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Abstract 
This study is devoted to unbiased diffusion of point Brownian particles inside a tube of varying 
cross-section (see Figure 1). An expression for the mean survival time, τ, of the particles inside the 
tube is obtained in terms of the bulk diffusion constant, D0 and the system’s geometrical parame-
ters, namely, the tube’s axial semi-length, L, the minor radius, a, and the slope of the tube’s wall, λ. 
Our expression for τ correctly retrieves the limit behavior of the system under several conditions. 
We ran Monte Carlo numerical simulations to compute the mean survival time by averaging the 
survival time of 5 × 104 trajectories, with time step Δt = 10−6, D0 = 1, and L = 1. The simulations 
show good agreement with our model. When the geometrical parameters of this system are varied 
while keeping constant the tube’s enclosed volume, it resembles the problems of Narrow Escape 
Time (J. Chem. Phys. 116(22), 9574 (2007)). A previous study on the use of the reduction to effec-
tive one-dimension technique (J. Mod. Phys. 2, 284 (2011)) in complex geometries has shown ex-
cellent agreement between the theoretical model and numerical simulations. However, in this 
particular system, the general assumptions of the Hill problem are seemingly inapplicable. The 
expression obtained shows good agreement with our simulations when 0 ≤ λ ≤ 1, but fails when λ 
grows larger. On the other hand, some errors are found when a → 0, but the expression holds rea-
sonably well for a broad range of values of a. These comparisons between simulations and theo-
retical predictions, and the expressions obtained for τ, are the main results of this work. 
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1. Introduction 
The unbiased motion of point particles confined within quasi-one-dimensional systems, such as pores and chan- 
nels, has drawn great interest in recent years, due to the ubiquity of these systems in nature and technology [1]- 
[3]. The problem of spatially-constrained diffusion arises from different contexts of practical and theoretical in-
terest, and is relevant to nanotechnology, chemistry, and biology, having direct applications to channels such as 
pores in zeolites [4], carbon nanotubes [5], synthetic nanopores [6]-[8], artificial pores produced in solid thin 
films [9], channels in biological systems [10], and single-nanopore sensors, designed to detect, quantify, and 
characterize many different types of molecules, for example, single- and double-stranded DNA chains. 

Experimental techniques, such as high-resolution crystallography of bacterial porins and other large channels, 
have demonstrated that these can be envisaged as tubes with significantly varying cross-sections along their 
principal axis. In some of these channels, variations in cross-section areas exceed one order of magnitude [11] 
[12]. This leads to the so-called entropic-like walls and barriers in the theoretical description of transport 
through such structures. 

When diffusion occurs in quasi-one-dimensional structures, it is intuitively appealing to introduce an effective 
one-dimensional description. In a three-dimensional tube of varying radius ( )r x  with the x -axis directed 
along the centerline of the tube, the one-dimensional concentration of point particles ( ),c x t  is related to their 
three-dimensional concentration ( ), , ,C x y z t  by the relationship 

( ) ( )
( )

, , , , d d
A x

c x t C x y z t y z= ∫                                  (1) 

Here, ( )A x  is the position-dependent cross-section area of the tube, where integration is carried out. Given 
the condition of uniform distribution of particles in any cross-section, ( ),c x t , obeys the Fick-Jacobs equation, 
then 

( ) ( ) ( )
( )0

, ,c x t c x t
D A x

t x x A x
  ∂ ∂ ∂ =   ∂ ∂ ∂   

                             (2) 

where 0D  is the particle’s diffusion coefficient in free space. Robert Zwanzig [13] generalized this result, 
showing that the diffusion coefficient entering into (2) becomes position-dependent, ( )D x , provided the radius 
is a slowly varying function of x, i.e., 

( )d d 1r x x                                        (3) 

Therefore, the generalized Fick-Jacobs equation takes the form, 

( ) ( ) ( ) ( )
( )

, ,c x t c x t
D x A x

t x x A x
  ∂ ∂ ∂ =   ∂ ∂ ∂   

.                           (4) 

Zwanzig also derived the following expression for ( )D x : 

( )
( )

0
Zw 211 2

DD x
r x

=
′+

                                   (5) 

Later, Reguera and Rubí [14] generalized this result and suggested, 

( )
( )

0
RR 21

DD x
r x

=
′+

                                   (6) 

In an earlier numerical study [15], the generalized Fick-Jacobs Equation (4), with ( )D x  given by (6), was 
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shown to be valid for 

( )d d 1r x x ≤ ,                                     (7) 

which compared with the requirement expressed by (3), is less restrictive, thus giving the generalized Fick-Ja- 
cobs equation a considerably extended range of applicability. Kalinay and Percus [16] [17] developed a more 
general theory of reduction to the effective one-dimensional description for radially symmetrical 2D tubes, and 
Dagdug and Pineda [18] extended these results to non-symmetrical 2D systems. 

A wide range of stochastic processes of practical interest underlies first-passage events, such as the first-pas- 
sage time, namely, the probability that a diffusing particle or a random walk will first reach a specified site (or 
set of sites) at a specified time [19]. Indeed, chemical and biochemical reactions [20] [21], animals searching for 
food [22], and trafficking receptors on biological membranes [23], are often controlled by first-encounter events 
[24]. The narrow escape time (NET)—the mean time a Brownian particle spends before being trapped by an 
opening window in exiting the cavity for the first time—is of particular importance. Its applications range from 
cellular biology to biochemical reactions in cellular micro-domains, such as dendritic spines, synapses, and mi-
cro-vesicles, among others [23] [25]. The NET is the limiting quantity and the first step in the mathematical 
modeling of such processes where particles must first exit their domains in order to live up to their biological 
function [24]. 

To determine which form of ( )D x  to use in (4) for a given set of geometries and boundary conditions, we 
took advantage of the fact that the Mean First-Passage Time (MFPT), τ , is a quantity often obtained by means 
of computer simulations. Then, the MFPT—defined as the time it takes a random walker to reach a specified 
place for the first time, averaged over all the trajectories or realizations of the random walk—is found to satisfy 
a backward equation, 

( ) ( ) ( )0 0
0

0 0

e e 1U x U x D x
x x

β β τ− ∂ ∂
= − ∂ ∂ 

,                            (8) 

where ( )1 Bk Tβ =  ( Bk  is the Boltzmann constant and T the absolute temperature), and the potential ( )0U x , 
is defined as follows, 

( ) ( )
( )

1 ln
r

A x
U x

A xβ
= −                                   (9) 

Equation (9) accounts for the change in cross-section area along the axial length of the tube, taken to be zero 
at rx x=  (a reference position). Then (8) is solved for the appropriate boundary conditions, to obtain an alge-
braic expression that relates τ  with ( )D x  and the system’s geometrical parameters. 

Following a previous study of narrow escape times in a spherical cavity with two holes [26], this paper pro-
poses a system made by juxtaposing two identical semi-cones of length L, by their larger radii, as shown in Fig-
ure 1, and solves the generalized backward Equation (8) for τ  with different expressions of ( )D x . Computer 
simulations were carried out for comparison with theoretical predictions across a wide range of geometrical pa-
rameter values for the proposed system. The potential use of the equations obtained to assess narrow escape 
times is then discussed. 

2. Theory and Simulations 
To solve (8), we refer to Figure 2, and the boundary conditions described thereunder. Given the tube’s radius as 
a function of the axial coordinate, x , ( )r x a xλ= + , the cross-section area is given by 

( ) ( ) ( )2 2π πA x r x a xλ= = + . 

Then, by choosing the reference position 0rx =  we found, from (9), 

( ) ( )2
0

0 2
1 ln

a x
U x

a
λ

β
+

= − . 

And from here, we rewrote (8) as follows, 
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Figure 1. The tube of varying cross-section studied in this 
work. The slope of the tube’s wall, with length 2L, has the 
absolute value λ, and the major radius b is given by a + λL. 
This system can be taken as a narrow escape time problem, 
as stated by Grigoriev et al. [27]. 

 

 
Figure 2. Conveniently chosen to help simplify the alge-
bra, for this system ( )r x a xλ= +  for 0 x L≤ ≤ , and the 

boundary conditions are: (I) 0d d 0xτ =  at 0x L=  (re-
flecting wall, center plane where the tube has its major ra-
dius), and (II) 0τ =  at 0 0x =  (absorbent wall, 
shaded). 

 

( ) ( ) ( )2 2
0 0

02 2
0 0

a x a x
D x

x a x a
λ λτ + +∂ ∂  = − ∂ ∂  

                          (10) 

which is a separable ordinary differential equation. At this point, we did not need to choose an explicit for 
( )0D x , as this was done in due time using (5) and (6). Now, the first integration of (10) yields, 

( ) ( ) ( )
2

30
0 0 12 2

0

d 1
d 3

a x
D x a x C

a x a
λ τ λ

λ
+

= − + + ,                        (11) 

Here, we used the boundary condition of zero flux in the reflecting wall at 0x L= , to find the value of the 
integration constant to be 

( )3

1 23
a L

C
a
λ
λ

+
= . 

Applying this result to (11), after some algebra it became, 

( )
( )

3
0

2
0 0

d 1
d 3 3

a La x
x D D a xλ λ

λλτ
λ λ λ

++
= − +

+
,                          12) 

where we used the fact that ( )0D x , either from (5) or (6), is a function only of the first derivative of ( )0r x , a 
linear function of 0x , and therefore, a constant, denoted here as Dλ . Thus, we can integrate (12) a second time 
to yield, 
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( )3
2

0 0 22
0

1 1
3 2 3

a L
ax x C

D D a xλ λ

λλτ
λ λ λ

+ = − + − +  + 
.                     (13) 

Then, by using the second boundary condition, a perfectly absorbent wall at 0 0x = , we found 2C , 

( )32

2 2 26 3
a LaC

D D aλ λ

λ
λ λ

+
= + . 

With this result in (13), we manipulated the resulting expressions to yield, 

( ){ }
3

22 0
02

0

1
6 3

xba a x
D D a a xλ λ

τ λ
λ λ λ

 
= − − + +  + 

,                     (14) 

which is one of the main results of this work. Here, we used b a Lλ= + . Furthermore, evaluating (14) at the re-
flecting wall’s position, 0x L= , and setting 1a = , one finds 

( ) ( )
2

3 2
6
LL L
Dλ

τ λ= + , 

which is a known result previously reported by Berezhkovskii et al. [15]. 
The second result is obtained by averaging ( )0xτ  over the entire range of variation of x0, namely 00 x L≤ ≤ , 

thus defining this average as follows, 

( )0 0
0

1 d
L

x x
L

τ τ= ∫ .                                 (15) 

Then, after some algebra, we can write the general result: 

( )
3 3 3

3 3
2
1 22 ln

6 3
a b L b ba b

D L a aλ

τ
λ λ λ

 −
= + + − 

 
.                     (16) 

Along with (14) and (16), we can use any expression of Dλ , namely, 

Zw 0

211
2

DDλ

λ
=

+
,                                   (17) 

or from (5) or (6), 

RR 0
21

DDλ
λ

=
+

.                                   (18) 

For subsequent comparisons, we will use (18) only, as it has been shown to yield better results in previous 
works. 

In simulations, we found the mean first-passage time, τ  (MFPT), defined above. The particle’s initial posi-
tion, 0x , is distributed uniformly within the cavity’s volume. The MFPT is denoted as ( )0xτ . When running 
simulations, we took 1L = , 0 1D =  and the time step , so that 3

02 2 10 1D t −∆ = × 
. The actual 

particle’s position, nr , is given by 0 rann = +r r r , where 0r  is the previous position, and ranr  is a vector of 
pseudo-random numbers generated with a Gaussian distribution ( 0µ = , 02D tσ = ∆ ). Each MFPT was ob-
tained by averaging the first-passage times of 45 10×  trajectories. 

3. Results and Discussion 
Figure 3 and Figure 4 show the main comparisons made in this work between MFPT obtained by computer si-
mulations and theoretical predictions from Equation (16) using Reguera-Rubí’s effective diffusion coefficient 
(18). Both figures show good agreement virtually across the entire range of parameter values. Each point in 
Figure 3 is related to a system of fixed volume (arbitrarily chosen to be the unit sphere), so the main difference 
would be the size of the absorbent windows. For such purpose, while keeping L constant and varying a parame-
trically, λ  should be a function of these parameters, as follows, 
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Figure 3. Mean first-passage time as a function of the parameter a/L, 
absorbent window’s size over the tube’s semi-length. Each point cor-
responds to a different value of λ, chosen to fix the system’s volume at 
a constant value (arbitrarily set as the volume of a sphere of unit ra-
dius). The theoretical curve (solid line) corresponds to Equation (16), 
with Dλ given in (18), and ( ), ,a L Rλ  from (19). 

 

 
Figure 4. Mean first-passage times as a function of the parameter λ, 
keeping the value of the absorbent window’s radius constant. Two sets 
of data, obtained from simulations, are shown: for a = 0.05 (triangles), 
and a = 0.35 (circles); both theoretical curves (dashed lines) corres-
pond to Equation (16), with Dλ from (18). 

 

( ){ }1 22 2 4
3

53 331 3 4 8
2

aL a L a L
L

L Rλ = − + − + .                      (19) 

Then, the particles will have to explore a volume of the same size, but different radii of aperture to escape. As 
expected, survival times grow unbounded ( )τ →∞  as the aperture to escape from the domain tends to close 
( )0a → . 

Back to the narrow escape problem, in 2002, I. V. Grigoriev et al., studied the time-dependence of the surviv-
al probability of a Brownian particle that escapes from a cavity through a round hole [27]. Two main results 
were reported: Firstly, algebraic proof that decay is exponential for small holes, based on the spectral represen-
tation of the survival probability, and secondly, that the expression for the rate constant in terms of the problem 
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parameters (the diffusion constant D of the particles, the hole radius a, and the cavity volume V) is given by, 
4 1Dak
V τ

= = .                                     (20) 

In their work, they also ran Brownian dynamics simulations to calculate the survival probability in spherical 
and cubic cavities for different values of the absorbing-window’s radius. They also found that when a is small 
enough, decay is exponential, and the rate constants found in simulations are in good agreement with those pre-
dicted by (20). 

Previously, a work by Vázquez and Dagdug [26], theoretically and numerically studied a first-passage prob-
lem with this technique, which fits naturally in the NET category as one varies the positive constant a, i.e., the 
aperture’s radius. In that work, the expressions found fit the simulation data with great accuracy. Therefore, we 
now compared Equations (16) with Dλ  from (18), against the MFPTs (survival times) from simulations. Fig-
ure 4 shows, for two constant window sizes, 0.35a =  (circles), and 0.05a =  (triangles), the variation of sur-
vival times of Brownian particles as a function of the slope of the tube’s wall, λ , as a geometrical parameter. In 
both cases, we found good agreement between theoretical and computer data across a wide range of values of 
λ , although slight deviations did occur at greater values of λ . Even though such deviations are expected to 
grow larger as λ  increases, there is still a wide interval where agreement is good. 

Finally, we obtained algebraic expressions (14) and (16) for the first-passage time of Brownian particles 
through the effective one-dimensional description of diffusion. These expressions, which are the main results of 
this work, are useful in assessing Narrow Escape Times in complex geometries, and fit well with simulated data 
for a wide range of values for this system’s geometrical parameters. 
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