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Abstract

Under the travelling wave transformation, some nonlinear partial differential equations such as
the Getmanou equation are transformed to ordinary differential equation. Then using trial equa-
tion method and combing complete discrimination system for polynomial, the classifications of all
single traveling wave solution to this equation are obtained.
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1. Introduction

Many problems in natural and engineering sciences are modeled by partial differential equations (PDE).
Looking for the solutions of the equation, especially the exact solutions, is very important. These exact solutions
can describe many important phenomena in physics and other fields and also help physicists to understand the
mechanisms of the complicated physical phenomena. Many mathematicians and physicists work in the field, and
a variety of powerful methods have been employed to study nonlinear phenomena, such as the inverse scattering
transform [1], the Backlund transformation method [2], the Darboux transformation [3], the homogeneous
balance method [4], the tanh function method [5], the exp-function method [6], the G'/G-expansion method [7],
and so on.

Recently, Professor Liu proposed a powerful method named trial equation method [8] [9] for finding exact
solutions to nonlinear differential equations. In this paper, I mainly use Liu’s trial equation method and the
theory of complete discrimination system for the fouth-order polynomial [10]-[12] to solve exact solutions of the
Getmanou equation which has already been solved based on discrimination system of the fifth-order polynomial
by Fan [13]. But as we can see, the solving process is very simple and clear with the trial equation method

How to cite this paper: Yang, L. (2014) Application of Trial Equation Method for Solving the Getmanou Equation. Applied
Mathematics, 5, 1463-1473. http://dx.doi.org/10.4236/am.2014.510139



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.510139
http://dx.doi.org/10.4236/am.2014.510139
http://www.scirp.org/
mailto:liyang120918@163.com
http://creativecommons.org/licenses/by/4.0/

L. Yang

combined with complete discrimination system for polynomial.

2. Application of Trial Equation Method

The Getmanou equation [12] reads as

+1uxUtZ —u(l—u2>=0. 1)
Or equivalently
(1—u2)uXt +uu, —u(l—uz)2 =0. )

Taking the traveling wave transformation u :u(§1) and & =kx+wt, we can obtain the corresponding
ODE

kw(l—uz)u”+ka)(u’)2—u5+2u3—u=0. (3)
we take the trial equation as follows
u"=a,+au+---+a,u". 4)

According to the trial equation method of rank homogeneous equation, balancing u?u” with u® gets
m=3.
Equation (4) has the following specific form

u"=au’+a,u’+au+a,. (5)
From Equation (5), we get
(u'y’ :%a3u4+§a2u3+alu2+2aou+d. (6)
Substituting Equations (5) and (6) into Equation (3), we have
ru’ +ru’ +nu’+nu®+ru+r =0. (7
where
I, = koa, +kad.

I, = koa, + 2kwa, 1.
r, =kwa, + kwa, —kwa,.

r, = kowa, +%ka)a.2 —kwa, +2. (8)

r, = %kcoa3 —kwa,.
I, = —koa, -1.

Let the coefficient ri(i :0,1,2,3,4,5) be zero, we will yield nonlinear algebraic equations. Solving the
equations, we will determine the values of a,,a,,a,,a,,d . We get

N SR SN BN DR B )
6k 3kw 2k ko 6k
When a, > 0, we take transformations as follows
1 1
we(3a [u+%j,§=(§a3)“ £ (10)
Then Equation (6) becomes
(w’)2 =W + pW’ +qQW+T. (11)
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where w is a function of £ and

1 1
i) ) o
P=2a Zae 3 233 285"

1 1 1
2 1 Y+ 4 4(1 Y4 4, 1 )+«
=——a| = a —| —a aya,” +2a,| — . 12
q 331(26‘3j 283 +27[2 3) 28 + ao(zasj (12)
2 4.1 2.2 1 4 3
r= _— a. —a,a ——a. .
8 3a° 28, +931 283 54 28,
When a, <0, we take transformations as follows
1 1
1 ) a, 1 )
w=| —= u+—=1|&=|-= . 13
ENIACAPEEN w
Then Equation (6) becomes
(W) = —(w* + pw” +qw-+r). (14)

where w isa function of ¢ and

) i) o
P="a| 5% 3l 2% 28 -

1 1
q=§a1(—%a3j 4aza31—2i7(—%a3] Aaiagz—Z%(—%aaj y (15)
r=-a, +§aoa2a3‘1 —éalaiagz +%a§‘a§3-
We write the complete discrimination system for polynomial F (W) =w'+ pw’ +qw+r as follows
D, =4,D,=-p,D, =8rp-2p*-99*,D, = 4p'r — p’g* + 36 prq* —32r?p’ —2747q4 +64r° E, =9g° -32pr. (16)
Then we consider the following ODE
(W’)2 = g(w4 + W +qw + r). 17)

where & =11. Rewrite Equation (17) by integral form as follows

i(g_io):_l'

dw

\/g(w“ + PW W) .

(18)

3. Classification of the Traveling Wave Solutions

According to the complete discrimination system for the fouth order polynomial, we give the corresponding
single traveling wave solutions to Equation (1).
Casel. D,=0, D,;=0, D, <0. Then we have

2

F(w)=[(w-L)" +s7] (19)
where |, and s, arereal numbers, s, >0.
When &=1, we have
w=s tan[s (£-&)]+1,. (20)

The corresponding solution is
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1 < 1 i a,
u:(aasj {sltan sl(zasj (5150)}&}@.

Case2. D,=0, D,;=0, D, =0.Then we have

F(w)=w"
When ¢ =1, we have
w=-— 1 :
(&-&)
The corresponding solution is
(1@;_
27) (4-4&) 3a

Case3. D,=0,D,=0,D,>0,E, =0. Then we have
F(w)=(w-a)" (w-5)"

where « and g arereal numbers, a > f.
When ¢=1
() If w>a or w< g, we have

W= ﬂ;a{cotha;ﬂ(é—go)—l}+ﬁ.

The corresponding solution is

(L VB @B Y (s eyl gl
u—(zagj { 5 {coth 5 (Zaej (&-&) 1},3} %,

(i) If a>w> B, we have

W=

ﬁ_a[tanh a—p

. . (g_go)_l}ﬂ.

The corresponding solution is

NETRE] VDY TE U0 P I
oo (3o) 5 e e e or] -

Case4. D,=0, D,>0, D, >0. Then we have
F(w) = (w-a)" (w-8)(w-7)

where «, £, y arereal numbers,and S >y .
When ¢=1
If a>p, w>p orif a<y, w<y,wehave

I b o (G e Cara a1

i(§—§0)= (a—ﬂ)(a—j/) In |W—a|

The corresponding solution is

(1)

(22)

(23)

(24)

(2%)

(26)

(27)

(28)

(29)

(30)

@31



fieg)] =

Jla=p)a-7)

@i)If a>p, w<y orif a<y, w<pg,wehave

o1 N ]
BN et w-df |

(33)
The corresponding solution is

i[%ag]‘l‘(é—r:o)

} (34)

(iii) If B> a >y, we have

1 L (W=p)(a-y)+(a-B)(W-r)
<E-&) = arcsin . (35)
N e e a5 7)
The corresponding solution is
1 i
i(zasj (§1_§0)
{[%ﬂw""2]—ﬂ}(a—y)+(a—ﬁ){[la3j‘l‘[u+""Zj—y (36)
1 2 3a, 2 3a,
= arcsin - .
J(B-a)a-y) (1 ] R
2a3 3a, 4
When ¢=-1
MIf a>p,w>p orif a<y,w<y, we have the corresponding solution is
eyt WA e A] -
(a-B)(a-7) w—al

The corresponding solution is
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+(E-&)= In (39)

The corresponding solution is

i(—%asji(él—éo)

Tl
3a3 V4 (40)

(i) If B >a >y, wehave

E-4)= ! arcsin A .
J(B-a)(a-7) (w=a)(8-7)

The corresponding solution is

(41)

1

i{—%aejA(fl—éo)

. | {(—;%J‘l‘{wij—ﬂ](a#ﬁ(a—ﬁ) (—;asj‘l‘(wij—y] 42)
:\/marCS"] ) % § _ .
[

Case5. D,=0, D,=0, D,>0, E,=0.Then we have

F(w)=(w-a) (w-p). (43)

where « and g are real numbers.
When ¢=1,if w>a, w>g orif w<a, w< /g, we have

da-p)
(a-B) (6-&) -4

1468

W= (44)
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The corresponding solution is

When ¢=-1,if w>a, w< g orif w<a, w> g, we have
Ape)
(a=p) (£-4) +4

The corresponding solution is

where « 1, and s, are real numbers.

When ¢ =1, we have
exp[i,l(a—l1)2+sf(5—50)}—7+ (a—ll)2+sf.
{exp[i./(a—ll)z s (5—50)}—7}2 1

W=

The corresponding solution is

1

+ (a—l1)2+slz(;%jA(fl—fo)]—y+ (a—L)+s

L exXp
z=) [ 1 z
2 {exp{k (a—Ly+s (;asjA(éléo)]V} 1

(a—1,) +8? '
Case7. D,>0, D,>0, D, >0.Then we have
F(w)=(w—a)(W-a,)(W—e)(W-a,).

where o, a,, o, and «, arereal numbers,and o, > o, > a; >0,.
When ¢=1
) If w>g, or w<a,,we have

=2l
where y = a- o

a, (oq —a, )sn? [\/(0!1 —a)(a, — ) (

W=

(az_“4)(

£-5&)m

(al —a,

)
2
)
5 —(ay—ay)

)Sn2 [\/(al —%

5_50)’mJ_0‘1(0‘2_0‘4)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)
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The corresponding solution is

RS
R
|
Q
F
e
:N
VR
=
K
|
K
)
Q
N
VY
N
&
N—
~
T
|
O
3
N——
|
R
?
I
Q
N

N |-

Q
S
—
R
|
K
&
:SN
VR
=
K
K
)
Q
N
VY
N~
&
N—
N~
T
I
O
3
N—
|
K
)
I
Q
N

When e=-1
(i) o >w>a,,wehave

W=

The corresponding solution is

(83)

(54)

(55)

(56)

(67)

(58)
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u=[-2a] 1 2 )

(a1_a2)(a3_a4)

(al_as)(az_‘h).

Case8. D, <0, D,D,>0.Then we have

F(w) = (w=a)(w=p) (w-1)" +s’ | (60)

where a, f, I, s arereal numbers,and o> g, s >0.
When &=1, we have

where m? =

—2sm, (a _ﬁ)
acn[ 2mm, (£-&) mJ+b
" (@5 )
-2sm (a—-p
ccn[ 2mm, (5—50),m]+d

. acn[2mml
u:(laSj ) [ —i. (62)

When &=-1, we have

W= : (63)

1 Vi 2mm,
u:(—E%j : = (64)
2sm(a—B)( 1
CC”[mel(—aaj (51—50)’”1]“1

where
Cza_ll—;—l,d =a—Il—slml,a=%[(a+ﬁ)0—(a—ﬁ)d],

' S 4 (a—1)(p-1)
sl(a_ﬂ) ,

b:%[(aJrﬂ)d—(a—ﬁ)c],E:

m =E+VE®+1,m’ = L ~.
1+m;

(65)
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We choose m, suchthat em, <0.
Case9. D, >0, D,D, <0.Then we have

F(w)=] (w1,)"+57 [ (w=1,)"+s7 ] (66)

where |, 1,, s, s, arereal numbers,and s >s,>0.
When &=1, we have

asn(n(£-&),m)+ben(n(£-&),m)

W= . (67)
csn(n(£-&),m)+den(n(&-&).m)
The corresponding solution is
1
1\ 1
L asn 77(2%]4(51 ,m [+ben| n Ea3 &-4&).m
1 V& a,
== . 68
(i) - -
csn n(zasj (&—-&).m[+den| Ea3 " —&),m
where
c=-s—2,d=1l-l,a=lc+sd,b=1d-sgc,
" (69)

2, 2 2
v (L mZc? +d?
:M,ml:E-H/Ez—l,mz21——12,77252 %
25152 m; c“+d

In Equations (21) (24) (27) (29) (32) (34) (36) (38) (40) (42) (45) (47) (50) (53) (55) (57) (59) (62) (64) and
(68), the integration constant &, has been rewritten, but we still use it. The classifications of all single traveling
wave solution to this equation are obtained.

4. Conclusion

In this paper, the trial equation method combined with complete discrimination system for polynomial has been
effectively used to solve the Getmanou equation. The obtained results emphasize that the method is completely
useful. With the same method, some of other equations can be dealt with.
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