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Abstract 
Brazil is the world leader in sugarcane production and the largest sugar exporter. Developing new 
varieties is one of the main factors that contribute to yield increase. In order to select the best ge- 
notypes, during the final selection stage, varieties are tested in different environments (locations 
and years), and breeders need to estimate the phenotypic performance for main traits such as 
tons of cane yield per hectare (TCH) considering the genotype × environment interaction (GEI) ef-
fect. Geneticists and biometricians have used different methods and there is no clear consensus of 
the best method. In this study, we present a comparison of three methods, viz. Eberhart-Russel 
(ER), additive main effects and multiplicative interaction (AMMI) and mixed model (REML/BLUP), 
in a simulation study performed in the R computing environment to verify the effectiveness of 
each method in detecting GEI, and assess the particularities of each method from a statistical 
standpoint. In total, 63 cases representing different conditions were simulated, generating more 
than 34 million data points for analysis by each of the three methods. The results show that each 
method detects GEI differently in a different way, and each has some limitations. All three methods 
detected GEI effectively, but the mixed model showed higher sensitivity. When applying the GEI 
analysis, firstly it is important to verify the assumptions inherent in each method and these limi-
tations should be taken into account when choosing the method to be used. 
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1. Introduction 
Sugarcane produces energy and food for the world and the sugarcane sector plays a very important role in the 
Brazilian agribusiness. Currently, Brazil is the world’s largest sugar exporter. 

Reference [1] used data from trials conducted at Agronomic Institute (IAC) Sugarcane Center, Brazil, and 
showed that, between 1994-2006, genetic gain provided increases of 1.25 tons of cane yield per hectare per year 
(TCH) (1.16% yearly for TCH and 1.28% yearly for tons of sucrose yield per hectare (TPH)) in the plant cane 
(first harvest). In the first ratoon (second harvest), gains reached 0.59% yearly for TCH and 1.43% yearly for 
TPH. Yield increase is attributed to several factors and the development of new sugarcane cultivars stands out as 
one of the main aspects, highlighting the importance of the plant breeding for the sugarcane. 

In the final stages of selection in breeding programs, where there is a great amount of material available for 
each advanced genotype, it is possible to characterize genotypes in terms of genotype × environment interaction 
(GEI). The genotypes are planted in different environments (locations and years) to identify the best genotype, 
based on phenotypic performance of interest such as TCH, which is the main trait to measure sugarcane yield. 
For the breeder, understanding the aspects that affect GEI is essential to implement an efficient selection process 
and to select sites for evaluation [2]. 

The complexity of GEI makes it difficult for breeders to recommend superior genotypes as it is a field of re- 
search with plenty of room for further studies. Various methods have been used to evaluate GEI in different 
crops, however there is no consensus regarding the best method to be used. Reference [3] reported that GEI has 
been the object of research of biometricians and quantitative geneticists since the beginning of the 20th century 
and a number of stability indices have been developed to quantify and select genotypes taking into account GEI. 
Among the main methods used to evaluate GEI, the following can be highlighted: 1) Eberhart-Russel (ER) [4]; 2) 
Additive main effects and multiplicative interaction (AMMI) [5]-[12]; and 3) mixed model [13]-[16]. The lite- 
rature shows several studies on the use of these three methods to assess GEI in sugarcane [2] [17]-[20] as well as 
in other crops [21]-[25]. However, no studies containing simulations comparing the three methods (ER, AMMI 
and mixed model) have been reported. 

Therefore, because of the different scenarios obtained from the simulation data, the objectives of this study 
were: 1) to determine the efficiency of each method (ER, AMMI and mixed model) in detecting GEI; and 2) to 
discuss the specificities of the methods.  

2. Materials and Methods 
2.1. Simulation Data 
Initially, 1000 trials (replicas, in the terminology of simulation studies) were simulated containing 15 genotypes 
in 12 environments and within each environment, three replications (blocks), according to the method of analy- 
sis of experiments following the randomized complete block design (RCBD) for each environment. The trait 
(response variable) simulated was TCH, which is used to measure sugarcane yield. All the simulation conditions 
aimed to represent the different practical situations inherent in experiments of breeding programs for sugarcane. 

The block effects were generated from a Normal probability distribution with zero mean and standard devia- 
tion equal to two, that is, N(0,22). The effects of the twelve environments were generated from the following 
Normal probability distributions: Env1 ~ N(−20,42); Env2 ~ N(−10,42); Env3 ~ N(−5,42); Env4 ~ N(−2,42); Env5 
~ N(0,42); Env6 ~ N(0,42); Env7 ~ N(0,42); Env8 ~ N(0,42); Env9 ~ N(2,42); Env10 ~ N(5,42); Env11 ~ N(10,42); 
Env12 ~ N(20,42). A systematic variation is observed from -20 to +20 for the mean. The null effect was considered 
in four environments, and the standard deviation for the twelve environments was fixed and equal to 4 t∙ha−1. The 
Normal probability distributions to the block and environment effects are shown in Figure 1. 

The genotypes formed three groups based on the average yield and the corresponding Normal probability dis- 
tributions for each of the three simulation scenarios: 1) simulation scenario 1—random and coefficient of varia- 
tion equals to 5% (RCV); 2) simulation scenario 2—random and standard deviation equals to 8 t∙ha−1 (RSD); 
and 3) simulation scenario 3—ystematic and standard deviation equals to 8 t∙ha−1 (SySD) are shown in Table 1 
and Figure 2. 

All simulations of such effects followed the Normal probability distribution, and the simulations were inde- 
pendent from one another. In the Normal probability distributions, the mean was dependent on the genotype 
condition, the block effect and the environment.  
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Table 1. Normal probability distributions to simulate the effects of each ge- 
notype for the different genotypes groups and simulation scenarios.           

Genotypes group Genotypes RCV RSD SySD 

H 
(160 t∙ha−1) 

G1 N(160,82) N(160,82) N(150,82) 

G2 N(160,82) N(160,82) N(160,82) 

G3 N(160,82) N(160,82) N(170,82) 

G4 N(160,82) N(160,82) N(180,82) 

G5 N(160,82) N(160,82) N(190,82) 

MD 
(120 t∙ha−1) 

G6 N(120,62) N(120,82) N(100,82) 

G7 N(120,62) N(120,82) N(110,82) 

G8 N(120,62) N(120,82) N(120,82) 

G9 N(120,62) N(120,82) N(130,82) 

G10 N(120,62) N(120,82) N(140,82) 

L 
(80 t∙ha−1) 

G11 N(80,42) N(80,82) N(50,82) 

G12 N(80,42) N(80,82) N(60,82) 

G13 N(80,42) N(80,82) N(70,82) 

G14 N(80,42) N(80,82) N(80,82) 

G15 N(80,42) N(80,82) N(90,82) 

 

    
(a)                                      (b) 

Figure 1. Normal theoretical probability distributions to the block simulated ef- 
fects (a) and environments (b).                                            

 

   
(a)                                 (b)                                         (c) 

Figure 2. Normal theoretical probability distributions for the different genotypes groups and simulation scenarios (Scena- 
rio 1—RCV (a); Scenario 2—RSD (b); Scenario 3—SySD (c)).                                                    



G. M. Ferraudo, D. Perecin 
 

 
2110 

In RCV, the increase in the mean (location parameter) is accompanied by the increase of the variance (scale 
parameter) of the data, meaning that the smaller the mean, the lower the data variability. In other words, the 
mean and the variability of group of genotype H are greater than the average and the variability of group MD, 
which, in turn, are greater than the mean and the variability of group L. 

Distribution in group L is well-concentrated (low variability) around the mean. There is overlap of distribu- 
tions with the same mean and variance within each group of genotype (H, MD and L). RCV is the only simula- 
tion scenario that shows heterogeneity of variance among the genotypes groups. 

For RSD, there is displacement of the mean in the distributions, however, the variance remains constant (ho- 
mogeneity of variance). Again, there is overlap of distributions within each genotype group (H, MD and L). For 
SySD, there is greater displacement of the mean in distributions when compared to distributions in RCV and 
RSD scenarios, however, the variance remains constant in SySD as well as in RSD. In SySD, there is no overlap 
of distributions with the same mean and variance within each group of genotype (H, MD and L); however, it 
shows a larger number of distributions with different means within each genotype group. This displacement of 
distributions is due to the systematic addition over the mean condition of each genotype within each genotype 
group (H, MD and L), indicating that there is genotypic effect within each genotypes group. 

Nevertheless, the simulation data in accordance with the conditions in each scenario through the described 
pseudo-random distributions do not show GEI. Thus, there would be no conditions to ensure that the objectives 
of this work could be achieved. Therefore, it was necessary to add (force) GEI to the simulation conditions. GEI 
was created by exchanging (inversion) the responses between the genotypes of different groups (H, MD and L), 
varying the environments where GEI occurred. 

The following strategies were used to assess the inversions: 
1. EG_1HMD: inversion of a genotype of high yield (H) with one of medium yield (MD); 
2. EG_1HL: inversion of an H genotype with a genotype of low yield (L); 
3. EG_1MDL: inversion of an MD with an L genotype; 
4. EG_2HMD: inversion of two H with two MD genotypes; 
5. EG_2HL: inversion of two H with two L genotypes; 
6. EG_2MDL: inversion of two MD with two L genotypes; 
7. EG_3HMD: inversion of three H with three MD genotypes; 
8. EG_3HL: inversion of three H with three L genotypes; 
9. EG_3MDL: inversion of three MD with three L genotypes. 

The genotypes inversion was performed by exchanging the names of genotypes considering the three groups 
of environments: 1) within the neutral environments (E1): Env5, Env6, Env7 and Env8; 2) between the worst 
and the best environments (E2): when the exchange involved two genotypes belonging to different groups of 
genotypes, the inversion was made between the groups of environments—Env1, Env2, Env3 and Env4 versus 
Env9, Env10, Env11 and Env12 versus Env1 and Env12; and 3) unstructured exchanges within each group of 
environments (E3): this type of exchange aimed to accomplish more complex interactions. When the exchange 
involved two genotypes belonging to different groups of genotypes, the inversion was made between the groups 
of environments—Env1, Env2, Env8, Env10 and Env12 versus Env3, Env9 and Env11; and, when the exchange 
involved three genotypes, belonging to different groups, the inversion was carried out between the groups of en- 
vironments—Env1, Env2, Env8, Env10 and Env12 versus Env3, Env9 and Env11 versus Env1, Env4, Env6 and 
Env12. 

In this manner all the situations that led to the construction of the final simulation cases were created. Geno- 
types had three scenarios (Table 1). Blocks had a single scenario-random zero mean and standard deviation 
equal to 2. Three groups of environments were created (E1, E2 and E3), where the exchanges were evaluated. 
Within group E1, we made all exchanges evaluated, from one to three exchanges of genotypes among the geno- 
types groups (H, MD and L), totaling 27 cases. Within groups E2 and E3, we carried out exchanges between two 
and three genotypes, totaling 18 exchanges in E2 and 18, in E3. Adding all the cases (27 in E1 + 18 in E2 + 18 
in E3), we obtained the 63 final cases that were simulated and will be discussed below. The first five columns of 
Table 2 refer to the cases, the number of exchanges carried out, the group of environments where the exchanges 
were made, the abbreviations of each simulation scenario and the type of exchange between genotypes and the 
exchange that was introduced in each case. These columns aim to clarify the procedures carried out in each si- 
mulation case. 
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Table 2. Percentage of statistical significance (p-value < 0.05) of GEI for the following statistics: F of GEI in usual univariate 
ANOVA; regression deviations in ER; scores of genotypes in AMMI outside the confidence interval (AMMI1) or the confidence 
region (AMMI2 or AMMI3); t associated to BLUPs of GEI effects for genotypes that were exchanged in environments where ex- 
changes occurred (BLUP GenCEnvC); t associated to BLUPs of GEI effects for genotypes that were exchanged in environments 
where no exchanges occurred (BLUP GenCEnvNC) and t associated to BLUPs of GEI effects for genotypes that did not undergo any 
type of exchange in all environments (BLUP GenNC) in each simulation case.                                             

Case 
Exchanges (inversion) GEI effect 

# Total Env  
group Scenario/Strategy Introduced Usual  

ANOVA ER AMMI BLUP 
GenCEnvC 

BLUP 
GenCEnvNC 

BLUP 
GenNC 

1 1 E1 RCV/EG_1HMD G1-G6 100% 100% 100% 100% 98% 0% 

2 1 E1 RCV/EG_1HL G1-G11 100% 100% 100% 100% 100% 0% 

3 1 E1 RCV/EG_1MDL G6-G11 100% 100% 100% 100% 99% 0% 

4 2 E1 RCV/EG_2HMD G1-G6; G2-G7 100% 100% 100% 100% 99% 0% 

5 2 E1 RCV/EG_2HL G1-G11; G2-G12 100% 100% 100% 100% 100% 0% 

6 2 E1 RCV/EG_2MDL G6-G11; G7-G12 100% 100% 100% 100% 100% 0% 

7 3 E1 RCV/EG_3HMD G1-G6; G2-G7; G3-G8 100% 100% 100% 100% 99% 0% 

8 3 E1 RCV/EG_3HL G1-G11; G2-G12; G3-G13 100% 100% 100% 100% 100% 0% 

9 3 E1 RCV/EG_3MDL G6-G11; G7-G12; G8-G13 100% 100% 100% 100% 100% 0% 

10 1 E1 RSD/EG_1HMD G1-G6 94.7% 100% 100% 95% 78% 0% 

11 1 E1 RSD/EG_1HL G1-G11 100% 100% 100% 100% 100% 0% 

12 1 E1 RSD/EG_1MDL G6-G11 94.0% 100% 100% 94% 77% 0% 

13 2 E1 RSD/EG_2HMD G1-G6; G2-G7 100% 100% 100% 100% 91% 0% 

14 2 E1 RSD/EG_2HL G1-G11; G2-G12 100% 100% 100% 100% 100% 0% 

15 2 E1 RSD/EG_2MDL G6-G11; G7-G12 100% 100% 100% 100% 90% 0% 

16 3 E1 RSD/EG_3HMD G1-G6; G2-G7; G3-G8 100% 100% 100% 100% 91% 0% 

17 3 E1 RSD/EG_3HL G1-G11; G2-G12; G3-G13 100% 100% 100% 100% 100% 0% 

18 3 E1 RSD/EG_3MDL G6-G11; G7-G12; G8-G13 100% 100% 100% 100% 91% 0% 

19 1 E1 SySD/EG_1HMD G5-G6 100% 100% 100% 100% 100% 0% 

20 1 E1 SySD/EG_1HL G5-G11 100% 100% 100% 100% 100% 0% 

21 1 E1 SySD/EG_1MDL G9-G11 100% 100% 100% 100% 100% 0% 

22 2 E1 SySD/EG_2HMD G5-G6; G4-G7 100% 100% 100% 100% 100% 0% 

23 2 E1 SySD/EG_2HL G5-G11; G4-G12 100% 100% 100% 100% 100% 0% 

24 2 E1 SySD/EG_2MDL G9-G11; G8-G12 100% 100% 100% 100% 100% 0% 

25 3 E1 SySD/EG_3HMD G5-G6; G4-G7; G3-G8 100% 100% 100% 100% 98% 0% 

26 3 E1 SySD/EG_3HL G5-G11; G4-G12; G3-G13 100% 100% 100% 100% 100% 0% 

27 3 E1 SySD/EG_3MDL G9-G11; G8-G12; G10-G13 100% 100% 100% 100% 100% 0% 

28 2 E2 RCV/EG_2HMD G1-G6; G2-G7 100% 100% 100% 99% 100% 0% 
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Continued 

29 2 E2 RCV/EG_2HL G1-G11; G2-G12 100% 100% 100% 100% 100% 0% 

30 2 E2 RCV/EG_2MDL G6-G11; G7-G12 100% 100% 100% 100% 100% 0% 

31 3 E2 RCV/EG_3HMD G1-G6; G2-G7; G3-G8 100% 100% 100% 69% 77% 0% 

32 3 E2 RCV/EG_3HL G1-G11; G2-G12; G3-G13 100% 100% 100% 100% 100% 0% 

33 3 E2 RCV/EG_3MDL G6-G11; G7-G12; G8-G13 100% 100% 100% 69% 77% 0% 

34 2 E2 RSD/EG_2HMD G1-G6; G2-G7 100% 100% 100% 91% 96% 0% 

35 2 E2 RSD/EG_2HL G1-G11; G2-G12 100% 100% 100% 100% 100% 0% 

36 2 E2 RSD/EG_2MDL G6-G11; G7-G12 100% 100% 100% 90% 95% 0% 

37 3 E2 RSD/EG_3HMD G1-G6; G2-G7; G3-G8 100% 100% 100% 62% 73% 0% 

38 3 E2 RSD/EG_3HL G1-G11; G2-G12; G3-G13 100% 100% 100% 98% 98% 0% 

39 3 E2 RSD/EG_3MDL G6-G11; G7-G12; G8-G13 100% 100% 100% 61% 72% 0% 

40 2 E2 SySD/EG_2HMD G5-G6; G4-G7 100% 100% 100% 100% 100% 0% 

41 2 E2 SySD/EG_2HL G5-G11; G4-G12 100% 100% 100% 100% 100% 0% 

42 2 E2 SySD/EG_2MDL G9-G11; G8-G12 100% 100% 100% 100% 100% 0% 

43 3 E2 SySD/EG_3HMD G5-G6; G4-G7; G3-G8 100% 100% 100% 67% 75% 0% 

44 3 E2 SySD/EG_3HL G5-G11; G4-G12; G3-G13 100% 100% 100% 100% 100% 0% 

45 3 E2 SySD/EG_3MDL G9-G11; G8-G12; G10-G13 100% 100% 100% 78% 84% 0% 

46 2 E3 RCV/EG_2HMD G1-G6; G2-G7 100% 100% 100% 95% 97% 0% 

47 2 E3 RCV/EG_2HL G1-G11; G2-G12 100% 100% 100% 100% 100% 0% 

48 2 E3 RCV/EG_2MDL G6-G11; G7-G12 100% 100% 100% 97% 98% 0% 

49 3 E3 RCV/EG_3HMD G1-G6; G2-G7; G3-G8 100% 100% 100% 94% 96% 0% 

50 3 E3 RCV/EG_3HL G1-G11; G2-G12; G3-G13 100% 100% 100% 100% 100% 0% 

51 3 E3 RCV/EG_3MDL G6-G11; G7-G12; G8-G13 100% 100% 100% 97% 98% 0% 

52 2 E3 RSD/EG_2HMD G1-G6; G2-G7 100% 100% 100% 77% 85% 0% 

53 2 E3 RSD/EG_2HL G1-G11; G2-G12 100% 100% 100% 100% 100% 0% 

54 2 E3 RSD/EG_2MDL G6-G11; G7-G12 100% 100% 100% 78% 86% 0% 

55 3 E3 RSD/EG_3HMD G1-G6; G2-G7; G3-G8 100% 100% 100% 80% 87% 0% 

56 3 E3 RSD/EG_3HL G1-G11; G2-G12; G3-G13 100% 100% 100% 100% 100% 0% 

57 3 E3 RSD/EG_3MDL G6-G11; G7-G12; G8-G13 100% 100% 100% 81% 87% 0% 

58 2 E3 SySD/EG_2HMD G5-G6; G4-G7 100% 100% 100% 100% 100% 0% 

59 2 E3 SySD/EG_2HL G5-G11; G4-G12 100% 100% 100% 100% 100% 0% 

60 2 E3 SySD/EG_2MDL G9-G11; G8-G12 100% 100% 100% 99% 99% 0% 

61 3 E3 SySD/EG_3HMD G5-G6; G4-G7; G3-G8 100% 100% 100% 98% 99% 0% 

62 3 E3 SySD/EG_3HL G5-G11; G4-G12; G3-G13 100% 100% 100% 100% 100% 0% 

63 3 E3 SySD/EG_3MDL G9-G11; G8-G12; G10-G13 100% 100% 100% 96% 97% 0% 
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Therefore, each of the 63 simulation cases shows a sampling distribution of the particular TCH values due to 
the different conditions and exchanges described in this section. The data are balanced and there is no correla- 
tion structure between the effects. 

In total, 63 cases were evaluated and for each case, we simulated 540 observations (15 genotypes × 12 envi- 
ronments × 3 replications = 540) and 1,000 replicas and each case was analyzed by the three methods. Thus, 
each of the three methods evaluated 34,020,000 data points (540 observations × 1000 replicas × 63 cases = 
34,020,000). 

2.2. GEI Evaluation Methods 
In this study the following methods were used: 1) ER; 2) AMMI; and 3) mixed model (restricted maximum like- 
lihood (REML)/best linear unbiased prediction (BLUP)). 

2.2.1. The ER Method 
The use of linear regression to identify stable genotypes was initially proposed by [26]. The authors proposed 
separating GEI into a multiplicative term and a deviation to verify whether GEI is a linear function of the addi- 
tive environmental component. 

In theory, a sufficient condition for linear regression is that the joint distribution of yield and the environmen- 
tal index be a bivariate Normal [27]. The authors showed that the expected value for the linear regression coeffi- 
cient (straight line slope) is ( )2 1ρ σ σ∗ , where ρ  is the correlation coefficient, 2σ  and 1σ  are the standard 
deviations of the environmental index and yield, respectively, allowing to predict the responses if these parame- 
ters were known. The greater the ρ  and 2σ  and the smaller the 1σ , the larger the b  linear regression coef- 
ficient (straight line slope). The higher the ρ  the greater plasticity (adaptation ability) to all environments.  

Further details about the ER model are given in [4] and [28]. 

2.2.2. The AMMI Method 
Plant breeding programs commonly analyze the existence of a two-way table (genotypes and environments). 
This type of table features multi-environment trials (MET), where it is important to test general and specific 
adaptation of genotypes. The genotypes are influenced by different environmental conditions and may show 
significant variation in the yield performance in relation to other genotypes. This type of behavior is known as 
GEI. 

The AMMI method, recommended by [23] [29], is nothing more than a combination between the usual univa- 
riate analysis of variance (ANOVA) and principal components analysis (PCA), which can be treated directly 
through the mathematical technique called singular value decomposition (SVD). AMMI relies, initially, on the 
estimation of additive effects of genotypes and environments by the method of conventional variance analysis. 
The residuals obtained from this matrix constitute the interactions matrix where the GEI effects are estimated, 
considered multiplicative, using PCA.  

To determine the optimal number of multiplicative terms in the AMMI method, only the method of [5] was 
used, based on the approximate F test. The selection of the number of components was made considering 

0.05α =  (α  is the significance level prefixed in the test for each thm  interaction principal components 
analysis (IPCAm)), where m  is the number of the principal components selected to describe the GEI pattern 
( )m s≤  and s = min(total of genotypes – 1, total of environments − 1) is the total number of the principal 
components. The use of all components ( )s  retrieves all variation.  

After defining the optimal number of significant components, we can explain the AMMI family model that 
was used in this study. For example, if no component is considered significant by the procedure of [5], we have 
the AMMI0 model that contains only the additive effects of genotypes and environments, without GEI. If a 
component is considered significant, we have the AMMI1 model, which contains a component that explains GEI, 
beyond the additive genotypes × environments effects. For two significant components, we have the AMMI2 
model that contains two components, which explain GEI, beyond the additive genotypes × environments effects, 
and so forth. 

2.2.3. Confidence Interval or Region in the AMMI Method 
There is a certain difficulty to establish criteria to quantify scores as “low”, which are typical of genotypes × en- 
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vironments that contributed little or almost nothing to GEI, aiming to obtain stability of genotypes. In practice, 
many times, this criterion is subjective based on the researcher’s experience. For the AMMI1 method as well as 
for the AMMI2 and AMMI3 models, we can build confidence interval or region, respectively, to determine the 
stability of genotypes x environments [30]. 

Therefore, the user can set a confidence interval or region where the genotypes that belong to it can be consi- 
dered statistically stable. 

For the AMMI1 model, we set the confidence interval of 95% for the mean of scores in IPCA1 ( )IPCA1X  of 
genotypes x environments by: 

IPCA1
IPCA1 1; 1n

s
X t

nα−±
−

                                      (1) 

where: n  in the number of scores involved ( g  scores for genotypes and e  scores for environments); 1;nt α−  
is the value of t-distribution with ( )1n −  degrees of freedom; α  is the significance level, prefixed at 0.05; 

IPCA1s  is the standard deviation of scores in IPCA1. 
For the AMMI2 and AMMI3 models, we set the confidence interval of 95% based on the squared Mahalano- 

bis distance for the vector of means of scores in either IPCA1 × IPCA2 (AMMI2) or IPCA1 × IPCA2 × IPCA3 
(AMMI3) of genotypes × environments by: 

( ) ( ) ( )
( )

1
2, 2;

2 1
2kk k k k n

n
S F

n nθ αθ θ θ θ−
−

−′− − ≤
−

                            (2) 

where: k g=  or ek =  for genotypes or environments, respectively; n  is the number of scores involved ( g  
scores for genotypes and e  scores for environments); kθ  is the mean vector of scores (null vector); kθ  is the 
vector of observed scores; and 1

k
Sθ
−  is the inverse of the covariance matrix of scores. To identify whether a ge- 

notype or environment belongs to an established confidence interval or region, we should observe whether the  

values ( ) ( )1
kk k k k

'
n Sθθ θ θ θ−− −  are lower than ( )

( ) 2, 2;

2 1
2 n

n
F

n n α−

−
−

. If confirmed, the values are considered stable;  

otherwise, they are unstable, which indicates that the genotype or environment shows specific features. 
Further details about the AMMI method are given by [12]. 

2.2.4. The Mixed Model (REML/BLUP) 
According to [31], in GEI evaluation studies, data show a structure of error much more complex than that con- 
sidered in usual linear models for conventional data. Thus, in GEI evaluation studies, the REML/BLUP method, 
also known as the mixed model, has great ability to explain GEI, to inform about specific positive or negative 
interactions with environments and to decompose the interaction in terms of “pattern” or “noise” [15]. The 
REML/BLUP method allows the consideration of different structures of variance and covariance for the geno- 
types × environments effects, which makes the model more realistic. 

For the GEI evaluation by mixed model, the following statistical model was used: 
y X b Zg Wη ε= + + +                                     (3) 

where: y  is the vector of observed data; b  is the vector of block effects within each environment (assumed 
as fixed); g  is the vector of genotype effects (assumed as random); η  is the vector of GEI effect (assumed as 
random); and ε  is the error vector (random). The uppercase letters represent the matrices of incidence for the  
referred effects. The distribution of the random effects were: ( )2 20,G Gg N Iσ σ , ( )2 20,N Iη ηη σ σ  and 

( )2 20,N Iε εε σ σ . 

During the analysis, the statistical significance of the prediction solution for random effects in the mixed 
model was verified using the following hypothesis: 

0 ˆ: 0
ˆ: 0
i i

A i i

H
H

µ µ
µ µ
− =

− ≠
 

If 0 ˆ: 0i iH µ µ− =  is rejected, it shows that the random effect is contributing to the variability of the response 
variable y . The statistical significance of the random effect was observed by the usual t-test and 0.05α = . 
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Further details about mixed models are given by [32]. 

2.3. Criteria to Detect GEI in Each Method 
To detect GEI in each of the methods (ER, AMMI and mixed model), the following criteria we used: 1) in the  
ER method, the statistical significance (p-value 0.05< ) of regression deviations ( )ˆ

ijd ; 2) in the AMMI me- 

thod, not belonging to the confidence interval (AMMI1) or the confidence region (AMMI2 and AMMI3); 3) in 
the mixed model, the statistical significance (p-value 0.05< ) of the prediction solution for random effect. 

2.4. Computing Environment to Simulation and Data Analysis 
In this study, the R computing environment was used [33], version 3.0.1, to generate data belonging to the dif- 
ferent simulation scenarios and for the statistical analysis of the data. Besides the packages of base distribution, 
the packages “agricolae” [34] was used for the AMMI method and “lme4” [35] was used for mixed model. 

3. Results and Discussion 
Simulation Results 
The results in Table 2 show that only in two cases (10 and 12) GEI was not significant in all replicas (1000). 
The two cases have in common a single exchange between genotypes within the neutral environments (E1—null 
effect of environment). 

The high percentage of GEI significance in the simulation cases shows that, in a way, GEI was generated 
successfully. Only a few replicas within cases 10 and 12 did not show significant GEI, that is, in these situations 
the exchanges were not sufficient to make GEI significant. 

After verifying the statistical significance of GEI by the usual univariate ANOVA, we applied the three me- 
thods (ER, AMMI and mixed model) to assess GEI. The evaluation of GEI was verified, initially, by the tradi- 
tional ER method based on the regression analysis. 

In all 63 cases, except for the genotypes where exchanges were carried out, estimates of the linear regression  
coefficient ( )ib  for each genotype showed values equal to 1 ( )ˆ 1ib =  and the regression deviation values ( )ˆ

ijd  

were entirely nonsignificant. Thus, such genotypes showed broad adaptability ( )ˆ 1ib =  and high stability ( )ˆ 0ijd = . 

For all 63 cases, considering the genotypes that were exchanged (either one or two or three exchanges), devi- 
ation estimates ( )ˆ

ijd were significant in 100% of the cases (Table 2). Therefore, there is no reason to interpret the  

ib  obtained by the ER method, since there is a significant deviation of regression. In other words, for a certain 
genotype, if there is lack of fit, the linear regression becomes inadequate to explain the behavior of this genotype 
against the environmental variation. 

Next, we applied the AMMI method. 
For cases 1-27 (all types of exchange within the neutral environments—E1), only the first principal component 

was significant, therefore, the AMMI method in these cases would be AMMI1, and stability is evaluated by 
checking the scores of the first principal component (IPCA1).  

The cases 28, 29 and 30; 34, 35 and 36; 40, 41 and 42; 46, 47 and 48; 52, 53 and 54; 58, 59 and 60 had, in 
common, exchanges between two genotypes within E2 and E3 environments. For these cases, the first two prin- 
cipal components were significant, therefore, the AMMI method for these cases would be AMMI2, and the more 
stable genotypes and environments are those whose points are near the origin (0, 0), that is, with scores virtually 
null for the two axes of GEI (IPCA1 and IPCA2), which are inherent in genotypes x environments that contri- 
buted little or almost nothing to GEI. Cases 28, 29 and 30; 34, 35 and 36; 40, 41 and 42; 46, 47 and 48; 52, 53 
and 54; 58, 59 and 60 characterized 1) by the occurrence of two genotype exchanges to force GEI; and 2) be- 
cause these exchanges occurred between the best and worst environments (E2) or they are structured within each 
group of environment (E3), that is, slightly more rigorous exchanges than those carried out in cases 1-27. 

At last, cases 31, 32 and 33; 37, 38 and 39; 43, 44 and 45; 49, 50 and 51; 55, 56 and 57; 61, 62 and 63 had, in 
common, the exchanges between three genotypes within E2 and E3 environments. For these cases, the first three 
principal components were significant, therefore, the AMMI method would be AMMI3, and the more stable 
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genotypes and environments are those whose points are near the origin (0, 0, 0), that is, with scores virtually null 
for the three axes of GEI (IPCA1, IPCA2 and IPCA3), which are the genotypes and environments that contri- 
buted little or almost nothing to GEI. Cases 31, 32 and 33; 37, 38 and 39; 43, 44 and 45; 49, 50 and 51; 55, 56 
and 57; 61, 62 and 63 characterized 1) by the occurrence of three exchanges of genotypes to force GEI; and 2) 
because these exchanges occurred between the best and worst environments (E2) or they are unstructured within 
each environment group (E3). These exchanges were even more rigorous than those carried out in cases 1-27 
and, slightly more rigorous than those performed in cases 28, 29 and 30; 34, 35 and 36; 40, 41 and 42; 46, 47 
and 48; 52, 53 and 54; 58, 59 and 60. 

Therefore, the use of the AMMI method allowed the visualization of the presence of patterns of simple and 
complex interactions among the 63 simulated cases. Complex interactions occurred in cases 31, 32 and 33; 37, 
38 and 39; 43, 44 and 45; 49, 50 and 51; 55, 56 and 57; 61, 62 and 63, where the first three principal compo- 
nents were necessary to capture most of the pattern, relegating to the subsequent axes less pattern and more 
noise. 

This result corroborates [36] cited by [23] in the evaluation of GEI in trials with wheat. The greater the num- 
ber of axes (principal components) necessary to explain GEI, the more complex is the interaction pattern. On the 
other hand, cases 1-27; 28, 29 and 30; 34, 35 and 36; 40, 41 and 42; 46, 47 and 48; 52, 53 and 54; 58, 59 and 60 
required the first or the first two principal components to detect most of the existing pattern in the data, thus, 
featuring an interaction pattern of less complexity in these cases. 

In terms of the statistical stability of the genotypes, we can observe in Table 2 that for all 63 cases analyzed, 
the AMMI method identified effectively (100% of the cases) the GEI, as the genotypes that did not undergo ex- 
changes within each case were not significant. This method, through the confidence interval (AMMI1) or the 
confidence region (AMMI2 and AMMI3) detected GEI caused by the exchange between the genotypes. In other 
words, in each of the 63 cases, the genotypes that had exchanges were not included either in the confidence in- 
terval (AMMI1) or in the confidence region (AMMI2 and AMMI3) characterizing, thus, the presence of GEI. 
Because these genotypes were far from the origin, they showed specific features, different from the other geno- 
types that had no exchanges of any type.  

Regarding the statistical stability of the environments, all environments were included in or occurred within 
the confidence interval (AMMI1) or within the confidence region (AMMI2 and AMMI3). 

Finally, we applied the REML/BLUP method (mixed model). 
Initially, we analyzed the 27 first cases (all types of exchanges within E1) and, for these cases, the environ- 

ments where exchanges occurred (Env5, Env6, Env7 and Env8). The results in the column “BLUP/GenCEnvC” 
(Table 2), in all 27 cases related to E1, with the GEI effects of exchanged genotypes in these environments 
showed statistical significance (p-value 0.05< ), 100%, except in cases 10 and 12. In these two cases, the GEI 
effect of exchanged genotype was detected at 95% and 94%, respectively, in environments where exchanges oc- 
curred. 

Considering the values in the column “BLUP/GenCEnvNC” of the same 27 cases in Table 2, which considers 
the same genotypes that were exchanged in each case, however, in environments where no exchanges of these 
genotypes occurred, we observed statistical significance of GEI at lower percentage. Cases 10, 12, 13, 15, 16 
and 18 showed the lowest percentage of statistical significance of the GEI effect for environments where no ex- 
changes of genotypes occurred. Cases 10 and 12 showed the lowest percentages of statistical significance of the 
GEI effect, 78% and 77%, respectively, considering the 27 cases (Table 2). Cases 13, 15, 16 and 18 showed, on 
average, 91% of statistical significance of the GEI effect. Cases 10, 12, 13, 15, 16 and 18 belong to RSD. Cases 
13 and 15 had, in common, the exchange between two genotypes and cases 16 and 18, the exchange between 
three genotypes.  

Next, we analyzed 18 following cases (from 28 - 45 where there were all types of exchanges within E2, as 
shown in Table 2). The GEI effect of exchanged genotypes was detected efficiently with a minimum of 98% in 
cases 28, 29, 30, 32, 35, 38, 40, 41, 42 and 44, and for these 10 cases, the GEI effect of the same genotypes was 
significant (greater than or equal to 98%) even in environments where exchanges were not performed (Env5, 
Env6, Env7 and Env8). 

For cases 31, 33, 34, 36, 37, 39, 43 and 45, the efficiency (percentage) in the detection of the GEI effect was 
reduced. Of these eight cases, only in cases 34 and 36 occurred two exchanges between genotypes. The percen- 
tage of statistical significance of the GEI effect of genotypes that had exchanges in environments where they 
occurred was 91% and 90%, for cases 34 and 36, respectively, and 96% and 95%, respectively, for the same ge- 
notypes in environments where no exchanges occurred.  
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For the other cases (31, 33, 37, 39, 43 and 45), where three exchanges between genotypes were performed, we 
obtained on average 67% of statistical difference of the GEI effect of genotypes that underwent exchanges in 
environments where the exchanges occurred, while, on average, for the same genotypes in environments where 
no exchanges occurred, the significance was 76%.  

Finally, we analyzed the last 18 cases (from 46 - 63 where all types of exchanges occurred within E3, as 
shown in Table 2). The GEI effect of exchanged genotypes was detected with 100% efficiency, for cases 47, 50, 
53, 56, 58, 59 and 62 in environments where exchanges were performed as well as in environments where no 
exchanges occurred.  

For cases 46, 48, 49, 51, 60, 61 and 63, the detection of the GEI effects for the exchanged genotypes was, on 
average, 97% in environments where exchanges occurred and 98% in environments where no exchanges were 
performed. For cases 52, 54, 55 and 57, the detection of the GEI effects for the exchanged genotypes was re- 
duced, on average, to 79% in environments where exchanges occurred and 86% in environments where no ex- 
changes were carried out.  

As shown in the column “BLUP/GenNC” (Table 2), for the genotypes that underwent exchanges within each 
of the 63 cases, the GEI effects were not detected by the mixed model in any of the cases, and the same occurred 
with the ER and AMMI methods. As expected, for the genotypes that did not undergo any type of exchange 
(G14 and G15), the GEI effects were not detected in any of the 63 cases considering the three methods (ER, 
AMMI and mixed model). 

In summary, the results allow to verify that the model ER may be a straight line (linear regression model). A 
sufficient condition for this to happen, according to [27], is that the joint distribution of yield, TCH, and the en- 
vironmental index be a bivariate Normal. This condition was observed for genotypes that were exchanged, and  
the respective values of the deviations ( )ˆ

ijd  were significant, which invalidated the interpretation of îb  from  

such genotypes in the ER method. Reference [23] added that these procedures, based on regression models, in 
general, do not inform about specific interactions of genotypes with environments (whether positive or negative) 
making it difficult to explore the advantageous effects of this interaction. Reference [15] reported that the ER 
and AMMI methods act at the phenotypic level, while the mixed model, at the genotypic level.  

In this study, information about specific interactions was explored advantageously from 1) the AMMI method 
and 2) the mixed model. For [15], the use of the mixed model and the AMMI method allows to report on posi- 
tive or negative specific interactions with environments and to decompose the interaction in terms of “pattern” 
and “noise”. However, information on specific interactions is detected differently by the methods. The AMMI 
method estimates only the principal effects of genotypes and environments and uses the PCA, which is an ex- 
ploratory data analysis. The method is based on the scores signs (distant from the origin) and in geometric 
proximity visualized in a biplot between a given genotype with a given environment to describe the type of in- 
teraction (positive or negative), which makes the interpretation of specific interactions subjective. 

The geometric proximity between genotypes and environments with scores of the same sign informs about 
specific properties of the interaction between them. On the other hand, as the mixed model estimates the multip- 
licative effects of specific interactions, there is an effect for each specific interaction between a genotype and an 
environment and an uncertainty associated with it. 

The results obtained in this study allowed the establishment of three general conditions: 
1. The use of the method ER should begin from a mandatory verification of the statistical significance of the  

values of regression deviations ( )ˆ
ijd  for each genotype. If ˆ

ijd  is significant, the interpretation of the îb  of  

the genotype in question will be hindered;  
2. The three methods studied detected interactions only for the genotypes that have suffered some type of ex- 

change, respecting the particularities of each method;  
3. The mixed model allowed the consideration of the different existing distributions in the 63 simulation cases 

showing more sensitivity compared with the other methods used. This sensitivity of the mixed model in de- 
tecting the GEI effects allowed this method to show statistical significance of the effects of specific interac- 
tions of genotypes that underwent exchanges with environments where no exchanges occurred.  

4. Conclusion 
In short, each method detects the GEI effect in a different way. Therefore, the methods can be used in a com- 
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plementary way to a better understanding of the complex phenomenon that is the GEI, provided that they are 
carried out in accordance with the limitations inherent in each of the methods and that the assumptions are veri-
fied during the practical application of each method. 
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