,
11 5 3 0,, =3+50,
29 13 8 0, =8+130,
76 34 21 0,, =21+340,
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The values obtained are showed in Table 6:

4.1.0n These Quences {a.}, {b,},and {k }.

We will show some properties of the sequences of Table 4.
* {a,}={0,2,12,70,408, -}, AD01542 is the sequence of even Pell numbers. Its elements have the property

that 8a§ + 4 are perfect squares, being {1/8a§ + 4} = {2, 6,34,198,1154,-- } , A003499 . The sequence of sums of

two consecutive terms of this sequence is the sequence {8bn} .

* {b,} ={1,529,169,985,---}, AO01653 is the sequence of odd Pell numbers. Its elements have the proper-
ty that 2 p,f —1 are perfect squares.

o {k,}={2,14,82,478,2786,---}, A077444 . Its elements are the Pell-Lucas numbers, k, =P, +P, , =LP,;.
This sequence can be obtained by summing up two consecutive terms of the sequence A001542.

e Much more interesting is the sequence obtained by dividing by 2: {1,7,41, 239,1393,---},A002315. This
sequence has been studied in [5] ang has been determined as the values whose square coincide with the sum
of the 4n+1 first Pell numbers, »'S,,; = a2 and it is known as the Newman-Shanks-Williams Primes. It
verifies the recurrence law a, . j=6a, —a,,, with initial conditions a,; =1 and a,,=7. The se-
quence of sums of two consecutive terms of this sequence is 8 times {6,35, 204,1189,---} ,A001109. Its ele-
ments verify the property 8s? +1 are perfect squares, {17,99,577,---}, AO01541—{1,3} .

» All these sequences verify the recurrence law (2), p,., =6p, — Py -

As in the preceding section, if we represent the sequence of values of “ o ” as {Uz,n} , then these terms verify
the recurrence relation o, =P, ,0,+P,,, being o, =1+~/2 the Silver Ratio.

4.2. Relationships between the Kk -Fibonacci Sequences for k =2,14,82,478,--- and the
Pell Sequence

Taking into account o —20, ~1=0, it is easy to prove {0,,014,04,047,-++} s the geometric sequence

3 5 _ 2n+1
CALAL AN A

Consequently:

O-lnzl _(_0'14 )7n _ 0'23n _(_O'z )73n > P,

1
Eo_ =28 _ T L =210,570,985, -
14,n /—200 5\/5 F2,3 P3 14 5{ }
n -n 5n -5n
—(- —(- F
R (Cow) _02'=(c00) " _Fem _Pa F,» = —{0,29,2378,195025, -}
‘ /1682 2948 25 P 29

ohe—(~0ms) " F P 1
Fg, = —2 87— 2, F_ =—{0,169,80782,--
478,n 228488 F2Y7 P7 478 169 { }

5. k -Fibonacci Sequences Related to the 3-Fibonacci Sequence

Repeating the previous process, we can solve the Diophantine equation 13b? —k® =4 being k =2a+3b.
The values obtained are showed in Table 7.

Table 6. Integer solutions of the Diophantine equation 8b® — k? = 4.

Kn = Pan + Pane Dn = Panet an=Pan O2n
2 1 0 o, =0+10,
14 5 2 0, =2+50,
82 29 12 o, =12+290,
478 160 70 0, =70+1690,

)
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5.1.On These Quences {a,}, {b,},and {k,}

We will show some properties of the sequences of Table 7.
* {a,}={0,3,33,360,3927,---}, AO75835, is the sequence of even 3-Fibonacci numbers. Its elements have the
property that 13a’ +4 are perfect squares, {2,11,119,1298,---},A057076. The sequence of sums of two
consecutive terms is 13 times the following sequence.
* {b,} ={1,10,109,1189,---}, A078922 , is the sequence of the odd 3-Fibonacci numbers.
k,} =13,36,393,4287,46764,---} is the sequence of the odd 3-Lucas numbers
Ky = F520 + F52012 = L 20,1 - This sequence can also be expressed as 3 times the sequence
{1,12,131, 1429, } ,A097783.
» All these sequences verify the recurrence law (Equation (2)), p,., =11p, — P, -
3+413
2

* The sequence {0'3.n} verify the relationship o, = F;,,,,0, +F;,, being o, = the Bronze Ratio [3].

5.2. Relationships between the k-Fibonacci Sequences for k =3, 36, 393,4287,--- and the
3-Fibonacci Sequence

Taking into account o —30,-1=0, it is easy to prove {03,035,0393,04287,---} is the geometric sequence

3 5 _ 2n+1
(oot} =l .

Consequently:

E. =
s V1300 10413 Fis

_ O3 _(_0'393)_n _ o' _((73)_5n _Fasn SF :L{O 109,11881,- -}
393 1 ! ! !

n -n 3n -3n
—(— — F
S o ) O G Y R —>F36=—110{0,10,360,12970,-~~}

Fas, =
% V154453 109413 Fus

F
L :${0,1189,5097243,...}

F4237,n = E
33

6. Conclusions

There are infinite k -Fibonacci sequences related to an initial k -Fibonacci sequence for a fixed value of “k ™.

Between these sequences, the following relations are verified:

1) The relationship o, , =a+bo, is verified if and only if both following relations happen:
Relationship between“a ™, “b ”,and “k ”: k, =2a+kb
Diophantine equation: (K* +4)b* —k* =4

2) Relationship between the positive characteristic root o, , and the k —Fibonacci numbers:
ot = Fena0i T Fn ) )

3) Second sequence related to the k —Fibonacci sequence: k'= k(k2 +3)

4) Two first valuesof “b "are b =1=F,, and b, =k*+1=F,

5) Two firstvaluesof “a”are a,=0=F, and a =k=F,

6) Recurrence law for the sequences {a,},{b,}, and {k,}: p,,=(k’+2)p,-p,,

Table 7. Integer solutions of the Diophantine equation 13 b? — k? = 4.

Kn bn = Fazni an = Faon O30

3 1 0 6,=0+10,

36 10 3 o, =3+100,
393 109 33 0., =33+1090,
4287 1189 360 0y =360+11890,

)
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It is worthy of remarking the fact the last sequence {af”*l} . indicates the k, -Fibonacci sequence related to
ne

the initial k -Fibonacci sequence {F,F, F, F,,---} generated by the respective positive characteristic root,

akz"”. From this sequence, we can obtain the sequence of k -Fibonacci sequences related to F,: taking into

account the positive characteristic root of this sequence is af””, the sequence of I -Fibonacci sequences re-

r(2n+l

lated to this has as positive characteristic root, o, ) for r>1. For instance: from the sequence of k -Fibon-
acci sequences related with the classical Fibonacci sequence (see Section 2), F,F,,F;,F, Fy,,--- We can ob-
tain the sequences of k -Fibonacci sequences related to

* 4-Fibonacci sequence: {FA, Fre-Fisea: F24476,---}
* 11-Fibonacci sequence: {Fll,F1364,---}

e 29-Fibonacci sequence: {Fzg, F24476""} .
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