
Applied Mathematics, 2014, 5, 832-841 
Published Online March 2014 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2014.55079  

How to cite this paper: Fortin, J.G., et al. (2014) Comparison of Machine Learning Regression Methods to Simulate NO3 Flux 
in Soil Solution under Potato Crops. Applied Mathematics, 5, 832-841. http://dx.doi.org/10.4236/am.2014.55079 

 
 

Comparison of Machine Learning  
Regression Methods to Simulate NO3 Flux  
in Soil Solution under Potato Crops 
J. G. Fortin1*, A. Morais1, F. Anctil1, L. E. Parent2 
1Department of Civil and Water Engineering, Université Laval, Québec, Canada 
2Department of Soils and Agrifood Engineering, Université Laval, Québec, Canada 
Email: *jerome.goulet-fortin.1@ulaval.ca 
 
Received 21 December 2013; revised 21 January 2014; accepted 28 January 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

   
 

 
 

Abstract 
Nitrate (NO3) leaching is a major issue in sandy soils intensively cropped to potato. Modelling 
could test the effect of management practices on nitrate leaching, particularly with regard to op- 
timal N application rates. The NO3 concentration in the soil solution is well known for its local 
heterogeneity and hence represents a major challenge for modeling. The objective of this 2-year- 
study was to evaluate machine learning regression methods to simulate seasonal NO3 concentra- 
tion dynamics in suction lysimeters in potato plots receiving different N application rates. Four 
machine learning function approximation methods were compared: multiple linear regressions, 
multivariate adaptive regression splines, multiple-layer perceptrons, and least squares support 
vector machines. Input candidates were chosen for known relationships with NO3 concentration. 
The best regression model was obtained with a 6-inputs least squares support vector machine 
combining cumulative rainfall, cumulative temperature, day of the year, N fertilisation rate, soil 
texture, and depth. 
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1. Introduction 
Groundwater nitrate (NO3) contamination is particularly common in sandy soils intensively cropped to potato or 
other high-N demanding crops. Estimates of the apparent recovery of N fertiliser in the potato plant in Quebec 
ranged between 29% - 70% in loamy sands [1] and 21% - 62% in sandy soils [2]. Modeling could test the effect 
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of management practices on nitrate leaching, particularly with regard to optimal N application rates. 
Process-based NO3 models require local soil, climatic, and management data as input, which are generally not 

available unless model calibration is the main intent [3]. Alternative approaches using empirical relationships 
between N soil status and surrogate variables may therefore fill that gap. Machine learning is one of the most 
important and useful data mining tools that can reveal non-linear interactions and patterns among data sets.  

The objective of this study was to compare machine learning regression methods to simulate the seasonal dy-
namics of daily NO3 flux (NF) from surrogate input variables. Four methods were evaluated: multiple linear re-
gression (MLR) used here as reference model, multivariate adaptive regression splines (MARS), multiple-layer 
perceptrons (MLP), and least squares support vector machines (LS-SVM). Input candidates were selected for 
their known relationships with NF: N fertilization rate (Nfert), cumulative rainfall (Σrain), cumulative tempera-
ture (Σtemp), day of the year (DOY), percentage of clay (% Clay), and soil depth (depth). The NO3 losses in kg 
NO3·ha−1are generally computed as the integral of the curve relating concentration to cumulative water loss [4]. 
Only NO3 concentration was considered in this study. 

2. Material and Method 
The meteorological data were obtained at a daily time-step from a nearby micro-meteorological station from 
planting to harvest. In most N and C models, the minimum climatic input data requirement for simulating soil 
biological activity includes precipitation, temperature, and information on potential (or open pan) evapotranspi-
ration. Because soil organic matter mineralization into inorganic N forms shows reportedly little sensitivity to 
evapo transpiration [5], only cumulative temperature and cumulative precipitation were considered. 

Soil NO3 concentration data were collected from 4rainfedpotato (Solanum tuberosum L.) fields located at 
Groupe Gosselin FG Inc. near Pont Rouge, Québec, Canada (Lat. 46˚45'N; Long. 71˚42'W). Each site was di-
vided into three large blocks submitted to the following N treatments at planting: 0, 90, 130, and 170 kg·N·ha−1. 
Soils were sampled in the spring at each site to determine particle-size distribution using the hydrometer method 
[6]. Suction lysimeters (model 1900L24-B02M2, Soil Moisture Equipment Corp., Ca) were installed into soil at 
planting. There were 3 replications per treatment, for a total of 36 lysimeters. Extraction of soil water from suc-
tion lysimeters was performed about 7 - 8 times each year. The NO3 concentration of the solution was deter-
mined by liquid chromatography using a Dionex ICS2000 equipped with a UV-detector (Dionnex Corporation, 
Synnyvale, Ca). For each treatment, the results of 3 replications were averaged prior to modeling. 

2.1. The Regression Models 
2.1.1. Multiple Linear Regression 
Multiple linear regression (MLR) was used as a reference model because of its simplicity and wide usage. It re-
lates p explanatory variables x to NF at each time step t by fitting a linear equation to the data [7]: 

d
d
NF b

t
ε= +X                                      (1) 

where dNF/dt is a 1n×  column vector (n = number of sampling occasions), X is a ( )1n p× +  matrix, b is a 
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2.1.2. Multivariate Adaptive Regression Splines 
The multivariate adaptive regression splines (MARS) simulates NF seasonal dynamics with M basis functions as 
follows [8]: 
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where c0 is a constant, ( )mB x  is the mth basis function and cm is coefficient of the mth basis functions. MARS 
builds a model in two stages as forward and backward passes [9] [10]. During the forward pass, the algorithm 
starts with a “no-knowledge” model (i.e. the average response values at each time-step). Afterwards, the algo-
rithm adds basis functions in pairs to the model. At each step, it finds the pair of functions producing maximum 
reduction of the error term. The two functions in the pair are identical except that a different side of a mirrored 
hinge function is used for each function. The addition of basis functions continues until the change in residual 
error becomes sufficiently small or until a pre selected maximum number of basis functions set sis reached. To 
avoid over-fitting, the backward pass prunes the model. It removes basis functions one by one, deleting the least 
effective ones at each step until it finds the best sub-model.  

In order to determine which basis functions should be included in the model and to secure model generaliza-
tion capacity, MARS exploits a generalized cross validation (GCV) [11] [10]: the mean squared residual error 
divided by a penalty depending on model complexity. The GCV criterion is defined as follows [12]: 
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where C(M) is a complexity penalty that increases with the number of basis functions in the model [9]: 

( ) ( )1C M M dM= +                                  (5) 

where M is the number of basis functions in Equation (3) and d is a penalty for each basis function included in 
the model. It can be also regarded as a smoothing parameter. During this study, all MARS models were built 
using the ARES lab toolbox ver.1.5.1 [13]. 

2.1.3. Multiple-Layer Perceptron 
Multiple-layer perceptron networks (MLPs) are also considered. They consist in a single layer of hidden neurons 
and a single output neuron. The MLP function of NF must be optimized at each time step across the following 
linear combination of multivariate functions: 

2 1
d

d j ij i j
j ij
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where x is an ith-dimensional input vector, j is number of hidden neurons, ω  are neural weights, and β  are 
neural biases. The sigmoid tangent activation function G1 and the linear activation function G2 were computed as 
follows [14]: 

( ) ( )1
2 1

1 exp 2
G ξ

ξ
= −

+ −
                                      (7) 

( )2G ξ ξ=                                             (8) 

where ξ  is the weighted sum of information from the previous layer of neurons.  
Stacking [15] was selected to support MLP’s generalization. This method calibrates several networks of the 

same architecture and simulates NF by calculating the mean of the responses across networks. 

2.1.4. Least Squares Support Vector Machine 
In SVM regression, the inputs are mapped in an m-dimensional feature space using some fixed (nonlinear) map-
ping, and a linear model is built in this feature space. Mathematically, it is given by [11]: 

( )
1
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                              (9) 

where X is the input vector, ω  the SVM weights vector, ϕ  denotes a set of nonlinear transformations, and β  
is the bias. The algorithm performs regression in the high-dimension feature space using the ε -insensitive loss as 
cost function (see [11], for details) and, simultaneously, reduces model complexity minimizing 2ω . This can be 
described by introducing the non-negative slack variables iξ  and iξ

∗  that measure the deviation of the n training 
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samples outside the ε -insensitive zone (also named ε -tube). The SVM regression is thus formulated as a mi-
nimization of the following functional: 

( )2
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where the constant C > 0 determines the trade-off between the complexity of the model (flatness) and up to what 
deviations larger than ε  are tolerated. Equation (11) implies that only data outside the ε -tube (i.e. “support 
vectors”) will be used in model building. This optimization problem can be transformed into a dual problem (see 
[16], for details) and its solution is given by: 
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where nsv is the number of support vectors, ,i ia a∗  are Lagrange multipliers, and K is a specified kernel function 
that measures the non-linear dependence between two instances of the input variables. Examples of kernel func-
tions commonly used by SVMs are polynomial, radial basis, and sigmoid.  

Least squares support vector machine (LS-SVM) is a reformulation of SVM. The LS-SVM uses a least squares 
loss function instead of the ε -insensitive loss function. It is known to be easier to optimize with shorter com-
putational time [17]. In LS-SVM, the ε -tube and slack variables are replaced by error variables, which inform on 
the distances from each point to the regression function. All samples in LS-SVM are therefore support vectors, i.e. 
all training data are used to build the model. The regularization constant C (which was related to the ε -tube) is 
replaced by γ, determining the trade-off between the fitting error minimization and smoothness of the estimated 
function. Although the choice of kernel functions is the same as SVM, LS-SVM generally uses the radial basis 
function, which is defined as follow: 

( ) ( )2 2,  exp 2i iK x x x x σ= − −                            (13) 

where σ  is a width parameter. The γ and σ  parameters have to be determined by the user. All LS-SVM re-
gression models were performed using the LS-SVM lab toolbox [18]. 

2.2. Model Calibration 
The available 14 field plots were split into training and validation datasets; 65% of them were selected to train 
the model while the remaining was used for validation. To ensure statistical homogeneity between the training 
and testing datasets, a (1-d) Kohonen self-organizing feature map (KSFOM) [19] was constructed with maximal 
seasonal NF’s as input. 

Input variables selection is a typical problem for machine learning. As the a priori knowledge of the problem 
led us considering few entries, a sequential forward selection was chosen for its simplicity. In sequential forward 
selection, the model inputs are first tested individually. Thereafter, following a stepwise method, combinations 
with an increasing number of variables are tested. The process stops when the addition of further variable stops 
increasing model’s performance. A first sequential forward selection was operated with a given set of model pa-
rameters. Once the best combination of variable was found, these parameters were optimized and a second se-
quential forward selection was done to ascertain that the best combination of variable did not change with the 
new parameter values. Only the performance obtained with the optimized parameters are presented here. 

2.3. Evaluation 
Model performance was evaluated calculating the Mean Absolute Error (MAE) and the Root Mean Square Error 
(RMSE) on NF—see [20] for details about these linear scoring rules. 

The scale dependency of the linear scoring rules can be overcome using a skill score: a simple score standardiza-
tion method that compares the performance of the simulation with that of a reference simulation. The Nash- 
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Sutcliffe efficiency index (NS) was use to this purpose [21]. A NS of 1 represents a perfect fit between simu-
lated and observed values, while a NS of 0 is equivalent to a “no-knowledge” model, namely the mean of ob-
servations at every time step. Since scoring rules are averaged across the dataset, scatter plots are also drawn and 
regression lines are computed to visually assess the concordance and bias between simulated and observed NF. 

3. Results and Discussion 
Figure 1 presents the measured seasonal NF for all plots for the 2 seasons of the study. Because some of the 
lysimeters did not retain their tension in 2012, the 0 and 90 kg·N·ha−1 treatments were only represented for one of 
the 2 sites in the first year. Note that all lysimeters did not collect water at every sampling time, explaining the 
disparities between time-series. The seasonal dynamics is generally characterized by a NF peak following N ap-
plication at planting. As plants grew and took up nitrates, NF generally decreased as reported in previous studies 
(e.g. [22]). Averaged NF of the 32 operational lysimeters over the entire season of measure was145 mg NO3·L−1, 
which is comparable to reported NF for sandy soil under potato in Quebec [23] [24]. A loose relationship between 
N treatment and NF can be observed at Figure 1 (coefficient of correlation = 0.33). Higher maximal seasonal NFs 
were obtained with treatments of 130 and 170 kg·N·ha−1 and the 0 treatment generally show low NF values. 
However, this relationship was not linear. For instance, one of the 170 kg·N·ha−1treatment in 2013 presented very 
low maximal NF while a 0 treatment presented relatively high NF in 2012 possibly due to stimulated and impaired 
growth patterns, respectively. This suggests that other explicative variables are required to reliably assess NF. 

3.1. Modelling of NO3 Flux Concentration 
Statistics on models’ performance in training are presented in Table 1, while Table 2 presents statistics on se-
lected model performance for validation. The best MLR model was retained as reference (for brevity, only the 
best MLR is presented in Table 2). It contains input variable candidates, namely Σrain, DOY, Σtemp, Nfert, 
depth and %clay. The NS reached 0.33 in training, with MAE of 79.2 mg NO3 L−1 (50.0% of the mean NFvalue 
of the calibration samples). Performance on testing, however, revealed complete absence of generalisation ca-
pacity of the linear approach. Figure 2(a) presents the scatter plot of observed and simulated NF using the best 
MLR during training and validation. Bias was close to 3000 mg NO3 L−1 during validation. 

3.1.1. Multivariate Adaptive Regression Splines 
For MARS, the variable explaining most variance was Σrain (NS = 0.24 in training), suggesting the importance 
of seasonal rainfall on NO3 leaching. The DOY and Σtemp also appeared influential with NS of about 0.2 in 
training. Depth and % clay did not weighted much at this step of the calibration. A 2-inputs MARS combining 
DOY and Σrain increased NS to 0.34in training. The addition of Σtemp and Nfert further increased performance, 
as suggested by the relationship between NFC and Nfert in Figure 1. The NS was 0.54 in training and the model 

 

 
        Figure 1. Seasonal dynamic of the measured NO3 concentration (mg NO3·L−1).                      
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Table 1. Statistics of model performance during training.                                                        

 RMSE MAE NS r2 

 mg NO3·kg−1 mg NO3·kg−1   
MLR     

Nfert + DOY + Σrain + Σtemp + depth + %Clay 101.21 79.25 0.33 Reference 

MARS     
Nfert 110.64 88.63 0.20 −0.19 

DOY 110.68 88.01 0.20 −0.20 

Σrain 107.76 79.56 0.24 −0.13 

Σtemp 108.87 86.35 0.22 −0.16 

% Clay 123.61 101.64 0.00 −0.49 

Depth 120.77 92.89 0.04 −0.42 

Σrain + DOY 100.39 75.98 0.34 0.02 

Σrain + DOY + Σtemp 102.14 76.37 0.32 −0.02 

Σrain + DOY + Σtemp + Nfert 83.89 60.91 0.54 0.31 

Σrain + DOY + Σtemp +Nfert + depth 83.89 60.91 0.54 0.31 

Σrain + DOY + Σtemp + Nfert + %Clay 83.89 60.91 0.54 0.31 

Σrain + DOY + Σtemp + Nfert + %Clay + depth 83.89 60.91 0.54 0.31 

MLP     
Nfert 110.64 88.63 0.20 −0.19 

DOY 110.74 87.71 0.20 −0.20 

Σrain 107.64 80.11 0.24 −0.13 

Σtemp 108.75 85.66 0.22 −0.15 

% Clay 123.98 101.91 −0.01 −0.50 

Depth 120.77 92.89 0.04 −0.42 

Σrain + DOY 103.61 76.98 0.30 −0.05 

Σrain + DOY + Σtemp 100.03 74.37 0.34 0.02 

Σrain + DOY + Σtemp + Nfert 66.30 46.75 0.71 0.57 

Σrain + DOY + Σtemp +Nfert + depth 64.00 44.55 0.73 0.60 

Σrain + DOY + Σtemp + Nfert + %Clay 59.59 43.35 0.77 0.65 

Σrain + DOY + Σtemp + Nfert + %Clay + depth 58.10 41.62 0.78 0.67 

LS-SVM     
Nfert 110.64 88.63 0.20 −0.19 

DOY 110.42 87.57 0.20 −0.19 

Σrain 109.98 81.13 0.21 −0.18 

Σtemp 109.86 87.57 0.21 −0.18 

% Clay 120.77 92.89 0.04 −0.42 

Depth 105.47 82.58 0.13 −0.30 

Σrain + DOY 100.76 74.59 0.33 0.01 

Σrain + DOY + Σtemp 98.13 73.36 0.37 0.06 

Σrain + DOY + Σtemp + Nfert 43.94 28.43 0.87 0.81 

Σrain + DOY + Σtemp +Nfert + depth 43.73 28.28 0.87 0.81 

Σrain + DOY + Σtemp + Nfert + %Clay 21.77 15.89 0.97 0.95 

Σrain + DOY + Σtemp + Nfert + %Clay + depth 21.70 15.93 0.97 0.95 
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Figure 2. Scatter plot of the measured and simulated NO3 concentration 
(mg·NO3·L−1). The black line indicates the 1:1 line (perfect fit).                
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Table 2. Statistics of the selected model performance during validation.                                            

 RMSE MAE NS r2 

 mg NO3·kg−1 mg NO3·kg−1   
MLR     

Nfert + DOY + Σrain + Σtemp + depth + % Clay 3936.10 3590.50 −873 Reference 

MARS     
Σrain + DOY + Σtemp + Nfert 113.27 76.00 0.28 1.00 

MLP     
Σrain + DOY + Σtemp + Nfert + %Clay 92.03 64.07 0.52 1.00 

LS-SVM     
Σrain + DOY + Σtemp + Nfert + %Clay + depth 78.30 58.16 0.65 1.00 

 
was able to explain about 30% more variance than the reference model (r2 = 0.3). Further addition of depth and % 
clay did not improve model’s performance. Even though the generalisation capacity was highly improved as 
compared to MLR, it remained low with NS of 0.28 in validation. Figure 2(b) presents the scatter plot of ob-
served and simulated NF using the best 4-inputs MARS. Compared to the reference model, the regression lines 
were closer to 1:1 and the intercept closer to 0, but scattering remained high especially in validation. The opti-
mal maximal number of basis functions was 11. 

3.1.2. Multiple-Layer Perceptron 
Performances of the 1 to 3 inputs MLPs were similar to those of the MARS models. The main difference be-
tween these approaches was that the addition of depth and % clay substantially increased MLP performance. A 
5-inputs MLP combining Σrain, DOY, Σrain, Nfert and % clay yielded NS of 0.77 in training. The generalisation 
capacity of the model appeared relatively good compared to the reference model, with NS of 0.52. The gain in 
performance over the linear model was substantial (r2 = 0.65). The scatter plot of the best 5-inputs MLP 
(Figure 2(c)) showed better fit than the best MARS, particularly in validation. The optimal number of hidden 
nodes was 3. 

3.1.3. Least Squares Support Vector Machine 
The optimal values for LS-SVM parameters γ and σ  were 11 and 1.1, respectively, compared to default 

values of 10 and 0.3 suggested in the LS-SVM lab toolbox. This larger σ  indicates that more relative weights 
were given to points with larger distance from the regression function. 

The 1 to 3 inputs LS-SVMs performed similarly as MARS and MLP. However, compared to MLP, the 
LS-SVMs showed higher sensitivity to depth and % clay. In training, NS of the best 6-input models (combining 
all input candidates) reached 0.95, with MAE as low as 15.9 mg NO3 kg−1 (10% of the mean NF value of the 
training dataset). Mean bias appeared significantly smaller than what was obtained in a previous study on potato 
fields within the same geographical location using transfer functions [24]. As expected, performance considera-
bly decreased in validation, but less than the previous methods. The NS was 0.65 and MAE was 58.2 mg NO3 
kg−1 (46% of the mean NF value of the validation dataset). Figure 2(d) revealed the very close fit of the 6-inputs 
LS-SVM in training. In calibration, however, the bias was higher than MLP, even though the scattering was 
slightly narrower.  

These results suggests that the proposed 6-inputs LS-SVM performed best for general diagnostic of N leach-
ing risk considering soil texture, local meteorological condition and N fertilisation rates. Further inclusion of 
spatial surrogate variables at field level (ex: leaf area index) could contribute reducing the error even more. 
Figure 3 presents the architecture of the final LS-SVM model and its general expression. 

4. Conclusion 
This study highlighted the non-linearity of NO3 flux in the soil solution and the need to rely on non-linear re-
gression methods for its characterization. The best regression model was obtained with a 6-input least squares 
support vector machine combining cumulative rainfall, cumulative temperature, day of the year, N fertilisation  
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                   Figure 3. Architecture of the final 6-input LS-SVM and its general expression. 
 
rate, soil texture, and depth. Performance in validation is satisfying considering the challenge that represents the 
NO3 flux concentration modeling of the soil solution. Further addition of spatial surrogate variables such as the 
leaf area index could improve the generalisation capacity of the model. 
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