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Abstract

The nullity of a graph is the multiplicity of the eigenvalue zero in its spectrum. In this paper we
show the expression of the nullity and nullity set of unicyclic graphs with n vertices and girth r,
and characterize the unicyclic graphs with extremal nullity.
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1. Introduction

Let G=(V,E) be asimple undirected graph with n vertices. The disjoint union of two graphs G, and G; is
denoted by G, UG, . The null graph of order n is the graph with n vertices and no edges. As usual, the star, path,
cycle and the complete graph of order n are denoted by S,, P,, C, and K,, respectively. An isolated vertex is
sometimes denoted by Kj.

Let A(G) be the adjacency matrix of G. The eigenvalues A, 4,,---,4, of A(G) are said to be the eigenvalues
of G, and to form the spectrum of this graph. The number of zero eigenvalues in the spectrum of the graph G is
called its nullity and is denoted by #(G). Let r(G) be the rank of A(G). Clearly, 7(G)=n-r(G).

A graph is said to be singular (nonsingular) if its adjacency matrix A(G) is a singular (nonsingular) matrix.

In [1], L. Collatz and U. Sinogowitz first posed the problem of characterizing all graphs which satisfying
1n(G) > 0. This question is of great interest in chemistry, because, as has been shown in [2], for a bipartite graph
G (corresponding to an alternant hydrocarbon), if »(G)> 0, then it indicates the molecule which such a graph

represents is unstable. The nullity of a graph is also important in mathematics, since it is related to the singulari-
ty of A(G). The problem has not yet been solved completely. Some results on trees and it’s line graphs, bipartite
graphs, unicyclic graphs, bicyclic graphs and tricyclic graphs are known (see [3]-[14]). For details and further
references we see [15] [16].

A unicyclic graph is a simple connected graph in which the number of edges equals the number of vertices.
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The length of the shortest cycle in a graph G is called the girth of G, denoted by g(G). If G is a unicyclic
graph, then the girth of G is the length of the only cycle in G.

Let U, be the set of all unicyclic graph with n vertices and let U(n, r) be the set of all unicyclic graphs with n
vertices and girth r. A subset N of {0, 1, 2, ..., n} is said to be the nullity set of U(n, r) provided that for any keN,
there exists at least one graph U e U(n,r) suchthat »(U)=k,andnok ¢ N satisfies this property.

A matching of G is a set of independent edges of G, a maximal matching is a matching with maximum possi-
ble number of edges. The collection of all maximal matching is denoted by M(G), for any M e #(G), the size
of M, i.e., the maximum number of independent edges in G, is denoted by m=m(G). If n is even and
m=n/2, then we call the maximal matching a perfect matching of G, shot for PM.

It is difficult to give an expression of the nullity of a graph, so many papers give that the upper bound of the
nullity of some specific graphs and characterized the extremal graphs attaining the upper bound (see [6] [9] [11]
[12] [14] [17]). For the trees we know the following concise formula:

Theorem 1.1 [3] If tis a tree with n vertices and m is the size of its maximal matchings, then its nullity is
equalto n(T)=n-m.

Theorem 1.1 impliesto 7(T)=0 ifand onlyif T is a PM-tree.

In this paper we show the expression of the nullity and nullity set of unicyclic graphs with n vertices and girth

r, and characterize the unicyclic graphs with extremal nullity. For terminology and notation not defined here we
refer to [3].

2. Some Lemmas

The following lemmas are needed, Lemmas 2.1 and Lemma 2.3 are clear.
Lemma 2.1 Let H be an induced subgraph of G. Then r(H)<r(G),
Lemma 2.2 Let H be an induced subgraph of G. Then 7»(G)<#n(H).
Proof. (G)=n-r(G)<n-r(H)=n(H).

t
Lemma2.3Let G=G,UG,U---UG,,then »(G)=>7(G),
i=1

where G,,G,,---,G, are connected components of G.

Lemma 2.4 [14]

(C ) n-2, if p=0(mod4);
r =

*7n, if p=0(mod4).
Let U ev(n,r),ifr=n, then by Lemma 2.4 we have

Lemma 2.5
2, ifn=0(mod4);
0, if n=0(mod4).

n(Cn)=n—r(Cn)={

So we discuss that r < n in the following unicyclics. Let Uy(n, r) be the set of all unicyclic graphs with n ver-
tices and girth r and r < n, let Ug 1(n, r) be the subset of Uy(n, r) with odd girth r and let Uy »(n, r) be the subset
of Up(n, r) with even girth r, clearly v (n,r)=1,(n,r)U{C,} and U, (n,r)=1,,(nr)Uv,,(n,r).

Lemma 2.6 [3] For a graph G containing a vertex of degree 1, if the induced subgraph H (of G) is obtained by
deleting this vertex together with the vertex adjacent to it, then the relation »(H)=7(G) holds.

The characteristic polynomial of graph G is denoted by

n

#(G,x) =det(xI —-A(G)) =Y cx"" 1)

i-0

n

Lemma 2.7 [3] Let ¢(G,x)=>.¢;x"" . Then the coefficient of X" is

i-0

6=, (-1t @
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where the sum is over all subgraphs H of G consisting of disjoint edges and cycles, and having i vertices. If H is
such a subgraph then k(H) is the number of components in it and c¢(H) is the number of cycles.

Let i=n in (2), then ¢, = ZH(—l)k(H) 2™ where H is spanning subgraphs of G consisting of disjoint
edges and cycles.

3. Main Results

In [18], Ashraf and Bamdad considered the opposite problem: which graphs have nullity zero? Clearly, for a
graph G, 7(G)=0 ifandonlyif ¢, #0 and »(G)>0 ifandonlyif ¢, =0 in(1). So by (1) we have fol-
lowing theorem, that is

Theorem 3.1 For a graph G,

1) n(G)=0 ifand only if ZH(_l)k(H)ZC(H)?&O’
2) 7(G)>0 ifandonly if ZH(_l)k(H)ZC(H):O'

where the sum is over all spanning subgraphs H of G consisting of disjoint edges and cycles.
Proof. By (1) it is clear.
By (1) we know also that »(G)=n-i if and only if there exist ie{2,3,---,n}, such that ¢, #0 and

€, =C.,,=--=C, =0 (Notethat ¢, =1 and c, =0). So we have
Corollary 3.1 For a graph G, n(G):n—i:n—|V(H)| if and only if ZH(—l)k(H)ZC(H);tO for
V(H)|=i and 3, (<) 2™ =0 for V(H)[>i in(2).

Let U be a unicyclic graph with girth r, Let H be a subgraphs of U consisting of disjoint edges and cycles with
maximum possible number of vertices. Let H be the collection of all H. Since U is unicyclic graph, then H have

two types: C, U m(U -V (Cr )) P, and m(U)P,, where C, is induced subgraph of U and mP, is disjoint union of
m edges P, Let 7, ={C,UM(U-V(C))P,fc s and 7, ={m(U)R,} s, clearly #,Us, =7 and
7, =m(U).If r=0(mod2),then \V(C,Um(U-V(C,))R,)=](m(U)R,)=2m(U).

Since U doesn’t contains a subgraph G; consisting of disjoint edges and cycles, such that
V (G,)| > max{r+2m(U -V (C,)),2m(U )}, hence for |V (G, )|>max{r+2m(U -V (C,)),2m(U)},

Zel(—l)k(H) 2" =0 . S0 we have

Corollary 3.2 Let U be a unicyclic graph with girth r, then 7(G)= n—|V (H )| if and only if
3o (F1) 2 20, where [V (H)] = max{r+2m(U -V (C,)),2m(U)}.

Theorem 3.2 Let U e U, (n,r), then

n—max{r+2m(U -V (C,)),2m(U)}, if r=1(mod2);

n(U)= n-2m(U), if r=2(mod4);
n-2m(U), if r=0(mod4) and satisfies (i);
n—-2m(U)+2, if r =0(mod4) and satisfies (ii).

1) there exist M e (U ), for any r/2 edges in M, such that they not all belong to E(C,);

2) forany M e (U ), there exist r/2 edges in M, such that they all belong to E(C,).
Where C, is induced subgraph of U.
Proof. Let U e U, (n,r) and let C, be an induced subgraph of U. By Corollary 2.2, we only need to discuss

that ZHEﬂ(—l)k(H) 2°") whether equals zero. We give asign e,.e,,--,e, for the edges of C,, in nature order.

C,Um(U -V (C,))R,|=r+2m(U-V(C,)) isoddand |m(U)R,|=2m(U)

Case 1. r=1(mod2). Since
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iseven, r+2m(U -V (C,))=2m(U), henceeither H e, or H e, If r+2m(U-V(C,))>2m(U),
then H e, and H ¢ #,. Since forall H e 71, they have the same number of component, hence
3o (F) 2 20, where |V (H)[=r+2m(U -V (C,)).If r+2m(U-V(C,))<2m(U), then
(-1 21" 20, where |V (H)[=2m(U). Thus
n(U):n—max{r+2m(U —V(C,)),Zm(U)}.

Case2. r=2(mod4).

Subcase 2.1 There exist H, € 7, , where Hy =C, Um(U -V (C,))P,. In this case, the

H,=¢ UeU--Ue_Um(U-V(C,))P,=m(U)P, e #, 9 and

H,=e,Ue,U---Ue, Um(U -V (C,))P,=m(U)P, e 3, = # , where the m(U -V (C,))P, inHo, Hyand
H, are same, and we call H; and H, are conjugate subgraph of Hy. Since r/2 is odd, hence for any HeH, the
number of component of H have the same odevity, hence ZHE}[(—l)k(H) 2" 20, where |V (H )| =2m(U).

Hes, and H ¢ ,. Similarly, )

Hex

Subcase 2.2 There doesn’t exist H € 7£,. In this case, since all H e, c 7 and they have the same
edges,

hence ZHE]{(—l)k(H)ZC(H) # 0, where |V(H)|:2m(U). So n(U)=n-2m(U).

Case 3. r=0(mod4) and there exist M e (U ), for any r/2 edges in M, such that they not all belong to
E(C.
Subcase 3.1 There exist HyeHy, where H, =C,Um(U -V (C,))P,. In this case, the

H,=e Ue,U---Ue,_,Um(U -V (C,))P,=m(U)P, e 7, 9 and
H,=e,Ue,U---Ue, Um(U -V (C,))P,=m(U)P, e 9, cH .Let 3" ={H,,H,H,}cs .For Hes,
we have
ZHE}[(_l)k( ( 1)l+m ( l)r/2+m(U—V(C,)) +(_1)r/2+m(U—V(C,))
= (-1)" 2+(—1)HmU Ve 220 '
Since we know that there exist M e a(U ), for any r/2 edges in M, such that they not all belong to E(C,),
hence we assume that M =H, (: (U ) Pz)e H, and for any r/2 edges in Hs, such that they not all belong to

E(C,). Except Hs, if there exist others H, € 7/, (i >4) and for any r/2 edges in H; (i > 4), such that they not all
belong to E(C,), then we have

ZHeﬂ(_l)k(H) ZC(H) _ (_1)l+m(U -V(Cy)) 2+(_1)r/2+m(u -V(Cr)) +(_1)r/z+m(u—v(c,))
+(—1)m(u) +(—1)m<u) oo
= (—1)m(u) +(—1)m(u) +--20
and [V (H)[=2m(U),s0 5(U)=n-2m(U).
Subcase 3.2 There aren’t exist H e/, . In this case, similar to Subcase 2.2 of Case 2, we have

n(U)=n-2m(U).
Case 4. r = 0(mod 4) and for any M e (U ), there exist r/2 edges in M, such that they all belong to E(C;).

In this case, for any M =H, e, let H, :e{Ue§U~~Uer’/2Um(U -V (C,))Pz, where e/ (i=1,2,---,r/2)
is independent edges in C,. For the same m(U -V (C, )) P, with Hy, let
H,=¢,,Ue,.,U--UeUmU-V(C,))P, and H,=C,Um(U-V(C,))P,, where e, (i=12,r/2)

is also independent edges in C,, then H, € %, and H, € 7. In fact, in this case for any one H'e %, , there
exist a conjugate graph H"(e #f,) of H’, such that H e #1;, where H" and H" are conjugate subgraphs of H,

that is V(H)=V(H')=V(H") and E(H)=E(H")UE(H"). Similarly, for any one H e, it corres-
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ponding two conjugate subgraphs H',H" € %, . So
ZHEH(_l)k(H) 20(H) _ (_1)1+m(U -V(Cr)) 2 +(_1)r/2+m(U—V(Cr)) +(_1)r/2+m(U -V(Cy)) -

where |V (H)|=2m(U). Since zHeﬂ(—l)k(H) 2" =0 if V(H)|=2m(U), thus we consider the subgraph
H of U consisting of disjoint edges and cycles, and having m(U) — 1 edges. Clearly there exist a
(m(U) - 1)-matching, such that there exist r/2 — 1 edges belong in E(C,) and m(U -V (Cr )) edges belong in

U -V (C,). Similar to Case 3, ZHE}[(—l)k(H) 2°") 20, where |V (H )| =2(m(U)-1).so
n(U)=n-2m(U)+2.

Let C, be a cycle and let P,_, be a path. Suppose that v is a vertex of C, and u is a pendant vertex of P,_,.
Joining v and u by an edge, the resulting graph (Figure 1) is denoted by U(r, n—r).
n-r-1, if r=1(mod2);
n-r, if r=0(mod?2).

Proof. Since r <n, hence U contains an induced subgraph U(r, 1) (see Figure 1).
Case 1. r=1(mod2). In this case, by Theorem 2.2 we have

7(U (r,2)) =n—max{r+2m(U (r,1)-V (C,)),2m(U (r-1))} =n—2m(U (r-1)) = n—r -1, by Lemma 2.2 we
have n(U)<n-r-1.

Case 2. r=0(mod2). Inthiscase, if r=2(mod4), by Theorem 2.2 we have
n(U(r1))=n-2m(U(r.1))=n-r. If r=0(mod4), then there exist M e (U (r,1)), such that the pen-
dant edge belong to M, that is for any r/2 edges in M, it not all belong to E(C,), so
n(U(r1))=n-2m(U(r,1))=n-r, by Lemma2.2we have n(U)<n-r. O

Let r=3 ifrisoddand letr =4if ris even in Corollary 2.3, and combine to Lemma 2.7 we have
Corollary 3.4 [18] Forany U e ¥, (n>5), n(U)<n-4.

Corollary 35 Let U e, (n,r),then »(U)=0 ifand onlyifnisevenand U contains PM or n is odd and
U -V (C,) contains PM.

Proof. Let U € U,, (n,r), where r is odd.

Corollary 3.3 Let U €U, (n,r), then n(U)g{

“=If 5(U)=0,then by Theorem 2.2 we have max{r +2m(U -V (C,)),2m(U )} =n.
Case 1. If niseven, then 2m(U)=n, U contains PM.

Case 2. If nis odd, then r+2m(U -V (C,))=n, 2m(U-V(C,))=n-r, U-V(C,) contains PM,

o

Case 1. If n is even and U contains PM, then max{r+2m(U -V (C,)),2m(U )} =2m(U)=n, by Theorem
2.2, 5(U) =0.

Case 2. Ifnisodd and U -V (C,) contains PM, then
max{r+2m(U -V (C,)),2m(U )} =r+2m(U -V (C,))=r+(n-r)=n, by Theorem2.2, »(U)=0. O

Corollary 3.6 Let U eU,,(n,r), then »(U)=0 if and only if n=2(mod4) and U contains PM or
n=0(mod4) and U contains PM, and for any r/2 edges in the PM, such that they not all belong to E(C;).

U(r,n-r) ur1)
Figure 1. The unicyclic graph U(r, n — r) and U(r, 1).
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Proof. Let U e U,,(n,r), where r is even.

“>"If n(U)=0, then by theorem 2.2 we have n-2m(U)=0 or n-2m(U)+2=0.If
n—2m(U)+2=0, then m(U)=n/2+1, a contradiction. So we have n-2m(U)=0, U contains PM. Since r
is even, hence r=2(mod4) or r=0(mod4).If r=0(mod4), then there exist PM, for any r/2 edges in the

PM, such that they not all belong to E(C,). Otherwise, by Theorem 2.2 we have n—2m(U)+2=0, a contra-
diction.

w“w, n

<=
Case 1. If r=2(mod4) and U contains PM, then by Theorem 2.2 we have »(U)=n-2m(U)=0.

Case 2. If r=0(mod4) and U contains PM, and for any r/2 edges in the PM, such that it not all belong to
E(C,), then by Theorem 2.2 we have »(U)=n-2m(U)=0.

An edge belonging to a matching of a graph G is said to cover its two end-vertices. A vertex v is said to be
perfectly covered (PC) if it is covered in all maximal matching of G [7].

Any vertex adjacent to a pendent vertex is a PC-vertex. However, there may be exist PC-vertices adjacent to
no pendent vertex. For instance, the central vertex in the path on an odd number of vertices is PC.

Let v, (i :1,2,~~~,fr/2]) be the PC-vertices of C,. Let U, be a graph is obtained from C,, by adding r;
(0<r <n-r) pendant edges in the PC-vertex v, (i=1,2,--,[r/2]) of Cy, respectively. Where

Zt/lﬂri =n-r>0. The degree of PC-vertices of U, needn’t equality, even for some PC-vertices, no pendant
vertex joint to the PC-vertex, but the sum of number of all pendant verticesisn—r. Forr=5and 6, an U; and
U, see Figure 2, the PC-vertices are indicated by numbers 1, 2, 3.

Let u/(n,r) be the setofall U/, where ris odd and let v;(n,r) be the set of all U/, where r is even.
Clearly v/(n,r)cv,,(n,r) and vU;(n,r)cv,,(n,r). Forany Ued/(n,r) (i =1, 2), the PC-vertices of

C, is also the PC-vertices of U, where C, is inducted subgraph of U.
Let d(v, G) denote the distance from a vertex v to the graph G, if veV(G), then d(v,G)=0.
Corollary 3.7 Let U e Uy, (n,r),then »(U)=n-r-1 ifandonlyif U ev/(n,r).

Proof. Since U e U, (n,r), hence ris odd.

“=>”Let U ety (nr),if »(U)=n-r-1,by Theorem 2.1 we have
max{r+2m(U -V(C,)).2m(U )} =r+1. Since r is odd, hence 2m(U)=r+1, m(U)=(r+1)/2, so for any
pendant v of U, d(v,C,)<2. Otherwise, m(U)z=(r+3)/2, a contradiction. If there exist at least one pendant
vertex vin U, such that d(v,C,)=2, then there exist at least one independent edge in U -V (C, ), so
max {r +2m(U -V (C,)),2m(U )} >r+2m(U-V(C,))2r+2, n(U)<n-r-2<n-r-1, a contradiction.
So for any pendant vertex of U, d(v,C,)=1. Since there exist (r+1)/2 PC-vertices in C,, if there exist pendant
edges for every vertices of C, in U, then max{r + 2m(U -V (C, )) 2m(U )} =2m(U)=2r >r+1, a contradic-

tion. Hence there exist pendant edges for part of vertices of C, in U. If there exist (r+1)/2 + 1 vertices in C, such
that every vertex have pendant edges, then max{r +2m(U -V (C,)),2m(U )} > 2[(r +1)/2+1] >r+1, a con-

tradiction. So there exist at most (r+1)/2 vertices, such that every vertex have pendant edges, that is all pendant
vertices of U joint to at most (r+1)/2 vertices in C,. In the neighbor vertices of all pendant vertices of U, if there
exist (r-1)/2 PC-vertices and one non PC-vertex of C,, then

max {r+2m(U -V (C,)),2m(U)} = 2m(U) = 2(m(U (r,1))+1) =2((r +1)/2+1) > r +1, a contradiction.
Thus all pendant vertices of U are joint to the PC-vertices of C,, thus U e v/(n,r).

“<”Let U ed(nr) (seeFigure 2), since ris odd, r+2m(U -V (C, )) =r and 2m(U)=r+1, hence
max{r +2m(U -V (C,)),2m(U )} =r+1, by Theorem 2.1, we have
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Us'

Figure 2. An U; and an Ug, its PC-vertices are indicated by
numbers 1, 2, 3..

7(U)=n-max{r+2m(U -V (C,)),2m(U)}=n-r-1. O

Let u be a vertex of C,, and let v be a k-degree vertex of Ky .. Joining u and v by a path P,, the resulting graph
is denoted by U(r, I, k + 1), where r+1+k=n.Whenl=2, we get U(r, 2, k + 1) (Figure 3).

For convenience, we call the star in U(r, 2, k + 1) is pendant star. Let U’(r, I, k) be a unicyclic graph come
from U(r, |, k + 1), by removing a pendant edge and adding it to another vertex of C,, where r + | + k = n (See
Figure 4).

Corollary 3.8 Let U ev,,(n,r), then n(U)=n—r if and only if U ev;(n,r) or U=U(r,2k+1)

and r=0(mod4)

Proof. Since U e, (n,r), hence r is even.

“>” Let U et,,(nr),if n(U)=n-r,byTheorem2.2 we have 2m(U)=ror 2m(U)-2=r.

Case 1. 2m(U)=r. In this case, since r is even, hence for any pendant v of U, d(v,C,)<1. Otherwise,
m(U)>r/2+1, a contradiction. For an edge uve E(C,), If uand v both have at lest one pendant edge in U,
respectively. Then m(U)>r/2+1, a contradiction. So all pendant vertices of U join to some PC-vertices of U,
thus U e U, (n,r).

Case2. 2m(U)—-2=r.Inthiscase m(U)=r/2+1,since ris even, hence for any one pendant v of U,
d(v,C,)<3. Otherwise, m(U)=>r/2+2, a contradiction.

Subcase 2.1. There exist veU, such that d(v,C,)=3. In this case, U(n, 3) (see Figure 1) is an induced sub-
graph of U, then there exist M e M(U (n,3)), such that the pendant edge belong to M, so for any r/2 edges in
M, it not all belong to E(C,), by Theorem 2.1 we have 7(U (n,3))=n-2m(U (n,3))=n-r-2, by Lemma 2.2,
n(U)<n(U(n,3))=n-r-2,acontradiction.

Subcase 2.2. There exist veU, such that d (v,C, )= 2. In this case, U(r, 2, k +1) (see Figure 3, specially take
k=0) is an induced subgraph of U, and only one vertex of U have only one pendant star. Otherwise

m(U)=>r/2+2, a contradiction. If there exist at lest one pendant edge in other one vertex of C,, the resulting
graph is denoted by U'(r, 2, k) (see Figure 4). Since there exist M em(U'(r,Z,k)), such that the two inde-

pendent pendant edges in (U'(r,2,k)) belong to M, we know that m(U ’(r,2, k)) =r/2+1, hence for any r/2
edges in M, they not all belong to E(C,), by Lemma 2.2 and Theorem 2.2 we have
n(U)<n(U'(r,2,k))=n-2m(U’(r,2,k))=n-r-2, a contradiction. So U =U(r,2,k+1) (see Figure 3).
If r=2(mod4), by Theorem 2.2 we have 7(U(r,2,k+1))=n-2m(U(r,2,k+1))=n-r-2, a contradic-

tion.So U =U(r,2,k+1) and r=0(mod4).
“<” Case 1. Let U e U, (n,r) (see Figure 2), since r is even, hence 2m(U)=r . If r=2(mod4), then by
Theorem 2.1 we have n(U)=n-2m(U)=n-r. If r=0(mod4), since r < n, hence U contains a induced

subgraph U(r, 1) (see Figure 1), fora M € m(U (r,l)), let the pendant edge of U(r, 1) belong to the M, then
the r/2 edges in M, not all belong to E(C,), by Theorem 2.2 we have n(U)=n-2m(U)=n-r.

Case 2. Let U =U(r,2,k+1) and r=0(mod4), then m(U(r,2,k+1)):r/2+1.Sinceforany
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U(r,Lk+1) U(r,2,k+1)
Figure 3. The unicyclic graphs U(r, I, k) and U(r, 2, k).

U(}’,l,k) U(}",Z,k)

Figure 4. The unicyclic graphs U'(r, I, k) and U'(r, 2, k).

U'(r,1,k+1)

Figure 5. The unicyclic graph U(r, 1, k + 1).

M e M(U (r,2,k +1)), there exist r/2 edges in M, such that they all belong to E(C,), by Theorem 2.1 we have

n(U(r.2k+1))=n-2m(U(r,2,k+1))+2=n-r. O

Letl=121inU(r, I, k+1) (Figure 3), we get the following graph U(r, 1, k +1) (Figure 5).
Theorem 3.3 The nullity set of Ug1(n, 1) is {0, 1, 2, ..., n-r-1}.
Proof. By Corollary 2.3, we only need to show that for each k €{0,1,2,---,n—r -1}, there exist a unicyclic

graph U e Uy, (n,r) suchthat (U )=k, whereris odd.
Case 1. k=0.Let U=U(r,n—r) (seeFigure 1).If n=1(mod2), using Lemma 2.6, after (n — r)/2 steps,
we get C,, by Lemma 2.6 and 2.5 we have 77(U (r,n— r)) =7(C,)=0.1f n=0(mod2), using Lemma 2.6, af-

ter (n — 2)/2 steps, we get a P,, by Lemmas 2.6 we have 7(U (n,r))=n(P,)=0.

Case 2. k=n-r-1. Let U=U(r,Lk+1) (see Figure 5), wherer+k+1=n, using Lemma 2.5, after
(r+1)/2 steps, we get kK, by Lemmas 2.3 we have n(U (r.1k +1)) =n(kK,)=k=n-r-1.

Case 3. 1<k<n-r-2.Let U=U(rIl,k+1) (see Figure 3), where r+l+k=n.If n=k(mod2), Us-
ing Lemma 2.6, after I/2 steps, we get C_UkK,, by Lemmas 2.3 and 2.5 we have
n(U)=n(C, UkK;)=n(C,)+n(kK,)=k . Similarly, If n=k(mod2), we have
n(U(r1k+1))=n(kK,) =k

Theorem 3.4 The nullity set of Upz(n, 1) is {0,1,2,---,n—r}.

Proof. Similar to Theorem 2.3, if |1 =1(mod2), we consider the graph U(r, I, k) with k pendants (see Figure 3
), where r+l+k-1=n.If 1=0(mod2), we consider the graph U'(r, I, k) with k pendants (see Figure 4),

where r+l+k=n.
If wetake r=3 inTheorem2.3and r=4 in Theorem 2.4, then we have the following Corollary:
Corollary 3.9 [18] The nullity set of U, is {0,1,2,---,n—4} .
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