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Abstract 
A SEI model for hepatitis B is constructed where the susceptibility and other crucial transmission 
probabilities depend on the chronological age and the basic reproduction rate 0R  is derived. 
Under suitable (biological and mathematical) assumptions in a closed population, results of Hou-
pa D. D. E. et al. [1] are extended from constant case of p  and q  to age-dependent case: the dis-
ease-free equilibrium is globally asymptotically stable (GAS) if 0 1R < . On the other hand, 0 1R >  
induces that endemic equilibrium is GAS and the system is uniformly persistent. 
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1. Introduction 
This paper studies a system of equations modelling the dynamic of hepatitis B with age-dependent susceptibility 
in a closed population. Its manifestations in human body are shown by hepatitis B antigens (small spherical 
particles, tubular forms and a large shelled spherical particles) because of their association with a high risk of 
hepatitis [2]. Hepatitis B caused acute hepatitis and severe chronic liver disease. Hepatitis is endemic in Africa 
[3] [4]. According to Pasquini et al. [5] (with a computer model), Bonzi et al. [6] (with an EDOs model), Inaba 
et al. [7] (theoretically with a PDE) or D. J. Nokes et al. [8] (with statistics tools) and L. Zou et al. [9] (with 
PDE by fitting model to data), age factor is important in epidemiology of disease like hepatitis and reveals most 
of time useful informations on the dynamics of the epidemic. 
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A SEI model for hepatitis B is constructed where the susceptibility and other crucial transmission pro- 
babilities depend on the chronological age and the basic reproduction rate 0R  is derived. Under suitable 
(biological and mathematical) assumptions in a closed population, it is proved that the disease-free equilibrium 
is globally asymptotically stable (GAS) if 0 1,R <  and 0 1R >  induces that endemic equilibrium is GAS and 
the system is uniformly persistent. 

The work is organized as follows. After the presentation of the mathematical model with its main results, 
Section 2 studies the well posedness of the PDE and derives preliminary results useful to study the long-term 
behaviour of the model. Moreover, it deals with the wellposedness of the model and proves the global 
asymptotic stability of the disease-free equilibrium when the basic reproduction number 0 1R <  and stability of 
the endemic equilibrium (EE) with the carriers (E) transmission rate Eβ  small enough to be considered as zero. 
These results are verified through numerical simulations extended by a discussion and conclusions in Section 3. 

2. Mathematical Model 
2.1. Presentation 
In this study we will consider the following (chronological) age-dependent susceptibility model:  

( ) ( ) ( ) ( ) ( ) ( )
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= −

= − +

∫

∫

                 (1.1) 

posed for 0t >  and 0a > . Here ( ),s t a  denotes the age-specific density of susceptible, ( )E t  and ( )I t  
denotes respectively the age-specific densities of acute infected (that can be symptomatic or asymptomatic) and 
chronic carriers. In addition ( )0,p L∞+∈ ∞  is a given function such that ( )0 1p a< ≤  ..ea  while ( ) ( )1q a p a≡ − . 
Function q  represents the age-specific probability to become a chronic carrier when becoming infected. 
Function p  denotes the probability to develop an acute infection when getting the infection at age a  ([8] 
studied the age-dependence susceptibility to the infection). We conditionally extend in some sens results of 
Houpa D. D. E. et al. [1] who analyzed the case where p  and q  are constant. Parameter ( ) 0m a >  denotes 
the natural death rate at age a , 0Iµ >  and Eµ  denotes the exit rates associated to each infected class. 
Clearly at each age 0a > , ( ) ( )0 min ,I Em a µ µ≤ ≤ . 0ε >  is the transition rate from E  to I . Obviously, 

Eµ ε≥ . In some studies (like Kouakep et al. [10]) authors set E Iµ µ≥ . The term ( ),t aλ  corresponds to the 
age-specific force of infection and follows the usual law of mass-action, that reads as  

( ) ( ) ( ) ( ) ( ), .I Et a a I t a E tλ β β= +  

This problem (1.1) is supplemented together with the boundary conditions:  

( ) ( )
( )
( )

0

0

,0 , constant influx

0 ,

0 ,

S t

E E

I I

= Λ

=

=

                               (1.2) 

and initial data  

( ) ( )00, .S a S a=                                       (1.3) 

This model (1.1) is suggested by Melnik et al. [11] for the age-dependent susceptibility concept supplemented 
with Kouakep et al. [10] introducing p  and q . 

We recall that according to WHO [4], Bonzi et al. [6] and Fall et al. [3], asymptomatic carriers has a low 
infectious rate. As a consequence in most part of this work one will assume that  

( ) ( )0 .E Ia aβ β≈                                      (1.4) 

Then  
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( ) ( ) ( ), .It a a I tλ β=                                    (1.5) 

In the above model (1.1)-(1.5), we do not take into account possible vertical transmission and we do not 
consider any control strategy such as vaccination campaign. It seems to be relevant together the assumption of 
WHO [4] wich considers that vertical transmission of the disease exists in sub-Saharan Africa. But its influence 
on the dynamics of the disease is rather small because the proportion of chronic infections acquired perinatally is 
low [12]. 

Using the data, Nokes et al. in [8] constructed the prototype (useful for us) in the simulations:  

( ) 0.4550.645e , 0.aq a a−= >                                  (1.6) 

We do not focus on chronological age in the infective classes. 

2.2. Main Results and Simulations 
The basic reproduction rate is defined by  

( ) ( )( ) ( ) ( )0 0

1 d .E I F
I E

R p a q a a S a aε µ β
µ µ

+∞
= +∫                      (1.7) 

The DFE is defined by  

( )( ) ( )( )( )0
, , exp d ;0;0 .

a
F F FS a E I m σ σ= Λ −∫                          (1.8) 

For endemic equilibrium, we obtain only in the case 0 1R ≥ ,  

( ) ( ) ( )( )0
exp d .

a
e e IS a m Iσ β σ σ= Λ − +∫                            (1.9) 

linked to  

( ) ( )( ) ( ) ( )
0

1 d 1E I e
I E

p a q a a S a aε µ β
µ µ

+∞
+ =∫  

That means   

( ) ( )( ) ( ) ( ) ( )( )0 0

1 exp d d 1.
a

E I F e I
I E

p a q a a S a I aε µ β β σ σ
µ µ

+∞
+ − =∫ ∫  

Assumption 1. Assume that the maps ( )Ia aβ  is bounded and uniformly continuous from [ )0,∞  into 
itself.  

Let ( ) ln 1G x x x= − − . The function G  has only one extremum which is a global minimum 0 at 1, 
satisfying ( )1 0G =  (see [13]). We make these assumptions for the endemic equilibrium ( )( ), ,e e eS a E I  when 

0 1R > : 
Assumption 2. 

1. ( ) ( ) ( )
( )

( )
( ) ( ) ( ), ,

, 1
,

a
e I e

e

S t a S t a
H t a S a m a a I

S a S t a
β

  ∂
= − + +    

  
 has a constant sign on [ )20;+∞ . 

2. On the attractor   (an invariant compact attractor of all bounded sets following the Proposition 2 
therein), the following inequality holds true: 

( ) ( )
( ) ( )

( )
( )

( )
( )

, ,
0.e e

e e e e

I t E S t a I E t S t a
G G G
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     

 

We make also this assumption for the disease free equilibrium ( )( ),0,0FS a  when 0 1R < : 

Assumption 3. ( ) ( )
( )

( )
( ) ( ), ,

, 1
,

a

F

S t a S t a
P t a m a

S a S t a
  ∂

= − +    
  

 has a constant sign on [ )20;+∞ . 

The global stability of the steady states is resumed in the following Theorem 1. 
Theorem 1. Assume Assumptions 1, 2 and 3. Then: 
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 If ( ) ( )( ) ( ) ( )0 0

1 d 1E I F
I E

R p a q a a S a aε µ β
µ µ

+∞
= + <∫ , then the DFE, the disease free equilibrium, is glo- 

bally asymptotically stable.  
 If 0 1R > , then there exists an endemic equilibrium that is globally asymptotically stable for all 0S > , 

0E >  and 0I > . Moreover, in that case ( )0 1R >  the system is uniformly persistent.  
Remark 1. We will see that disease free equilibrium (DFE) exists whenever 0 1R >  or 0 1R ≤ . But endemic 

equilibrium exists only when 0 1R ≥ .  
We denote in Tables 1 and 2: “p” for people(s), “yr” for year and “nbb” for “new born babies”. We made 

simulations with the values in Tables 1 and 2 and denoted by Λ  the constant birth rate at any positive time 
(with year unit). We consider the following parameters for DFE case ( 5

0 10 1R −= <  related to Figures 1-3). 
For endemic case ( 0 2.20 1R = >  related to Figures 4-10), we consider the values in the Table 2. 
We have tested our Assumption 2-2 on the Figures 9 and 10 with 12.63eE =  and 405.83eI = : it is verified 

in our simulations up to some time (considered as origin by time shifting or rescalling, wich is not very 
important in our case for long term dynamics in our simulations or calculations) with the global asymptotic 
stability of the endemic case ( )0 1R > . One could see that Assumption 2 and 3 could be relaxed by proving 
them for 0t t≥  with 0t  an arbitrary positive real constant (or number). In all the cases, we observe a period of 
stability after a severe outbreak of the disease. 

2.3. Technical Materials 
Let us introduce the Banach space ] [( )1 30; ,X L= +∞ ×   and ] )( ) { }1 2

0 0; , 0X L= +∞ × ×   endowed with 
the usual product norm as well as its positive cone X +  defined (with [ [0;+ = +∞ ) by: 

 

 
Figure 1. Function S(t, a) with R0 < 1.                       

 
Table 1. Values for R0 < 1.                                                                             

Parameters/function Age q  
Iβ  ε  

Iµ  Eµ  ( )m a  Λ  

Value(s) [0; A = 60] 0.4550.645e a−  0.000000008 0.00001 0.2018458 8.1 0.18 10 

Unit yr probability (p⋅yr)−1 (p⋅yr)−1 yr−1 yr−1 yr−1 Nbb/yr 

 
Table 2. Values for R0 < 1.                                                                             

Parameters/function Age q  Iβ  ε  Iµ  
Eµ  ( )m a  Λ  

Value(s) [0; A = 60] 0.4550.645e a−  0.0001 0.1 0.02018458 0.1 0.018 10 

Unit yr probability (p⋅yr)−1 (p⋅yr)−1 yr−1 yr−1 yr−1 nbb/yr 
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Figure 2. Function ( )
0

,
A

t S t a da∫
 with 0 1R < .            

 

 

Figure 3. Function ( )I t  with 0 1R < .                     

 

 

Figure 4. Function ( ),S t a  with 0 1R > .                   
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Figure 5. Function ( )
0

,
A

t S t a da∫
 with 0 1R > .           

 

 

Figure 6. Function ( )E t  with 0 1R > .                    

 

 

Figure 7. Function ( )I t  with 0 1R > .                     
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Figure 8. Function prevalence with 0 1R > .                 

 

 

Figure 9. Positivity of ( ) ( ), - eS t a S a  with 0 1R > .          

 

 

Figure 10. Positivity for long term dynamics of 
( )
( )

-e

e

E tE
I I t

 

with 0 1R > .                                          
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] [( )1 0; ,X L+ + + + += +∞ × × ×     

with 0 0X X X+ +=  . 
We consider also the linear operator ( ):A D A X X⊂ →  defined by 

( )
( )

.
0 0

E E E

I I I

m

A

ϕ ϕ ϕ
ϕ

α µ α
α µ α

′− −  
   −   =    −
    −   

 

with the non densily domain ( ) ] )( ) { }1,1 0; 0D A W= +∞ × × ×   in ( ) 0:X D A X X= ≠ . 

Finally let us introduce the nonlinear and Frechet differentiable map ( ):F D A X→  defined by: 

( )

( ) ( ) ( )

( ) ( ) ( )
0

0

.

0
d

d

I I

I IE

I
I I E

F p a a a a

q a a a a

β α ϕϕ

β α ϕα
α β α ϕ εα

+∞

+∞

− 
   Λ   
   =
   
   
   + 

∫

∫

 

Identifying ( ) ( ) ( )( ),. , ,S t E t I t  and ( ) ( ) ( ) ( )( )T
,. ,0, ,u t S t E t I t= , one obtains that System (1.1)-(1.5) re- 

writes as the following non-densely defined Cauchy problem (1.10):  

( ) ( ) ( )( )d
, 0

d
u t

Au t F u t t
t

= + >                                (1.10) 

( ) ( )( )0 0 0 00 . ,0, ,u S E I X += ∈  

We first derive that the above abstract Cauchy problem (1.10)-(1.11) generates a unique globally defined and 
positive semiflow. Moreover A  satisfies the Hille-Yosida property. Then standard methodologies apply to pro- 
vide the existence and uniqueness of mild solution for system (1.10)-(1.11) (see for instance [10] [14]-[17]): 

Proposition 1. Let Mathematical Assumption 1 be satisfied. 
Then there exists a continuous semiflow that is bounded dissipative ( ){ } 0t

U t
≥

 on 0X +  into itself such that 
for each 0x X +∈ , the map ( )t U t x→  is the unique integrated solution of (1.10)-(1.11) with initial data x , 
namely ( )t U t x→  satisfies 

(i) ( )
0

( ) d , 0
t
U s x s D A t∈ ∀ ≥∫ ,  

(ii) ( ) ( ) ( )( )
0 0

d d
t t

U t x x A U s x s F U s x s= + +∫ ∫  for each 0t ≥ . 
Remark 2. One can prove the proposition 1 by using ideas of corollaries 1 and 2 in Melnik et al. [11].  
By using results in Sell and You [18], one can prove that ( ){ } 0t

U t
≥

 is asymptotically smooth. Then using 
results of Hale [19] [20], Hale et al. [21], one obtains the following proposition.  

Proposition 2. Let Mathematical Assumption 1 be satisfied. Then there exists a compact set 0X +⊂  such 
that 

(i)   is invariant under the semiflow ( ){ } 0t
U t

≥
.  

(ii)   attracts the bounded sets of 0X +  under ( ){ } 0t
U t

≥
. This means that for each bounded set 0B X +⊂  

we have 

( )( )lim , 0,
t

U t Bδ
→∞

=  

where δ  is defined as  

( ), inf .sup
y Bx A

A B x yδ
∈∈

= −  

Moreover   is locally asymptotically stable. 
We will widely adapt ideas of Magal et al. [13] and Melnik et al. [11] here with Lyapunov functionals on   

for the global stability of DFE and EE. 
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1) Stability of the DFE: 0 1R <  
Let us introduce the positive map defined on  :  

( ) ( ) ( )
( ) ( ) ( )
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,
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F

S t a
V t A a G a BE t CI t
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+∞  
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∫  
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ε µ ε µ
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∫  
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FA a q a p a S aµ

ε
 = + 
 

, 1B =  and EC µ
ε

= . The equations of the system 1.1 help us to get  

for ( )d
d

V t
t
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∫  

We would like to prove that  

( ) ( ) ( ) ( )
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1 d 0.
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∫  

Three cases occur by Assumption 3: 

1. If ( )
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1 0
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, one obtains:  
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< − +    
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And by integrating from 0 to +∞ , one gets: 
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( ) ( )
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∫

 

Then  
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1 d 0.
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∫  
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1 0
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S a S t a
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  
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∫  
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3. If ( )
( )

( )
( ) ( ), ,

1 0
,

a

F

S t a S t a
m a

S a S t a
  ∂

− + <    
  

, one gets: 
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  ∂

< − +    
  

 

And by integrating from 0 to +∞ , one gets: 

( ) ( )
( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

0

0

0

, ,
1 d

,

, ,
1 d

,

, ,
1 d .

,

aE
F

F

aE
F

F

a
F

F

S t a S t a
S a m a a

S a S t a

S t a S t a
q a p a S a m a a

S a S t a

S t a S t a
S a m a a

S a S t a

µ
ε

µ
ε

+∞

+∞

+∞

  ∂
− +    

  
  ∂ ≤ + − +          

  ∂
≤ − +    

  

∫

∫

∫

 

but 1Eµ
ε

≥  and,  

( ) ( )
( )

( )
( ) ( )

0

, ,
1 d 0

,
a

F
F

S t a S t a
S a m a a

S a S t a
+∞   ∂

− + ≥    
  

∫  

that implies  

( ) ( ) ( ) ( )
( )

( )
( ) ( )

0

, ,
1 d 0.

,
aE

F
F

S t a S t a
q a p a S a m a a

S a S t a
µ
ε

+∞   ∂ + − + ≥          
∫  

Hence  

( ) ( ) ( ) ( )
( )

( )
( ) ( )

0

, ,
1 d 0

,
aE

F
F

S t a S t a
q a p a S a m a a

S a S t a
µ
ε

+∞   ∂ + − + ≥          
∫  

Finally   

( ) ( ) ( )0
d

1 .
d

E
I

V t
R I t

t
µ µ
ε

≤ −  

Hence by recalling that 0 1R < ,  

( )d
0.

d
V t

t
≤  

Finally by global stability Lyapunov-LaSalle theorem [11] [13] [22], the DFE = ( )( ),0,0FS a  is globally  

asymptotically stable because the largest invariant set of orbits ( ) ( ) ( )( ), , ,S t a I t E t  verifying ( )d
0

d
V t

t
=  is  

reduced for all positive t  and a , to ( ) ( ), FS t a S a= , ( ) 0I t =  and ( ) 0E t =  corresponding to the disease 
free steady state (DFE) seen as ( )( ),0,0FS a . 

2) Stability of the endemic equilibrium: 0 1R >  
Any solution of system (1.1) with positive initial condition remains positive indefinitely: then the system (1.1) 

is uniformly persistent (the tools are similar to Melnik [11]). 
Let ( ) ln 1G x x x= − − . The function G  has only one extremum which is a global minimum 0 at 1, 

satisfying ( )1 0G =  (see [13]). Then, we will analyse the Lyapunov functional  

( ) ( ) ( )
( )

( ) ( )
0

,
d .

e e e

S t a E t I t
V t A a G a BG CG

S a E I
+∞      

= + +           
∫  
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We notice that ( )( ), , 0e e eV S a E I =  and V  is positive definite at EE = ( )( ), ,e e eS a E I  that provides the 
minimum of V . Moreover V  is defined for all 0S > , 0E > , 0I >  and  

( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

0

d , d d1 1 1 1 1 1d ,
d , d de e e

V t S t a E t I t
A a a B C

t S a S t a t E E t t I I t t
+∞      ∂

= − + − + −          ∂     
∫  

With  

( ) ( ) ( ) ( ), and ,E E
e e eB E C I A a q a p a S aµ µ

ε ε
 = = = + 
 

 

we obtain:  

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0

0 0

0

d , ,
1 d

d ,

,
d d

,
d .

aE
e I e

e

e
e I e I e e

e e

e
I e e

e e

V t S t a S t a
q a p a S a m a a I a

t S a S t a

S t a I E t
q a S a G a I a q a a I S a G a

S a E I t

I t E S t a
q a a I S a G a

I E t S a

µ
β

ε

β β

β

+∞

+∞ +∞

+∞

  ∂ = − + − + +          
   

+ −      
   

 
−   

 

∫

∫ ∫

∫

 

We set ( ) ( ) ( )
( )

( )
( ) ( ) ( ), ,

, 1 .
,

a
e I e

e

S t a S t a
H t a S a m a a I

S a S t a
β

  ∂
= − + +    

  
 By assumption,  

( ) ( ) ( )1, 0 1 and 0 .Ep a q a p a ε µ+ = ≤ ≤ < ≤  

Then  

( ) ( )1 .E Eq a p aµ µ
ε ε

≤ + ≤  

Three cases appear by Assumption 2-1: 
1. If ( ), 0H t a > , then  

( ) ( ) ( ) ( ) ( ), , , .E EH t a q a p a H t a H t aµ µ
ε ε

 ≤ + ≤ 
 

 

By integrating from 0 to +∞ , one gets:  

( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

0 0

, ,
1 d , d .

,
aE

e I e
e

S t a S t a
q a p a S a m a a I a H t a a

S a S t a
µ

β
ε

+∞ +∞  ∂ + − + + ≥          
∫ ∫  

Then  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0

0 0

0

d , ,
d

d

,
d d

,
d ,

e e
e ea

e
I e e I e e

e e

e
I e e

e e

V t S t a S t a
S a G m a S a G a

t S a S a

S t a I E t
p a a I S a G a q a a I S a G a

S a E I t

I t E S t a
q a a I S a G a

I E t S a

β β

β

+∞

=+∞

+∞ +∞

+∞

    
≤ − −            

   
− −      

   
 

−   
 

∫

∫ ∫

∫

 

And finally ( )d
0.

d
V t

t
≤  

2. If ( ), 0,H t a =  we get: ( ) ( ), eS t a S a= . But ( ) ( ) ( ) ( ) ( ), , , .a I eS t a m a S t a a I S t aβ∂ = − −   
1) For ( ) ( ), eS t a S a=  and ( )1 0G = , one has:  



D. D. E. Houpa et al. 
 

 
718 

( ) ( ) ( )
( ) ( )

0

,
d 0,e I e

e

S t a
q a S a G a I a

S a
β

+∞  
=  

 
∫  

then 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )0 0

d ,
d d 0.

d
e e

I e e I e e
e e e

V t I E t I t E S t a
q a a I S a G a q a a I S a G a

t E I t I E t S a
β β

+∞ +∞   
= − − ≤      

   
∫ ∫  

2) For ( ) ( ) ( ) ( ) ( ), , , ,a I eS t a m a S t a a I S t aβ∂ = − −  one obtains: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0

0

d ,
d d

d

,
d .

e
e I e I e e

e e

e
I e e

e e

V t S t a I E t
q a S a G a I a q a a I S a G a

t S a E I t

I t E S t a
q a a I S a G a

I E t S a

β β

β

+∞ +∞

+∞

   
= −      

   
 

−   
 

∫ ∫

∫
 

To get ( )d
0

d
V t

t
≤ , it is enough to show that:  

( ) ( )
( )

( )
( )

( )
( )

, ,
0.

( )
e e

e e e e

I t E S t a I E t S t a
G G G

I E t S a E I t S a
     

+ − ≥          
     

 

We set: 

( )
( )

( )
( )
,

and ,e

e e

I t E S t a
x y

I E t S a
= =  

We want to prove that: 

( ) ( )1 0.G xy G G y
x

 + − ≥ 
 

 

By definition of ( )G x  we have  

( ) 1 0,G x G
x

 + ≥ 
 

 

then  

( ) ( ) ( ) ( ) ( )1 .G xy G G y G xy G x G y
x

 + − ≥ − − 
 

 

It enough to verify this sufficient condition 

( ) ( ) ( ) 0,G xy G x G y− − ≥  

Recall that 

( ) ( ) ( ) ( )( )1 1G xy G x G y x y− − = − −  

Then 

( ) ( ) ( ) 0G xy G x G y− − ≥  

if and only if  
1 0 and 1 0 or 1 0 and 1 0x y x y− ≥ − ≥ − ≤ − ≤  

that means (see Figures 9 and 10 in the simulations of subsection 1.2.2)  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
, and or , ande e

e e
e e

E t E tE ES t a S a S t a S a
I t I I t I

≥ ≤ ≤ ≥  

and,  
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( ) ( ) ( ) 0.G xy G x G y− − ≥  

By Assumption 2-2, 

( ) ( )
( ) ( )

( )
( )

( )
( )

, ,
0.e e

e e e e

I t E S t a I E t S t a
G G G

I E t S a E I t S a
     

+ − ≥          
     

 

we obtain,  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0

0

,
d d

,
d 0

e
e I e I e e

e e

e
I e e

e e

S t a I E t
p a S a G a I a p a a I S a G a

S a E I t

I t E S t a
p a a I S a G a

I E t S a

β β

β

+∞ +∞

+∞

   
−      

   
 

− ≤  
 

∫ ∫

∫
 

and 

( )d
0.

d
V t

t
≤  

3. If ( ), 0,H t a <  then: 

( ) ( ) ( ) ( ) ( ), , , .E EH t a q a p a H t a H t aµ µ
ε ε

 < + < 
 

 

By integrating from 0 to +∞ , one gets: 

( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

0 0

, ,
1 d , d .

,
aE E

e I e
e

S t a S t a
q a p a S a m a a I a H t a a

S a S t a
µ µ

β
ε ε

+∞ +∞  ∂ + − + + >          
∫ ∫  

Then,  

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0

0

0

0

d , ,
1 d

d ,

,
d

d

,
d .

aE
e I e

e

e I e
e

e
I e e

e

e
I e e

e e

V t S t a S t a
S a m a a I a

t S a S t a

S t a
q a S a G a I a

S a

I E t
q a a I S a G a

E I t

I t E S t a
q a a I S a G a

I E t S a

µ
β

ε

β

β

β

+∞

+∞

+∞

+∞

  ∂
< − − + +    

  
 

+   
 

 
−   

 
 

−   
 

∫

∫

∫

∫

 

but 1Eµ
ε

≥ . So 

( ) ( ) ( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( )

0

0

0

0

d , ,
1 d

d ,

,
d

d

,
d .

a
e I e

e

e I e
e

e
I e e

e

e
I e e

e e

V t S t a S t a
S a m a a I a

t S a S t a

S t a
q a S a G a I a

S a

I E t
q a a I S a G a

E I t

I t E S t a
q a a I S a G a

I E t S a

β

β

β

β

+∞

+∞

+∞

+∞

  ∂
≤ − − + +    

  
 

+   
 

 
−   

 
 

−   
 

∫

∫

∫

∫

 

by using results in case ( ), 0H t a > , one has: ( )d
0

d
V t

t
≤ . 
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Then by global stability Lyapunov-LaSalle theorem [11] [13] [22], the endemic equilibrium (EE) is globally  

asymptotically stable because the largest invariant set of orbits ( ) ( ) ( )( ), , ,S t a I t E t  verifying ( )d
0

d
V t

t
=  is  

reduced for all positive t  and a , to ( ) ( ), eS t a S a= , ( ) eI t I=  and ( ) eE t E=  corresponding to the 
endemic steady state ( )( ), ,e e eS a E I . 

3. Conclusions 
We observe that our computations for stability of DFE and EE are confirmed by simulations. It is also 
established that increasing the transmission coefficient Iβ , increases the basic reproduction rate. In a 
forthcoming work, we will introduce vertical transmission (because of the contreversal article Sall et al. [23] on 
WHOs [12] neglection of vertical transmission in sub-Saharan Africa), studies of (optimal) vaccination 
strategies and immigration by other ways than birth. The results of this work extend those of Melnik et al. [11] 
and Kouakep et al. [10] on a more realistic case applied to hepatitis B situation. One can study the stability of 
the endemic equilibrium (EE) with Eβ  small enough (like Ducrot et al. [10]) using perturbation arguments of 
Magal [24]. For the case (avoid here) where 0ε =  and the map ( )Ea aβ  is bounded and uniformly 
continuous from [ )0,∞  into itself, Ducrot et al. [25] deal with global stability of the disease free equilibrium 
with (constant) functions Eβ  and Iβ  by considering a particular case of the Lyapunov functional (similar to  

Magal et al. [13] and Kouakep et al. [10]) [ ]( ) ( ) ( ) ( ) ( )
0

, : dI EV I E t I t E tτ τ τ
∞

= Γ + Γ  ∫  which is non-increasing  

along the complete orbits with IΓ  and EΓ  such that  

( ) ( ) ( )
( ) ( )

0
0 e d ,I

I I I I

s
I I

a a

s sµ

µ τ β

β
∞ −

′Γ = Γ −

Γ = ∫

 

and  

( ) ( ) ( )
( ) ( )

0
0 e d ,E

E E E E

s
E E

a a

s sµ

µ τ β

β
∞ −

′Γ = Γ −

Γ = ∫

 

Note that for 0ε = ,  

( ) ( ) ( ) ( ) ( )( ) ( )0 0 0
0 d 0 1 d .I F E FR p a s a a p a s a a

∞ ∞
= Γ + Γ −∫ ∫  

Ducrot et al. [25] used also arguments like those in (Demasse et al. [17], proposition 4.1 and its proof). For 
global stability of endemic equilibrium in the case 0ε = , Ducrot et al. [25] used the following Lyapunov 
functional (under special assumptions on p ) with a well-chosen positive constant K :  

[ ]( ) ( ) ( ) ( )
( )

( )
0

,
, d ,e

e e

S t a E t
V S I t p a S a G a KG

S a E
∞    

= +       
∫                (1.11) 

The model (1.1)-(1.5) is formally equivalent (with ( ) ( ) ( ) ( )
0 0

: , d and : , dI t i t a a E t e t a a
∞ ∞

= =∫ ∫ ) to the follow- 
ing model:  

( ) ( ) ( ) ( )
[ ] ( ) ( ) ( ) ( )
[ ] ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, , , , 0, 0

, , , ,

, , , , ,

, , , .

t

t E

t I

I E

m a S t a t a S t a t a

e t a t a p a S t a

i t a t a q a S t a e t a

t a a i t a a e t a

τ

τ

λ

µ λ

µ λ ε

λ β β

∂ + = − > >  
∂ + ∂ + =

∂ + ∂ + = +

= +  

                (1.12) 

supplemented together with the boundary conditions:  

( ) ( )
( ) ( ) ( )
( ) ( )

,0 , constant influx ,

,0 ,0 0, no vertical transmission ,

,0 0, no immunity at birth ,

S t

e t e t

i t

= Λ

= =

=

                    (1.13) 
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and initial data  

( ) ( )00, .S a S a=                                    (1.14) 

By replacing a  (chronological age) by τ  (infection age) in the infectives classes e  and i , the model 
(1.1)-(1.5) is equivalent (with 0ε = ) to the following model (see Kouakep et al. [10]):  

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

, , , , 0, 0,

,0 ,

, , , 0, 0,

, , , 0, 0,

,0 , d , ,0 , d .

t a

t e

t i

S t a S t a t S t a t a

S t

e t e t t

i t i t t

e t t p a S t a a i t t q a S t a a

τ

τ

µ λ

τ µ γ τ τ

τ µ γ τ τ

λ λ
∞ ∞

∂ + ∂ = − − > >

= Λ

∂ + ∂ = − + > >

∂ + ∂ = − + > >

= =∫ ∫

          (1.15) 

supplemented together with the boundary conditions:  

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
0

21
0 0 0 0

,0 , constant influx

0,. . 0,

0,. . , 0,. . with , 0, .

S t

S S L

i i e e i e L

+

+

= Λ

= ∈ ∞

 = = ∈ ∞ 

              (1.16) 

it remains to model ( ),t aλ , the force of infection, and those general form can be written in the form  

( ) ( ) ( ) ( ) ( )( )
0

, , d .I Et i t e tλ β τ τ β τ τ τ
∞

= +∫                        (1.17) 

where a  is the chronological age and τ  is the time since the infective(s) are contaminated. Another similar 
problem (with ( ) [ )0;m a µ≡ ∈ +∞ ) is:  

[ ] ( ) ( ) ( )
[ ] ( ) ( ) ( ) ( )
[ ] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

, , 0,

, , 0

, , , 0

, , d .

t

t E

t I

I E

s t t a s t t

e t t p s t

i t t q s t e t

t i t e t

τ

τ

µ λ

µ τ λ τ τ

µ τ λ τ ε τ τ

λ β τ τ β τ τ τ
∞

∂ + = Λ − >

∂ + ∂ + = >

∂ + ∂ + = + >

= +  ∫

                (1.18) 

supplemented together with the boundary conditions:  

( ) [ )
( ) ( ) ( )
( ) ( )

00 0; ,

,0 ,0 0, no vertical transmission ,

,0 0, no immunity at birth ,

s s

e t e t

i t

= ∈ +∞

= =

=

                    (1.19) 

We strongly believe that Assumptions 2 and 3 could be relaxed if we use usual tools of functional analysis by 
splitting functions H  and P  in the form F F+ −−  as a difference of two well-chosen positive functions 
F +  and F − . Then one can use the constant-sign cases on F +  and F − . 
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