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Abstract 
The purpose of this study is 1) to present a biomechanical model for evaluating the myogenic 
power expended in an arterial segment due to vascular smooth muscle contraction (VSMC) and 2) 
to assess the total power expenditure in the entire systemic arterial tree by utilizing the fractal 
nature of the branching architecture. The model is based on the mechanical equilibrium between 
the stretch stress exerted by blood pressure inside the vessel lumen and constricting stress elic-
ited by VSMC in the vascular wall. An expression for myogenic power expenditure is formulated 
for a unit wall mass as a function of the internal vessel radius and extent of strain. This expression 
was then integrated over selected range of vessel radii, by taking into account of the fractal nature 
of the branching structure. When the total myogenic power expended in the systemic arterial tree 
in rat at the moderate strain level is converted to the oxygen consumption rate, it amounts to ap-
proximately 18% of the whole body oxygen consumption rate. This suggests that the mechanical 
power expenditure due to VSMC is a significant factor that should not be ignored in studies of vas-
cular energetics. 
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1. Introduction 
The energetics of the vascular system has been explored, mainly with respect to the optimum models of its 
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branching system, e.g., the minimum work model by Murray [1] [2] or the minimum volume model by Kamiya 
and Togawa [3] and Kamiya et al. [4]. In most analyses of these models, the cost function to be minimized has 
been defined as the sum of the mechanical power loss due to viscous resistance against blood flow through nar-
row vessels and chemical energy demand to sustain massive volume of blood fresh and active in large vessels. 
However, one problem with these models is that the mechanical energy expenditure due to vascular smooth 
muscle contraction (VSMC), which consistently regulates the vascular tone and radius, has not been included in 
the cost function; this is in contrast with cardiac ventricular energetics [5] in which myocardial contraction is 
treated as an essential element in exerting mechanical power for pumping blood. VSMC has been neglected be-
cause, as demonstrated by Johnson [6], the oxygen consumption rate of VSMC per unit of mechanical power is 
astonishingly low, in comparison with those of cardiac and skeletal muscle contractions (interlocking mecha-
nism). However, the significant role of VSMC in the vascular energetics should not be ruled out, until we accu-
rately determine the magnitude of its mechanical power expenditure and assess the amount of oxygen (O2) it 
consumes. 

As a matter of fact, in vivo measurements of O2 tension ( )2OP  in peripheral arterial blood in rat cremaster 
muscle by Shibata et al. [7] have revealed that the level of 

2OP  in arterial blood ordinarily declines toward 
terminals and that the descending rate significantly diminishes when the terminal arterial VSMC is eliminated 
by topical application of vasodilator. These findings suggest that one of the factors inducing 

2OP  reduction in 
arterial blood toward the periphery is the active consumption of O2 within the vascular wall due to VSMC [7]. 

To evaluate the total mechanical power due to VSMC in the entire vascular system, we need to utilize the 
fractal nature of the vascular branching structure introduced by Mandelbrot [8]. In our preceding study [9], we 
confirmed that various morphological and functional properties of the vascular system can be quantified by 
fractal-based integrals and their derivatives (see Appendix). Accordingly, the most urgent task to be done in this 
study is to construct a theoretical model for evaluating the mechanical power expended by VSMC per unit vas-
cular wall mass and to assess its total amount in relevant vessel region using fractal integration. The outcomes of 
the analyses will be compared with conventionally physiological findings to verify the validity of the assessment 
and to substantiate the significance of this type of approaches in system physiology. 

2. Methods 
1) Theoretical assessment of mechanical power elicited by VSMC. 
Figure 1 illustrates the circumferential stress-strain ( )σ ε−  relationship in a vascular wall under the condi-

tion that the internal hydrostatic pressure (blood pressure, ( )P r ) remains constant. It is known that in such a 
σ ε−  diagram, the area enclosed by the trajectory of one cycle represents the amount of energy exerted in the 
cycle per unit mass. 

The average circumferential stress ( )σ  in the wall can be expressed, according to Laplace’s law, as 

( )rP r
h

σ =           (1) 

where r  is the internal radius of a cylindrical vessel and h  is its wall thickness. The strain ( )ε  on the ves-
sel wall is ordinarily expressed with the unstressed radius 0r  as, 

( )0
0

0

, or 1
r r

r r
r

ε ε
−

= = +  

In the present analyses, the standard state for any vessel segment is set at its maximally vasodilated state, 
which is the point indicated by s in Figure 1. The suffix s attached to parameters in the text designates those at 
the standard state. The radius ( )sr  in this standard state is given in terms of the corresponding strain ( )sε  by, 

( )0
11 , and then,   
1s s s

s

r r r r εε
ε
+

= + =
+

       (2) 

We presume that the physiological values of sε  and sr  are determined a priori for any vessel branch. 
For the relation between the wall thickness ( )sh  and radius ( )sr  at the standard state, Suwa and Takahashi 

[10] have demonstrated that for a wide range of vessel size, sh  can be expressed as a power function of sr  
with exponent 0.71.θ ≈  In addition, it was suggested that the ratio ( )s sh r  near the origin is approximately  
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Figure 1. Stress-strain ( )σ ε−  diagram for a vessel segment under 
the quasi-static constricting process due to vascular smooth muscle 
contraction (VSMC). Total stress is m eσ σ σ= +  where mσ  is the 
active myogenic stress whereas eσ  is the passive elastic one.          

 
0.2 [11]. Accordingly, we have, 

( )1
0 00.2 , 0.2s

s os s os
os

r
h r h r h r

r

θ
θ θ− 

= = = 
 

      (3) 

According to Schmidt-Nielsen [12], a number of morphological and functional properties in mammals can be 
expressed as the power functions of their body weights (the allometric law). The radius of the aorta ( )osr  is 
also allometrically related to body weight ( bw  in kg) as 0.330.26os br w= . Then, the circumferential stress at the 
standard state ( )sσ  can be written as;  

( ) ( )1

0

s s s s
s

s

r P r r P r
h h

θ

σ
−

= =          (4) 

In Figure 1, we consider a quasi-static constricting process of a vessel due to VSMC under the condition of 
constant internal hydrostatic pressure. In this process, which starts from the maximally dilated (standard) state, 
substantial changes in the entire stress ( )σ  take place, because of changes in its two components, i.e., the ac-
tive myogenic stress ( )mσ  and the passive elastic one ( )eσ  [ ]m eσ σ σ= + . As VSMC is gradually enhanced, 
the augmented active stress ( )mσ  diminishes the passive stress ( )eσ , which accompanies continuous reduc-
tions in the total stress ( )σ . Based on the assumption of constant hydrostatic pressure ( ) ( )sP r P r =   and 
due to mass balance [ ]s srh r h= , the entire stress σ  in Equation (1) can be rewritten, in terms of the standard 
state stress ( )sσ  and strain ( )sε ,  

2 2
1
1s s

s s

r
r

εσ σ σ
ε

   +
= =   +   

        (5) 

The curvature of the elastic stress ( )eσ  of arteries against strain ( )ε  is also known to be well simulated by 
a power function of ε , with the exponent ( )γ  in the range of 2.5 - 2.6 and the maximum strain ( )0.7sε ≈  
[13] (see Table 1). Then, eσ  can be written as, 

( ). 0 0.7e s s
s

γ
εσ σ ε ε
ε

 
= ≤ ≤ ≈ 

 
        (6) 
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Table 1. Values of constant parameters used in present simulation studies.                                         

Parameter Symbol Data References 

The strain of the vascular wall at maximally dilated (standard) state ( )sε  0.7 [13] 

The exponent of the radius-wall thickness relation in Equation (3) ( )θ  0.712 [10] 

The exponent of the elastic stress to the relative strain ( )sε ε  in Equation (6) ( )γ  2.57 [13] 

Specific gravity of animal bod in Equation (10) ( )ρ  31.03 g cm  [11] 

Blood viscosity at large arteries in Equation (17) ( )µ∞  2 24 10  dyn s cm−× ⋅  [11] 

Haynes’ parameter in A-14 ( )δ  44.83 10  cm−×  [9] 

Fractal dimension of systemic arterial trees in mammals in Equation (11) ( )D  1.75 [9] 

The exponent of branch radius-length relation in A-7 ( )α  1.13 [10] 

 
Using Equations (5) and (6), the active myogenic stress mσ  becomes, 

2
1
1m e s

s s

γ
ε εσ σ σ σ
ε ε

    + = − = −   +     
       (7) 

In a steady state of the wall, the constricting force due to the circumferential stress ( )σ  is equilibrated with 
the distending force caused by the internal hydrostatic pressure. The mechanical power elicited by VSMC under 
such an equilibrated, stand still condition can be evaluated by considering a virtual brief cessation and recovery 
of the contraction and by calculating the mechanical work done by the internal pressure during the virtual cycle, 
as indicated by the triangle ( )a b c a→ → →  in Figure 1. The cessation of VSMC at the point a reduces the 
stress by mσ  and causes a quick shift of the operating point down to b ( )a b→ . At that moment, the stress in 
vascular wall becomes off-balanced and the vessel begins to extend by 0r rδ δε=  during a brief time, tδ  
( )b c→ . Recovery of the contraction then follows, instantaneously shifting up the operating point back to a 
( )c a→ . The area ( 1A ) enclosed by these trajectories, ( )a b→ , ( )b c→  and ( )c a→  is 1 2mA σ δε= . 
This represents the mechanical work done by the internal distending pressure during time tδ  per unit wall 
mass. Obviously, the mechanical power exerted by VSMC per unit mass of wall tissue ( )mw  is equal to the 
above work normalized over a unit time, 

( ) 1 1
2m m

Aw r
t t

δεσ
δ δ

= =          (8) 

The expanding rate ( )tδε δ  in Equation (8) is proportional to the moving velocity of the wall ( )0u r tδε δ=  
at the point b, which gives the kinetic energy per unit mass 2 2uρ  where ρ  is specific gravity. If cessation 
of VSMC continues long enough, the operating point gradually moves up from point b to s along the eσ  curve, 
by expending the initial kinetic energy bestowed at point b. Therefore, the amount of that energy is equal to the 
area 2A  under the eσ  curve in Figure 1: 

( ) ( )
1

2
2

1 d 1 1
2 1

s s s
e eb s

s s

u A
γ γ

ε

ε

σ ε ε ερ σ ε σ ε ε γ γ
γ ε ε

+    
 = = − − = − + +   +      

∫    (9) 

Here, ebσ  is a certain level of the passive stress at point b  with strain ε . Using Equations (4), (7), (8) and 
(9), we finally obtain the following expression for ( )mw r : 

( ) ( ) ( ) ( ) ( )
1 3 1 33 3

2 22 2m m s s mw r k f r P r k g r P r
θ θ

ε ε
− −

= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅        (10) 

where, 

( )
( )

1
2

3
0

1 ,
2 1

s
m sk

h
ε

ε
ρ γ

 
= ⋅ +  + 
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( ) ( )
3 1

21
1s

g f

θ

εε ε
ε

−

 +
= ⋅ + 

 

With respect to the blood pressure profile ( )P r  in Equation (10), we can utilize A-17 in Appendix, which 
was derived in our preceding study [9]. 

Equation (10) gives the magnitude of mechanical power generated by VSMC at a branch of radius ( )r  per 
unit tissue mass. This mechanical power is exerted to sustain the static equilibrium against internal hydrostatic 
pressure ( )P r  at a certain strain ε . The formulation in Equation (10) or its modification may be feasibly ap-
plied to quantitative analyses of various biomechanical phenomena in the vascular system including the myo-
genic activity. In such analyses, it must be instructive, if we know the aggregated intensity of the power for all 
branches within a relevant range of radii or its tendency to alter from the origin to terminals. Such simulations 
are possible by employing the fractal nature of the vascular branching system proposed in our preceding study 
[9], as described below. 

2) Fractal integration of the mechanical power expenditure by VSMC. 
Based upon the fractal nature of the vascular tree [8], we formulate the aggregated magnitude of the me-

chanical power generated by VSMC for any given range of vessel radii, under several assumptions. As shown in 
the Appendix, our mathematical model for fractal trees [9] introduces a variable called the “aggregated branch 
length ( )dal r r ”, which is defined as the sum of the lengths of vessel branches in a group sorted for radius in 
the range d 2r r±  where dr  is a minute change of radius. This length is expressed in the following power 
function of r  with fractal dimension D , 

( )

( )

1

2 2

d d ,
2

π

D
a v

v o D D
o t

l r r k r r
Dk V

r r

− −

− −

=

−
=

−
        (11) 

Here, oV  is the total volume of blood in the tree, while or  and tr  are the radii at the origin and terminals, 
respectively. These parameters are well documented in human physiology [11] and widely generalized to other 
mammals using power laws in terms of body weight ( )bw  (allometric rule) [12], as shown in Table 2. In 
Equation (11), the constant vk  is a coefficient with dimension of length and is equal to λκ  in A-5 in the Ap-
pendix. The value of the fractal dimension D  for the systemic arterial tree has also been estimated to be 

1.75D ≈  in our preceding study [9]. 
From Equations (10) and (11), the magnitude of mechanical power elicited by VSMC in branches having radii 

within a minute range, d 2r r±  is given by ( ) ( )2π dm aw r rhl r r⋅ . Then, the integrated amount of power 
( )1 2,mW r r , generated by VSMC in the vessels within a given range of radii, 1 2r r r≤ ≤ , is expressed as follows: 

( ) ( ) ( ) ( ) ( )2 2

1 1

1 3
2 21 2 0, 2π d 2π d ,

Dr r
m m a m vr r

W r r w r rhl r r h k k r P r r
θ

φ ε
−

−
= ⋅ =∫ ∫

     (12) 

provided the value of ε  remains constant within the range. 
The integral in Equation (12) may not be solved analytically but when appropriate data for the involved pa-

rameters are available, a numerical solution may be found. In such numerical integrations, we need to employ a 
logarithmic transformation of the variable r  as ( )( )ln tz r r=  (see Appendix). 

3. Results 
Figure 2(a) shows distributions of myogenic power ( )mw r  generated by VSMC per unit wall mass along the 
vascular radius r . They were calculated from Equation (10) for four different levels of the strain ε  using the 
parameters in Table 1 and human data in Table 2 for 65 kgbw = . For all ε  levels, ( )mw r  values decreases 
monotonically with increasing radii. The curves of ( )mw r  shift lower levels as ε  increased. 

Figure 2(b) contains the results of the fractal integrals for ( )mw r  from Equation (11) using the same human  
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(a) 

 
(b) 

Figure 2. (a) Distributions calculated from Equation (10) for myogenic power expen-
diture per unit wall tissue mass ( )mw  as functions of vascular radius r  for four 

levels of strain ( )ε ; (b) Fractal integrals calculated from Equation (12) for myogenic 
power over four ranges of vessel radii (segment I, II, III and IV). Calculations based 
on data in Table 2 for human with body weight, 60 - 70 kg.                       

 
Table 2. Values of body weight ( )bw  dependent parameters in human ( )65 kgbw =  and in rat ( )0.18 kgbw =  em-
ployed in the analyses [4] [12].                                                                           

Parameter Allometric equations Data in human Data in rat 

Arterial radius at origin ( )osr  0.330.26os br w=    1.03 cm 0.147 cm 

The coefficient in Equation (3) ( )0h  0.104
0 0.13 bh w=    0.201 cm 0.109 cm 

The arterial blood volume under vasodilatation ( )osV  ( )1.02730 65os bV w =   730 cm3 1.80 cm3 

The oxygen consumption rate of the whole body at rest ( )2OV  
2

1 0.793
O 4.28 10 bV w− = × 
  11.7 mlO2/s 0.11 mlO2/s 
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data as that used for Figure 2(a). The radius ranges for the integrals ( )1 2r r r≤ ≤  were clustered into four sec-
tions: section I 0.0004 - 0.001 cm, (II) 0.001 - 0.01 cm, (III) 0.01 - 0.1 cm and (IV) 0.1 - 1 cm. At each level of 
ε , values of the segmental integrals ( )1 2,mW r r  were larger in the section II than those in the other sections.  

Results corresponding to those in Figure 2 are also calculated using the rat data in Table 2 with 0.18 kgbw ≈  
and are shown in Figure 3. The values of ( )mw r  in Figure 3(a) for rat are larger than those in Figure 2(a) for 
human. However, the results for segmental integrals in Figure 3(b) demonstrate that the absolute values of 

( )1 2,mW r r  for rat are approximately 1/100 of those in Figure 2(b) for human. The values of section II are also 
larger than those in the other sections, although the section IV is lacking in Figure 3(b).  

Based on present and reported data, we now try to estimate the coefficient between oxygen consumption rate 
and myogenic power expenditure due to VSMC. Using the fluorescence quenching method, Shibata et al. [7]  

 

 
(a) 

 
(b) 

Figure 3. (a) Distributions from Equation (10) for myogenic power 
expenditure per unit wall tissue mass ( )mw  as functions of vascular 

radius r  for four levels of strain ( )ε ; (b) Fractal integrals from 
Equation (12) for myogenic power over three ranges of vessel radii 
(segment I, II and III). Calculations based on data in Table 2 for rat 
with body weight 160 - 200 g.                                          
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measured the oxygen tension 
2OP  in arteriolar blood and surrounding tissue in the rat cremaster muscle 

( )160 200 gbw =  . Then, they utilized the measured 
2OP  to evaluate the oxygen consumption rate 

2Oq  at 
arteriolar wall per tissue mass per time. Under normal conditions and during vasodilatations induced by topical 
application of papaverine, the averaged values of 

2Oq  were reported to be 21.87 10−×  and  
( )( )2

20.84 10 mlO s g−× ⋅ , associating the averaged changes in the internal diameter from 102 µm to 119 µm.  
The differences in the two 

2Oq  values gives the oxygen consumption rate due to VSMC ( )2Oq∆   only and 
the changes in diameter suggest that the strains under normal and dilated conditions were from Equation (2), 

0.45ε =  and 0.7sε = . Then, the myogenic power expenditure ( )mw  can be assessed from Figure 3(a) as 
approximately ( ) ( )815 10 dyn cm g s× ⋅ ⋅ . Therefore, the coefficient of oxygen consumption rate per myogenic 
power expenditure ( )2O mq w∆    is estimated as, 

( ) ( )
( ) ( )2

2
O 2 12

28

1.87 0.84 10 mlO g s
6.9 10 mlO dyn cm

dyn cm g s15 10m

q
w

−
−∆ − × ⋅

= ≈ × ⋅
⋅ ⋅×





           (13) 

4. Discussion 
In evaluating the myogenic power expenditure due to VSMC and performing its fractal integration leading to the 
results in Figure 2 and Figure 3, a number of assumptions were introduced. One of the major hypotheses, which 
was used being in the quasi-static constriction of vascular wall in Figure 1, was that the hydrostatic pressure in-
side the vessel was assumed constant regardless of the extent of strain, ( ) ( )sP r P r= . As described in the Ap-
pendix, this condition can be achieved in large arteries by controlling the blood flow rate through each branch 
according to ( ) ( )1 1b bs sF F ε ε= + +  (see (A-18)). However, in small arteries near terminals, it is not clear that 
the above regulation of blood flow rate is adequate, because blood viscosity becomes tube-radius dependent in 
small vessels (see (A-14)). Figure 4 shows calculated results for blood pressure profiles based on (A-17) at 
three different levels of strain, 0.3, 0.5 and 0.7ε = , with blood flow control according to (A-18). The results in 
the figure reveal no discernible differences in ( )P r  due to ε  levels (the maximum, 1.8 mmHg), suggesting 
that the blood pressure profile along the arterial tree is practically constant as hypothesized, so long as blood 
flow rate is regulated as indicated by (A-18). 

The other major hypothesis used in the present calculations is that not only such univocal parameters as 
, , , , , , ,s Dε ε θ γ µ δ∞  and α  but also body weight dependent parameters such as, 0 , , , ,m o vh k V k  and 

2Oq∆   
were considered to be individually fixed, uniform constants that were evenly assigned to all branches of the en-
tire systemic arterial tree regardless of the vascular size. This presumption of uniform parameters irrespective of  

 

 
Figure 4. Profiles of blood pressure, ( )P r , plotted against vascular radius 

r  for three different levels of strain, 0.3ε = , 0.5 and 0.7. Pressures were 
calculated from (A-17) under the blood flow control based on (A-18) using 
human data in Table 2. The maximum pressure difference due to ε  values 
at the same standard radius ( )sr  was 1.8 mmHg.                         
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large and small vessels is a very bold assumption that apparently over-simplifies the physiological situations.  
Nevertheless, we try to assess the total amount of oxygen consumption rate, 

2OV∆   due to VSMC in the en-
tire systemic arterial tree in rat, by utilizing the converting coefficient, 

2O mq w∆    obtained in the Results. The 
allometric equation in Table 2 and strain level, 0.45ε =  suggest that the radius of the aorta in rat with 

0.18 kgbw =  is estimated 0.125 cmor =  whereas the terminal radius is 44 10 cmtr
−= ×  regardless of body 

size. Therefore, the total myogenic power cost due to VSMC ( ),m t oW r r  is calculated from Equation (12) as 
( ) 8, 29.1 10 dyn cm sm t oW r r = × ⋅  for 0.45ε = . Consequently, total oxygen consumption rate due to VSMC in 

the whole systemic arterial tree 
2OV ∆ 
  is calculated as,  

( ) ( )
( ) ( )

2

12 8
O 2

2
2 2

6.9 10 mlO dyn cm 29.1 10 dyn cm s

2 10 mlO s 0.02 mlO s

V −

−

∆ = × ⋅ × × ⋅  
= × =



                 (14) 

We now compare the result in Equation (14) with the total oxygen consumption rate for the whole body in rat, 
2OV  in Table 2, which is given as ( )20.11 mlO s  at rest [4]. These data indicate that 

2OV∆   due to VSMC 
only amounts to approximately 18% of the whole body oxygen consumption rate, 

2OV  and might exceed the 
cardiac oxygen consumption rate via the coronary circulation, which is estimated to be about 10% of 

2OV  at 
rest [5] [11]. Although the above ratio 

2 2O OV V∆    may vary according to the extent of arterial wall constric-
tions, it is clear that the oxygen consumption due to VSMC should be taken into account as an indispensable 
factor in cardiovascular energetics. 
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Appendix  
A summary of our preceding study [9] on fractal-based assessments of morphological and functional properties 
of the vascular system. 

For a vascular system characterized by a fractal branching architecture, the probability ( )rΦ  that a vessel 
branch has a radius larger than r  is observed in a certain tissue region is proportional to a power function of r  
with exponent ( )D− . The probability can be written in terms of its probability density function ( )rϕ  as fol-
lows:  

( ) ( ) ( ) 1d , ,orD D
D Dr

t o

Dr r r r r r
r r

ϕ ϕ κ κ− − −
− −Φ ∝ = = =

−∫        (A-1) 

Here, D  represents the fractal dimension of the branching system and or  indicates the maximum radius at 
its origin. The coefficient κ  is given as above, because the minimum radii at the terminals ( )tr  are known to 
be uniform [12]. 

To intuitively perceive the fractal-based integrations of the morphological properties in the vascular system, 
we introduce a term “aggregated branch length” which is defined as the sum of branch lengths of vessels in a 
group sorted by radius around r  within a certain minute deviation, dr . Evidently, the longer the aggregated 
branch length in a tissue region is, the more frequently the vessels in the group are observed in it. This linear re-
lationship is simply expressed by employing the density function of the aggregated length, ( )al r , as follows:  

( ) ( )d dal r r r rλϕ=         (A-2) 

where λ  is a scale factor with the dimension of length. 
From (A-1) and (A-2), the aggregated branch length L∆ , surface area S∆ , and content volume V∆  within 

a certain range of radii, 1 2r r r≤ ≤  can be written as 

( ) ( )2

1
2 1d

r D D
ar

L l r r r r
D

λκ − −∆ = = −
−∫        (A-3) 

( ) ( )2

1

1 1
2 1

2π2π d
1

r D D
ar

S rl r r r r
D
λκ − + − +∆ = = −

− +∫      (A-4) 

( ) ( )2

1

2 2 2
2 1

ππ d
2

r D D
ar

V r l r r r r
D
λκ − + − +∆ = = −

− +∫      (A-5) 

It is now apparent that a segmental integral, Q∆  of any density function of radius ( )q r  for a range 1 2r r r≤ ≤   

can be expressed as, ( ) ( )2

1
d

r
ar

Q q r l r r∆ = ∫ . 

The expectation value of the aggregated branch length ( )aL r  at r  can be obtained from (A-3) based on 
logarithmic sectioning of the r  axis as, 

( ) D
aL r rλκ −=        (A-6) 

On the other hand, Suwa and Takahashi [10] have established that the relationship between branch length bL  
and radius ( )r  in an arterial system can be expressed as 

( )bL r rαβ=        (A-7) 

In various vascular systems, the values of the exponent α  are clustered around 1.0. Then, the branch num-
ber ( )bN r  is given by 

( ) ( )
( )

D
a D

b
b o

L r rN r r
L r r

α
αλκ

β

− −

− −  
= = =  

 
            (A-8) 

where or  is the radius at the origin, implying that ( ) 0 1D
b oN r r αλκ

β
− −= = , because the branch number at the 

origin is one. 
Since the radii of terminal branches tr  are uniform in the ordinary arterial system, the number of terminals is 

given by ( ) ( ) D
b t t oN r r r α− −= . For the vascular system, it is well known that when a mother branch of radius 
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0r  is divided into two daughter branches of radii 1r  and 2r , they are related, with a small deviation, by a 
common exponent m , 

0 1 2
m m mr r r= +        (A-9) 

This widely substantiated relationship is known as the “empirical power law of the vascular branching” [1] [8] 
[14] and the value of m  has been confirmed to be nearly but less than three. Note that the terminal numbers of 
individual trees originating from the mother and daughter branches are also related as, 

( ) ( ) ( )0 1 2 0 1 2orD D D D D D
t t tr r r r r r r r rα α α α α α− − − − − − + + += + = +       (A-10) 

By comparing (A-9) and (A-10), we have, 

m D α= +        (A-11) 

Thus, the exponent m  of the empirical power law in the arterial system and its fractal dimension D  are 
directly connected, with the exponent α  of the branch length-radius relationship. 

In addition, the expression ( ) ( ) m
b oN r r r −=  in (A-8) renders similar formulations for cross-sectional area 

( )cA , mean flow velocity ( )mU , individual branch flow ( )bF  and wall shear rate ( )wγ  as functions of 
or r  or tr r : 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 22

2 2

3 33

π ;

;

;

4 π ;

m m
c b co o ct t

m m
m bo c mo o mt t

m m
b bo b bo o bt t

m m
w b wo o wt t

A r r N r A r r A r r

U r F A r U r r U r r

F r F N r F r r F r r

r F r r r r r rγ γ γ

− + − +

− −

− −

= = =

= = =

= = =

= = =  

    (A-12) 

Here, coA , moU , boF , and woγ  and ctA , mtU , btF , and wtγ  are the constant values of the individual 
parameters at the origin and terminals, respectively. 

The profile of the blood pressure ( )P r  is another important variable for fluid dynamics in the vascular sys-
tem. The Hagen-Poiseuille law states that the pressure drop bP∆  against the branch flow bF  along a branch of 
radius ( )r  and length ( )bL  is, 

( ) ( ) ( )4

8
π

b
b b

r F r
P L r

r
µ

∆ =        (A-13) 

Here, ( )rµ  is the radius-dependent blood viscosity, which has been found by Haynes [15] to be well ap-
proximated by,  

( )
( )21

r
r

µ
µ

δ
∞=

+
        (A-14) 

where µ∞  is the viscosity in large vessels and δ  is a constant comparable with the size of red blood cells  
(see Table 1). Since we have ( ) 1d dbL r r rαβα − =   from (A-7) and ( ) ( ) ( )b b bP r L r P L r∂ ∂ = ∆  from (A-  

13), the pressure gradient in the vascular system against branch radius, ( )d dP r r , can be written as, 

 
( ) ( )

( ) ( )

23

2

d d 8
,

d d π

m
b bo

p p
b

P r L r FP rk k
r r L r r

α αβ µ
λκδ

+ −
∞∆

= = ± =
+

    (A-15) 

The symbol ± corresponds to the arterial and venous sides, respectively. In general, the pressure profile 
( )P r  is obtained by binominal integration of (A-15). However, in our preceding studies [9], we tried curve- 

fittings of mean flow velocity ( )mU r  in (A-12) to in vivo data measured in the peripheral vascular beds of the 
rat mesentery [16] and found that 1.75D =  is the most reliable estimate of the fractal dimension D  for the 
systemic arterial tree. We also know that 1.13α =  in Table 1 is a reliable estimate by Suwa and Takahashi 
[10]. These two give ( ) 2.88m D α= + = . When these values are substituted into the exponent of r  in the de- 
nominator of (A-15), we have [ ]3 1.01 1m α+ − = ≈ , indicating that (A-15) can be approximated as, 
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( )
( ) ( )2

d 1 1
d p

P r
k

r r r
δ

δ δ

 
≈ ± − 

+ +  
       (A-16) 

By integrating the approximation (A-16), we have a simple analytical equation for blood pressure profile 
( )P r  as shown below. 

( ) 1 1ln ,

,
1 1ln

t p
t t

o t
p

o

t o t

rP r P k
r r r

P P
k

r
r r r

δ δ
δ δ δ

δ
δ

δ δ δ

    +
≈ ± + −    + + +     

−
± =

   +
+ −   + + +   

     (A-17) 

where oP  indicates the blood pressure at the origin while tP  is the pressure at the terminals. Under normal 
physiological conditions, tP  is usually regulated to be uniform. The parameter pk  is constant with dimen-
sions of pressure. This expression of ( )P r  has also been confirmed to mimic in vivo data of pressure profiles 
measured in the peripheral vascular beds of the rat mesentery [16], both at the arterial and venous sides [9]. 

Another issue to consider about the blood pressure profile ( )P r  is the assumption of constant blood pres-
sure ( ) ( )sP r P r=  during the quasi-static constricting process due to VSMC, which has been introduced to 
deduce Equation (7) for the myogenic active stress mσ . To achieve such a constant pressure situation over the 
entire vascular tree, it is necessary to maintain the pressure drop per unit length constant in each branch regard-
less of the strain (ε ). According to Poiseuille’s law in (A-13), this condition is expressed as, 

( )
( )

4

4 1b s b

bs s bs

rP r F
P r Fr

µ
µ

∆
= =

∆
 

In relatively large vessels where ( ) ( ) 1sr rµ µ ≈  , this condition is satisfied by adjusting the blood flow 
rate according to 

44

4

1
1

b

bs ss

F r
F r

ε
ε

 +
= =  + 

        (A-18) 

In small vessels in which the tube radius-dependency of viscosity is more evident ( ,r δ≈  ( ) ( ) 1sr rµ µ < ), 
changes in blood flow according to (A-18) may not guaranty a constant pressure profile. Figure 4 shows the re-
sults of the numerical calculations of ( )P r  by (A-17) for varied strain ( )ε , associated with the changes in 
blood flow ( )bF  according to (A-18), which revealed actually no discernible shifts in the profile (maximally 
1.8 mmHg), even in very small arteries. 
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