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Abstract 
Empirical study on the factors that induce jumps in interest rates in the euro area is still missing. 
In this paper, maximum likelihood estimates of I-distribution parameters are extracted using as a 
first step, an original linear model. According to the contribution of ([1] [2]) in the case of devel- 
oping a class of Poisson-Gaussian model, we try to enhance the predictive power of this model by 
distinguishing between a pure Gaussian and Poisson-Gaussian distributions. Such an empirical 
tool permits to optimizing results through a comparative analysis dealing with the fluctuation of 
the Euro-interbank offered rate and its statistical descriptive behaviour. The analytical and em-
pirical methods try to evaluate the behavioural success of the ECB intervention in setting interest 
rates for different maturities. Jumps in euribor interest rate can mainly be linked to surprise deci-
sions of the European Central Bank, and the too frequent meetings of the ECB before November 
2001. Despite this special event that leads to a certain lack of predictability, other few day-of-week 
ef- fects are modelled to prove eventual evidence of bond market overreaction. Empirical results 
prove that Mondays and Wednesdays are the preponderant days. Regarding monetary policy, 
negative surprises induce larger jumps than positive ones. 
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1. Introduction 
“…I think that the Maastricht Treaty and the launching of the ECB were a magnificent success and I think 
that when you go back to the Delors Report in 1989, it was quite remarkable when that came out, because it 
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was a proposal for a single currency monetary union. It would have been much easier to have an 11 or 
15-currency monetary union, but a single currency monetary union was quite a big step, and for a long time 
I thought that that was too big a step, that European governments would not be willing to accept it [the loss 
of sovereignty]. But the Delors gamble, and I think it was a big gamble, turned out to be successful and in 
retrospect, Europe is lucky that it ended up in that direction, rather than with an alternative” [3]. Interna- 
tional Monetary Policy after the Euro (2005, page 48). 

In accordance with the previous speech, it seems that searching for a convincing explanation to the ECB’s de- 
cisions announcement concerning the interest rate is an important subject especially when we find that the lit- 
erature on the ECB interest rate market has not yet covered many specific aspects studied in the euro area.  

Few works are presented in literature dealing with jumps in the Federal Fund rate in general and the EONIA 
in the eurozone. According to the advancement of [1] [4]-[10], we remark that different analyses of Fed Funds 
in the United States are much wider than the study of EONIA in the eurozone where most studies have concen- 
trated on finding whether the instruments and procedures to implement the monetary policy have repercussion 
on the overnight rate. [11] studies how the operational procedures and intervention forms of the central banks 
affect the characteristics and behavior of the one-day rate in the most industrialised countries (Eurozone and G7). 
[12] models the problem of the intertemporal decision in the reserve market, both for the central bank and for 
commercial banks.  

[13] tests whether there are statistical differences in the behavior of the daily rate before and after the Euro-
pean Monetary Union (EMU), presenting a model for liquidity shocks focused from the demand side. [10] as-
serts that the timing of jumps is deterministic and coincides with the exact dates of the ECB’s meetings. 

Our empirical analysis is implemented through a linear model that incorporates a fluctuation’s component. 
The resolution method for a linear interest rate differential equation will be obtained through a Poisson-Gaussian 
analysis. In this study, we aim at strengthening conclusion taken through a distinguished comparative analysis 
between a pure Gaussian distribution and Gaussian-Poisson process. Thus, we treat the information surprises 
result in discontinuous interest rate to quantify the effectiveness of the European Central Bank announcement 
channel. We choose as a reference the interest rate for interbank deposits in the euro zone determined as a 15% 
trimmed average of the interest rates contributed by the “Panel banks—banks with the highest volume of busi- 
ness in the euro zone money market”. It is also the rate at which a prime bank is willing to lend funds in euro to 
another prime bank. The EURIBOR is computed daily for interbank deposits with a maturity of one week and 
one to 12 months as the average of the daily offer rates of a representative panel of prime banks, rounded to 
three decimal places1.   

This research examines the role of jump-enhanced stochastic processes in modelling the Euro interbank of- 
fered rate for different maturities. The paper offers four distinct sets of contributions. 1) We develop an analyti- 
cal modelling framework for jumps in fixed income country. 2) We establish a Poisson-Gaussian model, and 
then deduce a pure Gaussian model. 3) We implement a comparative analysis for these models to detect limits 
and benefits for each one. 4) We determine which day can optimize the effectiveness of the ECB announcement 
channel. 

The paper proceeds as follows. Section 2 deals with methodological aspects. Section 3 discusses the optimal 
period for estimation. Section 4 deals with the empirical results, we present those obtained through Poisson- 
Gaussian model and pure Gauss model (Section 4.1), then we present a method to extract day of the week effect 
recognition (Section 4.2). Section 5 summarizes and provides concluding remarks. 

2. Methodological Aspects 
Stochastic processes governing interest rates analysis is harder than that usually encountered for resolving equi- 
ties and exchange rates. This complexity is due to mean reversion in models saving a surprising element with 
higher fluctuations. There are also very limited solutions for the stochastic differential equations. In this section, 
we present methodological aspects for our econometric specifications.  

The mean reverting process for the interest rates can be written as: 

 

 

1Cited from www.euribor.org, status at June, 10th 2006. For the complete list of panel banks, see  
www.euribor.org\html\content\panelbanks.html  

http://www.euribor.org/html/content/panelbanks.html
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( ) ( )d d d dr I r t x f p hθ ϑ= − + +                                   (1) 

where θ  is a central tendency parameter for the interest rate r, which reverts at rate I. Therefore, the interest 
rate evolves with mean-reverting drift and two random terms. The former is propagation and the latter is a Pois- 
son process embodying a random fluctuation f. The coefficient’s variance of the propagation is 2ϑ  and the ar- 
rival of dynamic fluctuations is dominated by a Poisson process p with arrival frequency parameter h, which 
plots the number of deviations per year. The fluctuation means a possible rise or fall in the interest rate. Despite, 
these two repatriations, we will be able to attribute a constant value for each situation or to attribute a possible 
probability distribution.  

Being at time t = 0, and looking ahead to time t = T, we are interested in the distribution of r(T) given the cur- 
rent value of the interest rate ( ) 00r r r≡ = . In order to derive the T-interval characteristic function ( ), ;f r T τ  
for the process (1), (τ  is the characteristic function parameter). 

( ) ( ), 0; e iprf r T τ= =                                   (2) 

where 2 1i = − , joining the complex formality. From (1) and (2), a third equation can be written as: 

( ) ( ) ( ) ( ) ( )2 2 20.5 0f r I r f r f T hE f r f f rθ ϑ∂ ∂ − + ∂ ∂ − ∂ ∂ + + − =                    (3) 

where ( ) ( )hE f r f f r+ −    comes from the effect of the Poisson shock [14].  
Illustrating the solution for the previous equation, we find that: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2 ;2

Log , ; ; ; ,

; ; d 0.5 ; d e 1 d

; e

fL T

iT

f r T K T rL T

K T k L T T L T T hE T

L T i

τ

τ τ τ

τ θ τ ϑ τ

τ τ −

 = +        = + + −  


=

∫ ∫ ∫                  (4) 

Next, we can deduce the moments and the probability density functions for any choice in distribution where 
the rises or fall do not depend on the state variables. 

Let nµ  denote the nth moments, and nf  be the nth derivative of f  with respect to τ , i.e. 
n n

nf f τ= ∂ ∂ . Then, [ ]0n
n ni fµ τ−= = . Likewise [ ]nE f  denotes the nth moment of the shock (rise or fall). 

,n nK L  are the nth derivatives of K and L, respectively, with respect to τ . 

( ) 2 2 2 e; e d 0.5 e d e 1 d
ITIT IT fiK T k i T T hE Tττ θ τ ϑ τ

−− −  = − + − ∫ ∫ ∫                   (5) 

Then, 
2 2 ed d e d e d e e d

ITIT IT IT fiK I i T s T ih E f Tττ θ ϑ τ
−− − −  = − +  ∫ ∫ ∫                    (6) 

We can also compute the first, second and third derivatives of K evaluated at 0τ = , which are: 

( ) [ ] [ ]( ) ( ) ( )1 1
0d d e d e d e eIT IT IT ITK ki T hi E f T i I hI E f h I E f

τ
τ θ θ θ− − − − − −

=
= + = − − + +∫ ∫       (7) 

Using the fact that ( )0; 0K T τ= = , we obtain: 

( ) [ ]( )
( ) ( )( )

1
0

2 2 2 2 1
0

d d ,

d d 0.5 1 e IT

K iI hE f

K hE f I
τ

τ

τ θ

τ ϑ

−
=

− −

=

 = − +


 = − + −  
 

And the derivatives of L with respect to τ : 

2 2 3 3

d d e

d d d d 0

ITL i
L L
τ

τ τ

− =


= =
 

Then, we can write the intermediate value as: 

( ) [ ]( )( )( )1
10d d d d 1 e eIT ITK r L i hE f I r i

τ
τ τ θ µ− − −

=
+ = + − + =              (8) 

We can now write the analytical expressions for the moments: 
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[ ]( )( )
( )( )

( ) ( )( )

1
1

2 2 2 2
2 1

3 2 2 2 2 1 1 2
3 1 1

1 e e ,

0.5 1 e

0.33 1 e 1.5 1 e 1.5

IT IT

IT

IT IT

hI E f r

hE f

hE f hE f I

µ θ

µ ϑ µ

µ µ ϑ µ

− − −

−

− − − −

 = + − +
  = + − +  


     = − + + − +    

            (9) 

In discrete time, we express the process in Equation (1) as follows: 

( ) ( ) ( )2, ,r I r t z f p qθ ϑ µ γ∆ = − ∆ + ∆ + ∆                              (10) 

where 2ϑ  is the daily variance of the Gaussian shock, and z∆  is a standard normal shock term. ( )2,f µ γ  is 
the rise or fall shock, which is normally distributed with mean µ  and variance 2γ . ( )p q∆  is the discrete- 
time Poisson increment, approximated by a Bernoulli distribution with parameter ( )q h t tϕ= ∆ + ∆ ; 

( )
( )

( )

Pr 0 1 ,

Pr 1 ,

Pr 1

j

j

j

Y h t t

Y h t t

Y t

ϕ

ϕ

ϕ

  = = − ∆ + ∆   = = ∆ + ∆  


 > = ∆  

 

Let 
1

N

i
i

M Y
=

= ∑  is distributed binomial being the sum of independent Bernoulli variables. 
For x occurrences, 

[ ] ( ) ( )Pr 1 ,x N xN
xM x C hT N hT N −= = −  

[ ]
( )elim Pr
!

xhT hT

N M x
x

−

→∞ = =  

Under this expression, we have to classify the movements of possible fluctuations. The assumption made here 
is that we are searching for a jump, in each time interval either only one jump occurs or no jump occurs. 
Searching for a fall, in each time interval either only one fall occurs or no fall occurs. But the question that we 
will try to answer after the estimation is that: Does no jump mean necessary a fall or something else? According 
to [15], this is tenable for short frequency data, and may be debatable for data at longer frequencies as it is the 
case in our paper. Since the limit of the Bernoulli process is governed by a Poisson distribution, we have ap- 
proximated the likelihood function for the Poisson-Gaussian model using a Bernoulli mixture of the normal dis- 
tribution (see Equation (10)). 

Allowing the variance 2
tϑ  to be ARCH in extending the Poisson-Gaussian model, the intensity fluctuation to 

depend conditionally on various state variables, the transition probabilities for the interest rate following a Pois- 
son-Gaussian process are written as: 

( ) ( ) ( ) ( ) ( )( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )( )2 22 2 2 2 20.5 2 0.5 2πe 1 et t tr r t k r t t t t r r t k r t t tg r r t Q Q
τ θ µ ϑ γ ϑ γ τ θ ϑ

τ
− − − − ∆ − ∆ + Π ∆ + − − − − ∆ ∆

= + −      (11) 

In this equation noted (Equation (11)), Q  is an approximation measure of the true Poisson-Gaussian density 
with a mixture of normal distributions. It is worth noting that our estimation exercise uses Poisson-Gaussian 
models extended for ARCH effects. They allow for mean-reversion in fluctuations processes, and also test for 
the impact of the European Central Bank actions. 

Designing by: 

( ) ( )
( )

2

1

R r r t

R r t

τ= −


=
 

(Equation (11)) can be rewritten as: 

( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )
2 22 2 2 2 22 1 2 10.5 2 0.5 2πe 1 et t tR k R t t t R k R t tg r r t Q Q

θ µ ϑ γ ϑ γ θ ϑτ
− − − ∆ − ∆ + Π ∆ + − − − ∆ ∆= + −         (12) 

Searching for a pure Gaussian process, we attribute a null value to Q . Then, we obtain: 
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[ ] ( )( )( )2 2
2 10.5 2π

1 2 1 e tR k R t tg R R R θ ϑ− − − ∆ ∆+ =                           (13) 

Consider a Poisson probability density function ( )sP n µ+
, for a fixed but unpredicted signal, s, in the pres- 

ence with a known background with mean µ . 
Two values 1n  and 2n  are found for each value of s: 

( )

( )

2

1

2

1

1
n

s
n

n

s
n

G n Q

P n Q

µ

µ

+

+


′ = −



 ′ =

∑

∑
                                  (14) 

where Q denotes the confidence level. Graphically, upon a measurement, 0n , the confidence interval [ ]1 2,s s  
is determined by the intersection of vertical line drawn from the measured value 0n  and the boundary of the 
confidence limit. 

From Equation (12), a further Equation (15) is deduced as: 

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )
2 22 2 2 22 2 22 1 2 1

1 1

0.5 2 0.5 2πe et t t
n nR k R t t t R k R t t

s s
n n

g r r t G n P n
θ µ ϑ γ ϑ γ θ ϑ

µ µτ
− − − ∆ − ∆ + Π ∆ + − − − ∆ ∆

+ +
′ ′= +   ∑ ∑  

According to [16], one of the valuable modifications addressed to the classical method of constructing confi- 
dence belts is: 

( ) ( ) ( )

( ) ( ) ( )

00

0 0

00

00 0

si

si

nn
s ns

n n
n ns

q n p n p n n n

p n p n n p n n n

µ µ

µ

µ

µ

+ ′=+

′ ′= =

 ′= ≤


′ ′ ′− >

∑
∑ ∑

                       (16) 

Our estimation involves maximizing the function L, where 

( ) ( )( )1
1

N

p p
t

L f r r tτ +
=

 =  ∏                               (17) 

This may be written as: 

[ ] ( ) ( )( )( ), , , , ,
1

max log
N

i p pz k v q
t

f r r tθ µ γ τ +=
=

 
  ∑                        (18) 

Consider a probability function of ix  that encompasses a set of parameters 1 2 3, , ,p p p p=   and N inde- 
pendent observations. Le Likelihood, L, is defined as 

( )
1

;
N

i
j

L P x p
=

=∏                                  (19) 

From (19), the Equation (17) becomes: 

( ) ( )( )( )1
1

;
N

P p
j

L P f r r t pτ +
=

=∏                            (20) 

The same for (18): 

[ ] ( ) ( )( )( ), , , , ,
1

max log ;
N

i p pz k v q
t

f r r t pθ µ γ τ +=
=

 
  ∑                     (21) 

According to [17] and [18], maximum likelihood estimators are usually biased. But the bias is zero in the as- 
ymptotic ( )N →∞  limit, when the likelihood function becomes Gaussian and the standard deviation of 

,j jp σ , can be obtained from [19] as: 
2

2 2

1 log

j j

L
pσ

∂
= −

∂
                                  (22) 

If the large-N limit has not been reached, the standard deviation can be estimated by finding the value of jp  



A. Hachicha, A. Masmoudi 
 

 
1034 

for which logL drops by 1/2 from its maximum at the optimum value jp .  
The standard deviation will be symmetric with respect to jp  in the large-N limit.  
For each process, we obtain estimates that are consistent, unbiased and especially efficient attaining the 

Cramer-Rao lower bond due to the satisfaction of the technical regularity conditions stated in Cramer [20]. This 
is in concordance with the efficient market hypothesis. Moreover, this justifies the application of the maxi- 
mum-likelihood and thence the likelihood ratio test to this model. The constraints are that the weights for each 
sign of fluctuation (positive vs. negative) add up to one, which is already imposed in the equation above and that 
possible values of q are included in interval (0,1). 

Given the analogy of this distribution to that of mixture distributions presented in Equation (11), ML is di- 
rectly achieved as a solution to a system of first order conditions log 0L z∂ ∂ =  as seen in [8]. Estimation is 
undertaken due to E-M algorithm of [21]. 

3. Data Selection 
Before To avoid any unfavourable event that would bias the result in favour of finding jumps, we eliminate 
some critical dates (negative surprises) collected from the financial times [22]. 

First, before Wednesday 21 March 2001, the ECB had insisted that the US slowdown was unlikely to have 
much impact on Europe and therefore the interest rates would not change. Second, on Wednesday 21 March 
2001, the ECB president (Duisenburg) said during a business school meeting in Germany that the ECB might 
need to consider cutting interest rates because the slowdown in growth in the USA may be stronger than earlier 
expected. Third, on Friday 23 March 2001, Statements of the Governor of the France ([23]) and the ECB Chief 
Economist ([24] [25]) indicated that the ECB would soon cut interest rates. Fourth, on Wednesday 4 April 2001, 
the ECB President and other members of the Governing Council all made statements that the ECB remains in a 
“wait and see” position. However, efforts ran into fresh trouble when it emerged that the governor of the Banque 
de France, has made a public council statement based on Thursday’s meeting without forewarning at least some 
of his colleagues. Fifth, on Tuesday 10 April 2001, Didier Reynders, the Belgium minister of finance and leader 
of the Eurogroup of finance ministers said: “We are still worried about the general economic trends and against 
that background everyone will have to take his or her responsibility… We will report the concerns about eco- 
nomic slowdown for the ECB to draw its own conclusion” This was also stressed by several commercial banks 
expecting a cut of European interest rates. The last event that we eliminate was on Wednesday 11 April 2001, 
where the ECB keeps interest rates on hold. The ECB disappointed governments, business, trade unions and the 
IMF, by refusing to cut interest rates and giving no sign that it would change its mind in the immediate future. 

This section analyses the EURIBOR interest rate sample of 1945 daily observations over the period from 
January 1999—the starting date of Stage Three of the EMU—to February 2007 except some dates cited previ- 
ously. The data is daily on frequency. 

As Figure 1 shows the fluctuations in the euro interbank rate and Figure 2 exhibits the kernel density repatri- 
ated for different maturities. They reflect liquidity conditions that are temporarily relaxed or restrictive on the 
money market. These fluctuations and the peaks are mainly related to the calendar effects and the fortnightly 
meetings of the Governing Council of the ECB. 

When we observe Figure 1 and Figure 2, however, we can see a small lag during 2001 between trends in in- 
terest rates and the tone of statements. Note that as soon as early 2001, the markets were expecting a rate cut by 
the ECB. Nevertheless, the ECB did not change its key interest rate in February, March, or even in April 2001, 
whereas the economic slowdown seemed to justify a rate cut2. 

Table 1 and Table 2 deal with descriptive statistics of the daily rate 1R  and its first difference ( )1R∆  re- 
spectively over the period January 1999 to February 2007 except some critical days. Mean denotes the sample 
arithmetic mean, Median is the sample median, Max and Min stand for maximum and minimum respectively, 
Std denotes standard deviation and Skew and Kurt stand for skewness and kurtosis respectively. It is worth not- 
ing that changes in interest rates demonstrate considerable skewness and kurtosis. According to [26], the pres- 
ence of leptokurtosis in interest rate fluctuations is undeniable and jumps may explain the high degree of curva- 
ture in yield curves. Euribor interest rate volatility is very high, and persistent. This aspect is taken into consid- 
eration by enhancing jumps models with ARCH features and regime switches (ARCH-LM). 

 

 

2Inflation was admittedly still high despite the fall in oil prices and was picking up again in March-April. This can be explained as the result 
of the mad cow disease, i.e. an external supply shock. 
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Figure 1. Evolution of the euro interbank rate for 
different maturities.                            

 

 
Figure 2. Kernel density spreading.                                        

 
Table 1. Descriptive Statistics Euribor ( )1R .                                                     

Maturity 1 Week 1 Month 3 Months 6 Months 9 Months 1 Year 

Mean 3.31625 3.34030 3.40076 3.44907 3.49829 3.55453 

Medium 3.34030254 3.638 3.8715 3.75475 3.49672176 3.48250118 

Max 4.844 5.046 5.14 5.202 5.251 5.341 

Min 2.06 2.053 2.073 2.001 2.103 2.183 

Std 9.63434 × 10‒1 9.64726 × 10‒1 9.79675 × 10‒1 9.80504 × 10‒1 9.84592 × 10‒1 9.88055 × 10‒1 

Skew 0.1476 0.1257 0.0941 0.0605 0.0376 0.0198 

Kurt 1.7948 1.7780 1.7761 1.8051 1.8224 1.8409 

ARCH-LM 
(Fstatistic) 1797.2945 1817.5001 1757.0654 1679.4306 1586.1724 1491.8006 
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Table 2. Descriptive Statistics (first difference of Euribor) R2 ( )1R∆ .                                             

 1 Week 1 Month 3 Months 6 Months 9 Months 1 Year 

Mean 9.27495 × 10‒4 1.7893 × 10‒3 2.9458 × 10‒3 2.6364 × 10‒3 2.19024 × 10‒3 1.75162 × 10‒3 

Medium −0.00035732 0.00039228 0.00044496 0.00038869 0.00026853 0.00029425 

Max 0.033 0.023 0.067 0.022 0.053 0.031 

Min −0.036 −0.0061 −0.038 −0.028 −0.0024 −0.022 

Std 2.56276 × 10‒1 2.40427 × 10‒1 2.38518 × 10‒1 2.38053 × 10‒1 2.39968 × 10‒1 2.42285 × 10‒1 

Skew −0.0782 −0.3529 −0.2459 0.1366 0.3973 0.4895 

Kurt 167.2425 205.9451 208.3241 199.264 184.1957 173.5747 

ARCH-LM  
(Fstatistic) 71.5116 71.1644 71.1146 71.5695 72.4818 73.5728 

 
To investigate the movement between two variables (in our case, it is the same variable but for different ma- 

turities). To detect the comovements between two maturities i/j, we resort to compare the plot with a simple 
OLS regression line, as well as with a non parametric estimate.  

Assuming that all relations between two variables have the following form: 
t t ty x uα β= + + , where tu  is the regression error. 

A possibly non linear regression function is assumed, ( ) ( ) ,m x E Y X x x= = ∈ℜ  with X being the design 
variable and Y the response variable. The Nadaraya-Watson estimator [27] is defined as: 

( )
1

1

ˆ

T t
tt

T t
t

x xy K
hm x

x xK
h

=

=

− 
 ′ =
− 

 ′ 

∑

∑
                                 (23) 

where K is a kernel function, h is the bandwidth defined by [28] as: 

( )0.2 ˆ0.9 min , 1.34xh T IQRσ−′ =  

where ˆ xσ  is the standard deviation and IQR denotes the interquartile range of the tx  observations. As usual, T 
is the simple size. Thus, the non parametric estimation does not assume a special functional form for the model 
and can therefore capture possible nonlinearities in the relationship between X and Y. 

1, 1 1 1ONEWEEKt ty R uα β= + +                              (24) 

Table 3 and Table 4 deal with Euribor estimation for different maturities versus euribor one week in level 
and first difference respectively. Figure 3 and Figure 4 illustrate the Euribor in level Nadaraya-Watson regres-
sion (one week versus one month and one week versus twelve months respectively). 

4. Estimation 
4.1. Poisson-Gaussian Analysis and Pure Gaussian Model 
Use Maximum likelihood estimation (MLE) has many optimal properties in estimation. It provides a wide level 
of sufficiency because it encompasses a set of complete information about the parameter of interest contained in 
its estimator. It is consistent due to its true parameter value that generated the data recovered asymptotically, i.e. 
for data of sufficiently large samples. It is also efficient due to the lowest-possible variance of parameter esti- 
mates achieved asymptotically and parameterization invariance. MLE is useful for obtaining a good descriptive 
measure for the purpose of summarizing observed data, it is a standard approach to parameter estimation and 
inference in statistics.  

We needed an optimization algorithm that could efficiently handle the complicated log-likelihood function in 
Equation (14). After some exploration, we have chosen to use unconstrained function minimization routine of  
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Table 3. Estimation of Euribor for different maturities versus euribor one 
week (in level).                                                      

1,ty  1α  t-statistic 1β  t-statistic 2
1R  1σ  

1 Month 0.0322 5.6554 0.9976 605,9804 0.9925 0.0838 

3 Months 0.0853 7.0284 0.9998 284.3872 0.9666 0.1790 

6 Months 0.2001 11.1104 0.9797 187.8398 0.9267 0.2656 

9 Months 0.3112 10.1025 0.9543 106.6543 0.8123 0.3103 

12 Months 0.4153 16.1025 0.9466 126.7516 0.8520 0.3803 

 
Table 4. Estimation of Euribor for different maturities versus euribor one 
week (in first difference).                                            

2,ty∆  2α  t-statistic 2β  t-statistic 2
2R  2σ  

1 Month −0.0001 −0.6174 0.8803 143.1836 0.8804 0.0832 

3 Months −0.0022 1.1746 0.8504 118.6820 0.8350 0.0969 

6 Months −0.0019 0.9136 0.8280 103.7491 0.7945 0.108 

9 Months −0.0008 −0.6098 0.8942 100.6960 0.0745 0.1267 

12 Months −0.0001 −0.0525 0.9165 169.3001 0.9113 0.0527 

 

 
Figure 3. Euribor in level Nadaraya-Watson regression (one week 
versus one month).                                          

 
the Optimization Toolbox of the MATLAB Software to locate the minimum of the negative log-likelihood func- 
tion. The routine implements a subspace trust region method which is based on the interior-reflective Newton 
method described in [29] and [30]. Each iteration in this “large-scale optimization” algorithm involves the ap- 
proximate solution of a large linear system using the method of reconditioned conjugate gradients. The principle 
of maximum likelihood estimation (MLE), originally developed by R. A. Fisher in the 1920s, states that the de- 
sired probability distribution be the one that makes the observed data most likely, which is obtained by seeking 
the value of the parameter vector that maximizes the likelihood function L(Z). The vector of parameter estimated 
in each maturity can be written as: 

( ), , , , , t
tZ Q k θ µ ϑ γ=  
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To compare different processes for different maturities of the ECB interest rate, we estimate two nested mod- 
els on the data set. We start estimating the combining expression of the Poisson-Gaussian model of Equation 
(11), then we treat apart the Gaussian model of a pure Gaussian model ( )0Q = .  

Table 5 and Table 6 present respectively the estimation of Poisson-Gaussian and pure Gaussian processes on 
daily data. The total number of observation is 2150. Estimation is carried out using maximum-likelihood incor- 
porating the transition density seen previously in Equation (12).  
 

 
Figure 4. Euribor in first difference Nadaraya-Watson regression 
(one week versus twelve months).                              

 
Table 5. Basic Poisson-Gaussian estimation.                                               

Parameter 1 Week 1 Month 3 Months 6 Months 9 Months 1 Year 

Q  0.0075 (−3.21) 0.0055 (4.25) 0.0075 (2.03) 0.0097 (3.62) 0.0027 (2.94) 0.0111 (2.54) 

k  0.001 (2.74) 0.001 (1.98) 0.001 (2.95) 0.001 (2.98) 0.001 (2.59) 0.001 (2.98) 

θ  0.0182 (2.15) 0.0185 (2.55) 0.0182 (3.25) 0.0177 (4.25) 0.0185 (2.54) 0.0175 (2.94) 

µ  0 0− 0− 0− 0 0− 

ϑ  0.0149 (4.21) 0.0199 (5.25) 0.018 (3.87) 0.0178 (2.95) 0.0162 (3.56) 0.0188 (2.90) 

γ  0.0317 (4.98) 0.0221 (4.23) 0.0257 (3.65) 0.0316 (2.59) 0.0288 (3.09) 0.0255 (3.19) 

valuef  1.5907 × 
2810  

1.2083 × 1019 3.0413 × 1029 5.1599 × 1027 4.3081 × 1029 5.2747 × 1028 

Bollerslev and Wooldridge (1992) robust t-statistics are in parentheses [31]. 
 

Table 6. Basic Pure Gaussian estimation.                                            

Parameter 1 Week 1 Month 3 Months 6 Months 9 Months 1 Year 

Q  0 0 0 0 0 0 

k  3.05 (4.25) 3.05 (4.25) 3.05 (4.25) 3.05 (4.25) 3.05 (4.25) 3.05 (4.25) 

θ  0.08 (11.78) 0.08 (11.75) 0.08 (11.75) 0.08 (11.75) 0.08 (11.75) 0.08 (11.75) 

µ        

ϑ  0.0098 (4.78) 0.0098 (4.78) 0.0098 (4.78) 0.0098 (4.78) 0.0098 (4.78) 0.0098 (4.78) 
γ        

valuef  0 0 0 0 0 0 

Bollerslev and Wooldridge (1992) robust t-statistics are in parentheses [31]. 
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Intuitive results emanate from this analysis. There is no evidence of skewness ( )0µ = , but kurtosis exists
( )0γ  . The jumps tend to be of the order of (3.17) basis points for shorter interest rate maturities and (2.55) 
basis points for a considerable one. 

The jump intensity or the ex-ante probability of a jump occurring is better seen in a Poisson-Gaussian model 
than in a pure Gauss model because it encompasses maximum number of parameter estimated. 

Figure 5 explores results of Gaussian-Poisson model estimation for different maturities. The shape of the 
likelihood function is shown in Figure 6. First difference of kernel density tells us the likelihood (“unnormal- 
ized probability”) of a particular parameter value for a fixed data set. 
 

   
One Week                                           One Month 

   
Three Months                                       Six Months 

   
Nine Months                                            One Year 

Figure 5. Gaussian-Poisson model estimation for different maturities.                                       
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Figure 6. Probability Plots (first derivative of kernel density).       

 
Note that the likelihood function takes the form of a curve if there is only one parameter beside h; which is 

assumed to be known. For example, if the model has two parameters, the likelihood function will be a surface 
sitting above the parameter space. In general, for a model with k Parameters, the likelihood function takes the 
shape of a k-dim geometrical “surface” sitting above a k-dim hyperplane spanned by the parameter vector. 

The unconditional probability density function from the raw data and the plots from the best fitted models of 
each maturity is presented3. The upper panel plots the full distribution over the range 3 × 10−2. The middle panel 
presents the same distribution but for a bigger value of h which is equal to 0.5, the closer plot clearly brings out 
the good fit from the ARCH-jump model compared to the other models. The lower panel deals with a represen- 
tation from first derivative of kernel density which deviates negatively from the origin axe. 

4.2. Day of the Week Effect Recognition 
In this section, we shall employ the model to examine various phenomena in the bond markets via the lens of the 
model. Our jump model is facile in permitting many different analyses. We explore whether fluctuations are 
more likely to happen in predetermined days only for five operative days of the week (Monday, Tuesday, 
Wednesday, Thursday, and Friday). Our purpose is to determine which day is the favourable for announcing a 
supervising decision that can affect the market. 

It is well known that fluctuations would be more likely on Monday since the release of non observable infor- 
mation over the weekend may lead to a larger volatility of the interest rate. Moreover, option expiry may inject 
fluctuations into the behaviour of interest rate on Wednesday and Thursday.  

We focus our analysis on the last day of the operative week for the ECB and we determine the contribution of 
the other days in amplifying the arrival intensity of jumps in that day. 

To be more precise, let illustrate what we had said before in a simple linear model that enable us to take into 
consideration the arrival intensity of fluctuation (rise or full) in the interest rate for different maturities: 

0 1 2 3 4t M T W ThQ D D D D= Γ + Γ + Γ + Γ + Γ                            (25) 

where tQ , t = 1,2,3,4,5,6 is the temporal jump component, respectively for one week, one month, three months, 
six months, nine months and twelve months. 0Γ  is the arrival probability of a fluctuation if the chosen day is 
Friday, and iΓ  is the incremental arrival intensity of jumps over Friday’s level when the day of the week take  

the possible day 

MifMonday
TifTuesday
WifWednesday
ThifThursday

i



= 



. 

 

 

3See Appendix for results of kernel density estimation (Table A1). 
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The following Table 7 presents results of the estimation of a jump-diffusion model when the jump arrival in- 
tensity is assumed to be influenced by the day of the week explored in the previous equation. 

5. Concluding Remarks 
We treat in this paper the evolution of the daily euro interbank offered rate to describe the announcement chan- 
nel of the European Central Bank. The latter is computed daily for interbank deposits with a maturity of one 
week, one month, three months, six months, nine months and twelve months.  

To provide a tutorial exposition of the maximum likelihood estimation, we evaluate results from basic Gaus- 
sian and Poisson-Gaussian models and try to compare the eventual illustrative results adopting these processes. 
Moreover, we conclude that jumps are an essential component for modeling EURIBOR. The illustrative Poisson 
and Gauss processes implemented in a linear model contribute to a much better in-sample fit once jumps are 
considered under either one or two models. We conclude that models do not lead to the same conclusions. It is 
the Poisson-Gaussian model that gives better performance. Searching for the contribution of day of the week in 
amplifying operative actions in the announcement channel of the ECB that consolidates the link with the market, 
we have resorted to a third linear model deeply linked to the previous parameter estimated through a Poisson-  
 

Table 7. Jump estimation parameter with day of the week effects.                              

Maturity 1 Week 1 Month 3 Months 6 Months 9 Months 1 Year 

0Γ  0.2318 (2.15) 0.1687 (13.25) 0.1587 (7.45) 0.1698 (15.16) 0.1458 (4.25) 0.1236 (3.65) 

1Γ  0.1418 (4.52) 0.1587 (11.25) 0.1625 (2.62) 0.1478 (1.21) 0.1345 (−1.95) 0.1298 (−1.92) 

2Γ  0.1353 (−2.35) 0.1354 (−0.25) 0.1024 (0.55) 0.2524 (1.25) 0.0214 (1.36) 0.0254 (0.65) 

3Γ  0.2258 (4.98) 0.2135 (10.25) 0.2153 (6.64) 0.2054 (8.36) 0.2456 (6.65) 0.2354 (7.25) 

4Γ  0.1442 (1.25) 0.1145 (1.36) 0.0214 (−0.98) 0.0058 (−2.65) 0.1025 (0.25) 0.0254 (1.25) 

k  0.0001 (1.98) 0.0001 (2.96) 0.004 (−2.39) 0.0003 (3.63) 0.0007 (2.01) 0.0007 (2.06) 

θ  0.032 (1.67) 0.1859 (9.78) 0.1566 (8.63) 0.1673 (9.62) 0.0937 (8.09) 0.0937 (6.21) 

µ  0 0 0 0 0 0 

ϑ  0.0001 (11.92) 0.0098 (8.26) 0.0098 (13.53) 0.0098 (19.21) 0.0098 (7.25) 0.0098 (6.25) 

γ  0.4769 (1.25) 0.1999 (2.65) 0.0697 (3.25) 0.0568 (4.25) 0.1881 (3.56) 0.1881 (11.25) 

Bollerslev and Wooldridge (1992) robust t-statistics are in parentheses [31]. 
 

 
Figure 7. Mondays effect (estimation with 1Γ , maturity = one month). 
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Figure 8. Wednesdays pertinent effect (estimation with 3Γ , 
maturity = one month).                                   

 
Gaussian model. Therefore, we have added dummy variables to conclude after estimation that only Mondays 
and Wednesdays for each maturity taken and especially for one month can represent the preponderant days that 
contribute to amplifying the jumps that may occur on Fridays (Figure 7 and Figure 8). The maintenance period 
effect and the calendar effect cause greater jumps than the effect of the meetings of the Governing Council of 
the ECB. The lowest jump intensity corresponding to the days on which none of the effects occur leads to the 
conclusion that when the ECB initially started to implement the single monetary policy, it faced a whole string 
of specific uncertainties ([24] [25]). One such uncertainty concerned the way in which the transmission mecha- 
nism would function especially when that concerns the annoucement channel. The Poisson-Gaussian distribution 
was an attractive choice as a mixing distribution for models of Euribor data that exhibit over dispersion caused 
by the hierarchical structure. But it is also interesting to know in a further research whether gamma distribution 
can be applied to analyzing data for ECB. 
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Appendix 
Table A1. Kernel Density Estimation (Gaussian Kernel).                                                        

Maturity  1 Week  1 Month  3 Months 6 Months  1 Year h = 0.5 h = 0.5 h = 0.5 h = 0.5 h = 0.5 

x dens. deriv. dens. deriv. dens. deriv. dens. deriv. dens. deriv. 

−3.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 −0.0000 

−2.9000 0.0000 0.0002 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 

−2.8000 0.0001 0.0003 0.0000 0.0003 0.0000 0.0002 0.0000 0.0002 0.0000 0.0001 

−2.7000 0.0001 0.0004 0.0001 0.0004 0.0001 0.0004 0.0001 0.0003 0.0000 0.0001 

−2.6000 0.0001 0.0007 0.0001 0.0006 0.0001 0.0006 0.0001 0.0005 0.0000 0.0002 

−2.5000 0.0002 0.0010 0.0002 0.0009 0.0002 0.0008 0.0001 0.0007 0.0001 0.0003 

−2.4000 0.0003 0.0014 0.0003 0.0012 0.0003 0.0012 0.0002 0.0010 0.0001 0.0006 

−2.3000 0.0005 0.0020 0.0004 0.0016 0.0004 0.0016 0.0004 0.0014 0.0002 0.0010 

−2.2000 0.0007 0.0028 0.0006 0.0023 0.0006 0.0022 0.0005 0.0020 0.0003 0.0016 

−2.1000 0.0011 0.0040 0.0009 0.0032 0.0009 0.0032 0.0008 0.0030 0.0005 0.0027 

−2.0000 0.0016 0.0059 0.0013 0.0047 0.0013 0.0047 0.0011 0.0045 0.0009 0.0046 

−1.9000 0.0023 0.0090 0.0019 0.0074 0.0019 0.0073 0.0017 0.0073 0.0015 0.0079 

−1.8000 0.0034 0.0145 0.0028 0.0122 0.0028 0.0121 0.0027 0.0122 0.0025 0.0136 

−1.7000 0.0053 0.0237 0.0044 0.0207 0.0044 0.0204 0.0043 0.0208 0.0043 0.0231 

−1.6000 0.0084 0.0390 0.0072 0.0352 0.0071 0.0348 0.0070 0.0354 0.0074 0.0388 

−1.5000 0.0134 0.0635 0.0118 0.0588 0.0117 0.0582 0.0117 0.0590 0.0124 0.0637 

−1.4000 0.0215 0.1007 0.0194 0.0955 0.0192 0.0945 0.0193 0.0957 0.0205 0.1013 

−1.3000 0.0341 0.1546 0.0314 0.1492 0.0311 0.1478 0.0314 0.1493 0.0332 0.1556 

−1.2000 0.0531 0.2284 0.0499 0.2236 0.0494 0.2218 0.0498 0.2236 0.0523 0.2297 

−1.1000 0.0805 0.3237 0.0769 0.3204 0.0762 0.3182 0.0768 0.3203 0.0799 0.3253 

−1.0000 0.1185 0.4386 0.1147 0.4379 0.1138 0.4357 0.1146 0.4378 0.1180 0.4406 

−0.9000 0.1687 0.5668 0.1650 0.5699 0.1639 0.5679 0.1649 0.5697 0.1684 0.5692 

−0.8000 0.2319 0.6965 0.2287 0.7042 0.2274 0.7028 0.2286 0.7039 0.2319 0.6993 

−0.7000 0.3075 0.8108 0.3053 0.8233 0.3039 0.8229 0.3051 0.8230 0.3078 0.8140 

−0.6000 0.3929 0.8894 0.3922 0.9062 0.3908 0.9073 0.3920 0.9060 0.3935 0.8930 

−0.5000 0.4835 0.9123 0.4847 0.9318 0.4835 0.9345 0.4844 0.9318 0.4845 0.9161 

−0.4000 0.5729 0.8633 0.5761 0.8834 0.5752 0.8876 0.5759 0.8837 0.5743 0.8672 

−0.3000 0.6535 0.7354 0.6586 0.7532 0.6582 0.7585 0.6584 0.7537 0.6553 0.7389 

−0.2000 0.7175 0.5327 0.7241 0.5457 0.7243 0.5513 0.7240 0.5465 0.7196 0.5355 

−0.1000 0.7581 0.2722 0.7657 0.2782 0.7665 0.2835 0.7657 0.2793 0.7604 0.2738 

0.0000 0.7709 −0.0190 0.7787 −0.0207 0.7799 −0.0165 0.7788 −0.0195 0.7733 −0.0188 

0.1000 0.7544 −0.3077 0.7617 −0.3169 0.7632 −0.3143 0.7619 −0.3157 0.7568 −0.3092 

0.2000 0.7105 −0.5617 0.7166 −0.5767 0.7183 −0.5760 0.7169 −0.5757 0.7126 −0.5648 

0.3000 0.6441 −0.7548 0.6485 −0.7731 0.6502 −0.7742 0.6489 −0.7726 0.6458 −0.7593 

0.4000 0.5621 −0.8719 0.5646 −0.8908 0.5661 −0.8934 0.5650 −0.8908 0.5633 −0.8773 

0.5000 0.4724 −0.9103 0.4730 −0.9274 0.4742 −0.9308 0.4734 −0.9278 0.4730 −0.9161 

0.6000 0.3824 −0.8787 0.3815 −0.8922 0.3824 −0.8958 0.3819 −0.8931 0.3825 −0.8842 

0.7000 0.2984 −0.7940 0.2964 −0.8029 0.2969 −0.8063 0.2966 −0.8041 0.2980 −0.7986 

0.8000 0.2247 −0.6765 0.2220 −0.6809 0.2222 −0.6836 0.2221 −0.6822 0.2239 −0.6799 

0.9000 0.1635 −0.5462 0.1606 −0.5467 0.1606 −0.5486 0.1606 −0.5479 0.1624 −0.5481 
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1.0000 0.1153 −0.4193 0.1125 −0.4170 0.1123 −0.4181 0.1124 −0.4179 0.1141 −0.4198 

1.1000 0.0792 −0.3070 0.0767 −0.3030 0.0764 −0.3034 0.0765 −0.3035 0.0780 −0.3063 

1.2000 0.0532 −0.2149 0.0512 −0.2103 0.0509 −0.2102 0.0510 −0.2104 0.0522 −0.2135 

1.3000 0.0354 −0.1444 0.0339 −0.1399 0.0336 −0.1395 0.0337 −0.1397 0.0345 −0.1425 

1.4000 0.0237 −0.0937 0.0225 −0.0898 0.0224 −0.0892 0.0224 −0.0893 0.0230 −0.0917 

1.5000 0.0162 −0.0592 0.0154 −0.0562 0.0152 −0.0556 0.0153 −0.0555 0.0157 −0.0574 

1.6000 0.0114 −0.0372 0.0109 −0.0351 0.0108 −0.0345 0.0109 −0.0343 0.0111 −0.0357 

1.7000 0.0084 −0.0238 0.0081 −0.0225 0.0081 −0.0220 0.0081 −0.0217 0.0082 −0.0227 

1.8000 0.0065 −0.0161 0.0062 −0.0153 0.0063 −0.0150 0.0063 −0.0147 0.0064 −0.0154 

1.9000 0.0051 −0.0117 0.0049 −0.0113 0.0050 −0.0111 0.0051 −0.0110 0.0050 −0.0114 

2.0000 0.0041 −0.0092 0.0039 −0.0091 0.0040 −0.0090 0.0041 −0.0089 0.0040 −0.0091 

2.1000 0.0032 −0.0076 0.0031 −0.0076 0.0031 −0.0076 0.0033 −0.0076 0.0032 −0.0076 

2.2000 0.0025 −0.0064 0.0024 −0.0063 0.0025 −0.0064 0.0026 −0.0065 0.0025 −0.0065 

2.3000 0.0019 −0.0053 0.0018 −0.0052 0.0019 −0.0053 0.0020 −0.0054 0.0019 −0.0054 

2.4000 0.0015 −0.0043 0.0013 −0.0041 0.0014 −0.0042 0.0015 −0.0044 0.0014 −0.0044 

2.5000 0.0011 −0.0033 0.0010 −0.0031 0.0010 −0.0032 0.0011 −0.0034 0.0010 −0.0034 

2.6000 0.0008 −0.0024 0.0007 −0.0022 0.0007 −0.0023 0.0008 −0.0025 0.0007 −0.0024 

2.7000 0.0006 −0.0017 0.0005 −0.0015 0.0005 −0.0015 0.0006 −0.0017 0.0005 −0.0016 

2.8000 0.0005 −0.0011 0.0004 −0.0009 0.0004 −0.0009 0.0005 −0.0010 0.0004 −0.0010 

2.9000 0.0004 −0.0006 0.0003 −0.0004 0.0004 −0.0005 0.0004 −0.0006 0.0003 −0.0005 

3.0000 0.0003 −0.0003 0.0003 −0.0002 0.0003 −0.0002 0.0003 −0.0003 0.0003 −0.0002 
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