
Applied Mathematics, 2014, 5, 1457-1462 
Published Online June 2014 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2014.510138  

How to cite this paper: Alabdali, F.M. and Bakodah, H.O. (2014) A New Modification of the Method of Lines for First Order 
Hyperbolic PDEs. Applied Mathematics, 5, 1457-1462. http://dx.doi.org/10.4236/am.2014.510138  

 
 

A New Modification of the Method of Lines 
for First Order Hyperbolic PDEs 
Fatmah M. Alabdali, Huda Omar Bakodah 
Department of Mathematics Science Faculty for Girls, King Abdulaziz University, Jeddah, KSA 
Email: vovo156@hotmail.com,  hbakodah@kau.edu.sa 
 
Received 20 March 2014; revised 20 April 2014; accepted 27 April 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
A new modification of the Method of Lines is proposed for the solution of first order partial diffe-
rential equations. The accuracy of the method is shown with the matrix analysis. The method is 
applied to a number of test problems, on uniform grids, to compare the accuracy and computa-
tional efficiency with the standard method. 
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1. Introduction 
The method of lines (MOL) or differential quadrature is one of the few techniques for solving partial differential 
equations (PDEs), which can be used successfully using computers. In the Numerical Method of Lines (NMOL) 
the PDE to be solved is transformed into a system of ordinary differential equations (ODEs) by discretizing all 
the independent variables but one [1]. 

In this paper, first order hyperbolic partial differential equations depending on time and one spatial variable 
will be considered 

0t xu vu+ =                                       (1) 

In the case of Equation (1) either t or x can be discretized, and the integration will be carried out along the 
remaining undiscretized independent variable. 

The technique consists of converting the PDEs into ODEs either by finite difference spline, or by weighted- 
residual technique, then integrating the resulting ODEs [2]. 

Finite differencing in the spatial variable led to a set of time dependent ODEs. The advantage of using MOL 
is that sophisticated software packages exist for the numerical solution of ordinary differential equations. These 
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software packages contain iterative method for handling non-linearities and feature automatic step-size adjust-
ment and integration order selection to maintain a specified error and to solve the problem with near optimal ef-
ficiency. 

Several recently software packages for automated method of lines solution of arbitrarily defined PDEs have 
been very successful, particularly for parabolic and elliptic PDE systems. 

We could improve the facilities for hyperbolic equations by incorporating an upwind weighted residual tech-
nique. This technique is similar to but superior to the use of an artificial viscosity term and could easily be used 
in any software package. Previous considerations of the MOL to solve PDEs have been geared to parabolic equ-
ation and generally used centered, second-order differences. Using these differences on hyperbolic equations can 
lead to unstable solution. To add stability, upstream (backward or forward) first-order differences could be used 
for the spatial discretization but these differences require the use of more grid points than central differences for 
a given spatial accord. An artificial dissipation (or viscosity) term is often added to a central differencing 
scheme to add stability but it is difficult to determine the magnitude of this term required for the stability and the 
effect of this term on the solutions. 

Other stabilizing techniques that have been employed in the explicit finite difference procedures are generally 
not applicable to the method of lines approach because they involve manipulation of terms in both the time and 
space discretization. 

In this paper, modified method of lines using a new three-point difference [3] is used. 
Use of this new differences leads to stable schemes with good accuracy. 
The method presented in this paper is attractive for hyperbolic, parabolic and elliptic partial differential equa-

tions. 

2. Method of Lines Approximations 
Consider the hyperbolic differential equation  

0, 0, ,t xu vu t x+ = ≥ −∞ < < ∞  
With initial conditions 

( ) ( )0,u t f x=                                       (2) 

( ) ( ),0u x g x=                                       (3) 

In order to apply the method of lines to Equation (1), the spatial derivative must be approximated; an equally 
spaced mesh ix i x= ∆  is used. 

We might consider using finite differences scheme in the calculation of xu , as in Ref. [1]. 

2.1. The Centered Difference  
If we consider the centered difference scheme of order two 

( )1 1d
, 1 1 1

d 2
i i iu u u

i n
x x

+ −−
= = −

∆
                              (4) 

So 

( )1 1d
, 1 1 1

d 2
i i iu u u

v i N
t x

+ −−
= − = −

∆
                            (5) 

In this case, we observed that the centered differences produce excessive numerical oscillation in the solution 
to Equation (1) because the eigenvalue of the system (5) is  

( )sin , 1jv k x j
x

λ  = − ∆ = − ∆ 
 

which is pure imaginary so the system is unstable. 

2.2. The Upwind Difference 
One approach for improving the numerical solution is based partly on physical reasoning (since the flow is left 
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to right or not), we might consider using upwind (or downwind) points in the calculation of xu . The simplest 
approximation that meets this requirement is the first order two-point upwind approximation. 

( )1d
, 1 1 1

d
i i iu u u

i N
x x

−−
= = −

∆
                           (6) 

These approximations eliminated the oscillation, but produced excessive numerical diffusion. 
Therefore, we might again consider the upwind approximation, but with more grid point. 

2.3. Good Spatial Discretization  
As in the Ref. [3] we can use new difference scheme in the calculation of xu  

( )

1 2 31

1 1

1 3 2 1

3 4d
d 2
d

, 2 1 2
d 2
d 4 3

d 2

i i i

N N N N

u u uu
x h
u u u

i N
x h
u u u u

x h

+ +

− − − −

− + −
=

− +
= = −

− +
=

                           (7) 

which leads to stable schemes with good accuracy. 

3. Analytical Treatment of Stability 
There are two standard methods of the finite-difference equation. In the first, we express the equation in matrix 
form and examine the eigenvalues of the associated matrix; in the other method, we use a finite Fourier series. In 
this section we shall use the first method. The analysis of eigenvalues of the system gives necessary conditions 
for the stability of discretization of the problem [4], which is should be real and negative values. 

If we consider Equation (1) with the discretization relation (5) then we get 

1u A u′ =  
where 1A  is  

1

0 1 0 0 0
1 0 1 0 0
0 1 0 1

2
1

0 1 0

rA
h

− 
 − 
 −

=  
 
 −
 
  





 

     

    

  

 

[ ]T1 2 1nu u u u −=   

Mathematically the difference scheme is stable if there exists a real positive eigenvalues. 
However, where 1A  is a tri-diagonal matrix, the corresponding eigenvalue sλ  of A  can be calculated 

from the relation. 

( )π2 cos , 1 1
1s

sa bc s n
n

λ = + =
+

 

where 0, 1  and  1a b c= = − = . 
Thus 

( )π2 1cos , 1 1
1s

s i n
n

λ = − =
+

 

which are pure imaginary values. 
So, we consider the non-centered formula approximation  
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[ ]1 1
1 3 4
2 i i i

u u u u
x h + −
∂

= − +
∂

 

with the matrix formula 

2u A u′ =  
where 

2

4 3 0 0 0
1 4 3 0
0 1 4 3

3
0 1 4

A

− 
 − 
 −

=  
 
 
 

−  











 

Thus the eigenvalues are given by  

( )π4 2 3 cos , 1 1
1s

s s N
N

λ = − + =
+

 

These values are real and negative, so the difference scheme is stable. 

4. Numerical Examples  
In this section, some examples are considered to show the efficiency of the method. 

4.1. Example (1) 
Consider the following advection equation  

0t xu u+ =  
With the conditions  

( )
( )

, sin π ,0 1

0, sin π , 0

u x o x x

u t t t

= ≤ ≤

= − ≥
 

With the analytic solution 

( ) ( ), sin πu x t x t= −  
In order to confirm the accuracy and efficiency of the method, the 2L  and L∞  error norms are used and de-

fined by  

( )
1
22

2

n
i

e a
i o

L h u u
=

 = −  
∑  

( ) ( )max i i
e aj

L u u∞ = −  

where eu  denote to the exact solution and au  denote to the numerical solution. 
In the Table 1 we examine various time step for the 2L  and L∞  error norms. 

4.2. Example (2) 
Consider the advection equation  

0t xL u uu∞ + =  
With the condition  

( ),0u x x=  
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And the exact solution 

( ),
1

xu x t
t

=
+

 

In Table 2 show the 2L  and L∞  error norms. 

4.3. Example (3) 
Consider the equation  

0t xu u u+ =  

and 

( ),0x x=  
with the analytic solution  

( ) 2, 0.5 4u x t t t x = − + +  
 

Table 3 produces the 2L  and L∞  for this problem. 
 
Table 1. L2 and L∞ norm for example 1 Δx = 0.1, Δt = 0.01.                                                       

L∞  2L  t  

0.00101545 0.000579369 0.01 

0.00233093 0.001187510 0.02 

0.00397634 0.001843540 0.03 

0.00598185 0.002564100 0.04 

0.00837779 0.003374820 0.05 

0.01119470 0.004286970 0.06 

0.01446333 0.005320205 0.07 

0.01821444 0.006492270 0.08 

0.02247890 0.007818590 0.09 

0.02728780 0.009315080 0.10 

 
Table 2. L2 and L∞ error norms for example 2 where Δx = 0.1, Δt = 0.01.                                            

L∞  2L  t  

2.56842 × 10−11 1.52351  0.1 

3.65622 × 10−11 2.16876 × 10−11 0.2 

4.02893 × 10−11 2.38985 × 10−11 0.3 

4.05249 × 10−11 2.40383 × 10−11 0.4 

3.90807 × 10−11 2.31851 × 10−11 0.5 

3.69000 × 10−11 2.18888 × 10−11 0.6 

3.44423 × 10−11 2.04302 × 10−11 0.7 

3.19589 × 10−11 1.89572 × 10−11 0.8 

2.95723 × 10−11 1.77415 × 10−11 0.9 

2.73389 × 10−11 1.62166 × 10−11 1.0 
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Table 3. L2 and L∞ error norms for example 3 with Δx = 0.1, Δt = 0.01.                                              

L∞  2L  t  

0.0003747 0.000127287 0.1 

0.0016946 0.000554666 0.2 

0.00400098 0.001288650 0.3 

0.00709063 0.002266350 0.4 

0.0106622 0.003395720 0.5 

0.0144267 0.004588350 0.6 

0.0181591 0.005774999 0.7 

0.0217072 0.006908320 0.8 

0.0249812 0.007959999 0.9 

0.0279372 0.008915340 1.0 

5. Conclusions 
In this paper, the modified method of lines is used to approximate the first order hyperbolic differential equation. 
Thus equations are one of the most difficult classes of PDEs to integrate numerically. To overcome this, we will 
suggest a modified MOL scheme. 

The results are in good agreement with the exact solution as shown in Tables 1-3. The presented method is 
attractive for hyperbolic, parabolic and elliptic equations. 
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