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ABSTRACT 
Black box functions, such as computer experiments, often have multiple optima over the input space of the ob-
jective function. While traditional optimization routines focus on finding a single best optimum, we sometimes 
want to consider the relative merits of multiple optima. First we need a search algorithm that can identify mul- 
tiple local optima. Then we consider that blindly choosing the global optimum may not always be best. In some 
cases, the global optimum may not be robust to small deviations in the inputs, which could lead to output values 
far from the optimum. In those cases, it would be better to choose a slightly less extreme optimum that allows for 
input deviation with small change in the output; such an optimum would be considered more robust. We use a 
Bayesian decision theoretic approach to develop a utility function for selecting among multiple optima. 
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1. Introduction 
Optimization traditionally focuses on just finding the most extreme value, such as a global minimum. However, 
there are many cases where one wants a robust answer, such that a small change in the inputs will not lead to a 
large change in the outputs and thus a result far from the original optimum. Two common examples are situa- 
tions where there is the potential for users not to be precise about the input, or where there is uncertainty in the 
parameters. An example of the first is developing a recipe, where you want the resulting food to taste very good, 
but need to realize that not everyone following the recipe will measure all quantities exactly, and thus it is im- 
portant for small deviations from the recipe to lead to nearly equivalent results. One wants an optimum that al- 
lows for small deviations even if its value is not quite as extreme, rather than an optimum with a more extreme 
value that becomes much less extreme with small deviations (a “knife’s edge”). An example of the second is our 
application in Section 6 of a groundwater contamination remediation problem, where wells will be drilled to 
prevent contamination from entering a nearby river. It is important that the result be similar even if the wells are 
not drilled exactly as specified, or if the hydraulic heads that appear in reality are not quite the same as predicted 
in theory. 

This paper considers the problem of finding the best optimum in derivative-free optimization, where we take 
into account not just the extremal value, but also the robustness of the result, as measured by several factors. 
First, we develop a search algorithm using statistical modeling to emulate the objective function, taking a more 
global perspective, and hybridize it with a local direct optimization method, one that is provably convergent to a 
local optimum. Once promising modes have been found, we use a Bayesian decision theoretic framework, de-
fining a utility function to account for different aspects of robustness. Without loss of generality, we focus on 
minimization, as maximization can be obtained by minimizing the negative of the function. We generally favor 
an optimum where the function is relatively smooth, as opposed to a spiky optimum. For example, we consider  
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the two quadratic functions in Figure 1 with univariate input x and univariate output y, where one has a lower 
minimum but more curvature, and the other is rather flat. The two vertical lines denote a local region around the 
minima of each curve. While the function with higher curvature has the lower minimum, it mostly falls above 
the other curve in the local region. Thus we might prefer the more flat curve, as it has a lower average value 
over the local region, and it never rises far above its minimum value in the region; it is more robust as a mini- 
mum. 

Some related approaches in the literature are Pareto-based ranking schemes utilized in multi-objective opti- 
mization [1,2], and techniques established in global search heuristic optimization methods such as genetic algo- 
rithms [3-5] and particle swarm optimization [6]. We emphasize that a critical difference in our approach is that 
we want to consider a set of optima, while existing methods in the literature are focused on finding a single best 
optimum, or the best optimum for each of several attributes. While other methods can identify multiple optima 
as part of their search routine, there is no explicit attempt to find minima which are not the global minimum, and 
thus promising local minima could remain unexplored. Here we develop a new approach based on statistical 
emulation for searching the space and identifying multiple minima, and then use Bayesian decision theory to 
choose among those minima. Emulation uses a statistical model to estimate the objective function at unobserved 
points, when the function is expensive to evaluate and so we only have limited observations. In this paper, we 
consider the function to be deterministic, i.e., there is no noise or stochasticity in the function evaluations. The 
standard statistical model for emulation is the Gaussian process, a computationally accessible nonparametric 
model that can accommodate a range of response functions [7]. An improvement over the traditional Gaussian 
process is the treed Gaussian process (TGP), which has the capability of modeling functions with regions of dif- 
ferent variability (nonstationarity) better than a stationary Gaussian process [8], and we use TGP as our emulator 
throughout this paper. Fitting the emulator in a Bayesian framework allows for full accounting of uncertainty. 
Uncertainty in predicting the function output values is captured by the posterior predictive distribution [9], 
which gives a probability distribution of the possible output values for each unobserved input. Combining the 
posterior predictive with a Bayesian decision theory framework allows us to incorporate the uncertainty in the 
function outputs into our optimal decision. 

2. Searching for Multiple Optima 
Many functions of interest, such as black-box computer simulator functions, often have several optima. In this 
section we develop an algorithm that explores the input space to find all significant optimum candidates in order  

 

 
Figure 1. Robustness illustration on two minima superimposed at the origin for visualization. The two vertical red 
lines denote a local region of interest. Although the minimum with more curvature has a lower function value, the 
smoother minimum has a lower mean value in the region and it does not move far from the minimum value in the 
region. 
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to select those most suitable. Our approach was inspired by several articles on optimization [10-12]. A critical 
underlying idea is that of expected improvement [13]. The improvement function is defined as  
( ) ( ){ }minmax ,0I x y Y x= −  where miny  is the minimum value of the training points, ( )Y x  is the true (but as 

yet unobserved) output value for input point x X∈ , and X  designates the input space. Thus there is only 
“improvement” if we find a new point with a smaller output than our best observed point so far. Because the 
truth is unknown without evaluating the function, we use our statistical emulator to get a prediction, or in the 
Bayesian framework, a full posterior predictive distribution for ( )Y x . The expected improvement, ( )E I x    
is the expectation of the improvement function with respect to the posterior predictive distribution. The expected 
improvement balances favoring points whose predicted values are small with points whose predicted values may 
be less small but whose uncertainty in the prediction is large, and thus we realize that there is a certain 
probability that that point could be a new minimum. One minimization approach [13] is to iteratively choose the 
next function evaluation to be the point that maximizes the expected improvement. [10,12] illustrate how to 
guide the search for optima using a TGP emulator and the statistic for maximum expected improvement. The 
diagnostics discussed in [11] led to the use of the errors and standardized errors of adaptively sampled points for 
verifying the emulator model. 

We use a hybrid optimization approach, similar to [10], in which we combine statistical emulation with a 
provably convergent local direct search method. Here we use pattern search [14], although other approaches 
such as trust region optimization [15, for example] could be used. The statistical model takes a more global and 
exploratory perspective, while the direct method quickly hones in on each local minimum. We leverage the 
convergence of the direct method by attempting to start it where it will converge to a new minimum rather than 
a previously explored one. 

Our algorithm proceeds as follows: The objective function is modeled by the emulator within the designated 
input space. This surface can be thought of as a two dimensional surface with “hills”, “valleys”, and “plains”. 
Our concern is with the “valleys” since they encompass the minimum points. Although the emulator surface 
differs from the true function to some degree, it is expected to have increasingly close correspondence as we 
obtain more function evaluations. Starting from a promising minimum point on the emulator surface, pattern 
search is provably convergent to a local minimum of the objective function. Once a minimum has been found, 
the search region for other minima is restricted to avoid re-targeting the known minimum. This region is defined 
initially by a boundary at distance rd  from the known minimum. To find rd , we compute the distance of each 
predicted point to the known minimum, and then find the maximum, maxd , of these distances. Let max 2rd d= . 
Only predicted points that are this distance or greater from the known minimum are starting point candidates for 
the next search. This distance may be adjusted so that the minimum predicted point in this region has a value 
nearly equal to or just less than a limiting value as given by the user. (Since the predicted points are a discrete 
set, contiguous points may overlap this limiting value). Minima with optimal values above this limiting value 
are not of interest. With each new minimum found by pattern search, the search region changes to exclude this 
minimum by updating maxd  to account for the new minimum, and the updating rd  and the search region. 
After all minima less than or approximately equal to the limiting value are found, the search process is ended 
and each minimum is evaluated for its utility (or significance) by the optimum selection utility, as described in 
Section 3. 

A user must decide to what level, relative to the global minimum and the mean value, the search is to be 
extended. Let the global minimum be gy  and the expected mean value of the objective function be 
approximated by the mean value y  of the emulator model predicted points. We want to find local minima 
whose values are not too far above the global minimum. A ratio r , 0 1r< ≤ , is chosen where 

( ) ( )u g gr y y y y= − − . The upper bound uy  is computed from the current observed “global” minimum and 
y  value by ( )u g gy y y r y= − ⋅ + . While the actual value of gy  may not yet be known, the lowest value 

among the current minima is used for gy . y  becomes a better approximation to the actual mean value of the 
objective function in the input region as the minima search progresses. 

For each stage of the algorithm, the emulator (our treed Gaussian process) uses the current training point set 
to predict a large random sample at new input points. The first minimum is found by using the minimum value 
obtained from the emulator model to initiate a run of a local direct optimization routine (pattern search). As the 
algorithm proceeds, the new function evaluations are added to the training point set. At the first stage, we use 
the one minimum value as the initial gy , while in future stages, we use the smallest observed y  as gy . 

We determine rd  as above and thus define the search region, then use the emulator to predict the minimum 
point in the search region by evaluating a large sample of candidate input points in the search region. Denote 
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predicted minimum value by miny . There are two cases: 1) The minimum predicted point value, miny , is less 
than the desired upper bound uy ; 2) min uy y> . 

For the first case, min uy y< , so there is potential for finding a new local minimum, but we also want to be 
sure that it is a new minimum, rather than running a local search and converging back to our already known 
minimum. To see if this new point is in a different zone of attraction, we look for a “ridge” of points that have 
higher values and separate the new point from the known minimum. We define a quantity intd  which is the 
width of an interval ( )min min

,y int yd d d− , where 
minyd  is the distance from miny  to the closest known minimum. 

The interval width intd  is dependent on the sample size of the predicted points (candidate points predicted by 
the emulator, not the actual function evaluations). This interval must be large enough to include predicted points 
between the current miny  point and its closest minimum. It should be chosen so that a hypercube of width intd  
has a high probability of including a predicted point. The smaller it can be made to include points between miny  
and the closest minimum, the better. However, if it is set too small, it will not be effective for determining that 
there is a ridge of higher values between miny  and the known minima. We have found a good default value for 

intd  to be ( ) ( )12 dim
U LB B N− , where U LB B−  is upper bound minus the lower bound (span) of the input 

space, N  is the number of predicted points, dim  is the dimension of the input space, and 2 is a factor to make 
this interval larger than the average distance between closest predicted points. As the dimension of the input 
space increases, the value determined for intd  increases. In cases where it is too large to be used effectively, the 
algorithm reverts to adjusting the search region distance until min uy y≈ . 

The lowest predicted value from candidate points in the interval ( )min min
,y int yd d d−  is compared to miny . If 

the smallest predicted value in this interval is greater than miny , then the point with value miny  is associated 
with a minimum within the current search region and it becomes the next starting point for pattern search. The 
reasoning here is that there must be a “ridge” of higher predicted points between the known minima and the 
point with predicted value miny . Essentially, this means that a straight line path from the point with value miny  
to the closest minimum would pass through points having higher values than miny . In terms of a two 
dimensional surface having y  values representing elevations, the path would climb over a ridge or hill to get to 
that minimum. On the other hand, if the smallest value for the interval is less than or equal miny , the search 
region distance is increased by a factor greater than 1 (e.g., 1.05). For this new region, a new miny  is 
determined. If min uy y≈ , the point with value miny  becomes the next starting point for pattern search. If it is 
still true that min uy y< , the procedure as described above is repeated. As successive increases are applied to the 
region distance, eventually either min uy y≈  or the smallest valued point in the interval ( )min min

,y int yd d d−  is 
greater than miny . In either case the next starting point for pattern search is the point with value miny . If, during 
increases of the region distance, miny  exceeds uy , the region distance is set to the average of the last two 
distances, which should yield a miny  approximately equal to uy . We now illustrate three different situations 
where min uy y< . 

In Figure 2, the current known minimum is shown as the blue “X” (lower left) and the minimum valued point 
in the search region is the red “X” (upper left). The two large black dashed circles (only a quarter of each circle 
fits in this figure) are the lower and upper boundaries of the interval ( )min min

,y int yd d d− . The red dashed circle 
(in between the black circles) is the current search region boundary at distance rd  from the current known 
minimum. Here min uy y< . The little blue circles are a random sample of candidate predicted points in the 
search region and in the interval ( )min min

,y int yd d d− . The space between the two black dashed circles is 
representative of the “ridge” of predicted points that have higher values than the point marked with the red “X”. 
So the point marked with the red “X” is the starting point of the next search and should locate a minimum within 
the search region. 

Two situations where miny  lies on the boundary of the search region (red dashed line) are shown in Figure 3. 
Consider the schematic on the left. Here the red “X” marks the point miny . The blue “X” is the known minimum 
and 0.5uy = − . If the search region boundary distance is not increased (moved out), the known minimum would 
be found again. However, pursuant to the algorithm logic, the search region boundary is moved out until a ridge 
of higher predicted values are between miny  (the black “X”) and the known minimum. That occurs when the 
search region boundary is the black dashed line. So, increasing the search region distance when min uy y<  is 
effective in this situation. 

Now consider the schematic on the right. The point with value min 0.8y ≈ −  is marked with a red “X”. The 
known minimum is marked with a blue “X”. Again, 0.5uy = − . The search starting from this point would find 
the minimum within the −0.8 contour. However, the algorithm can not distinguish between the first situation and 
this second situation in Figure 3. To protect against the first situation, since there is no ridge of higher predicted  
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Figure 2. uy ymin <  and ymin  Interior to the Search Region Boundary: The contour graph has the known minimum 
marked with a blue “X”. The boundary of the search region is the red dashed line. The point ymin  is marked with a 
red “X”. It is within the search region. To establish whether it is the next starting point for pattern search, the 
minimum value of the ridge of points within the blacked dashed lines of the interval ( )y int yd d d

min min
,−  is tested 

against ymin . The blue “o”s represent the predicted points in this interval and the search region. The contours 
indicate the point ymin  has a value lower than this ridge of points and, as a starting point, the next minimum found 
should be within the small contour near ymin  (red “X”). 

 
points between miny  and the known minimum, the algorithm increases the search region distance until 

min uy y≈ , the point marked with a black “X”. This new point with the value miny  becomes the next search 
point and should find the minimum within the −0.8 contour. So, moving the boundary out is effective in both 
situations. 

For the case min uy y> , our emulator is not predicting any new minima in the search region that are below our 
threshold of interest. Thus the search region is widened by decreasing rd  by a factor less than 1 (e.g., 0.95) to 
include more predicted points until the predicted minimum, miny  in the search region is approximately equal to 

uy . 
This predicted point is then used for the next search point. The adjustment of rd  is done similarly to the case 

where min uy y< . When the last decrease of rd  causes miny  to fall below uy , the search region distance be- 
comes the average of the previous distance and the current distance. A schematic of this case is shown in Figure 
4. 

Here two minima are close together. The current known minimum is marked with a blue “X”. The red dashed 
outer circle is the initial search region boundary. It is uncertain whether starting from the initial miny , marked 
with a red “X”, will find a new minimum since the region is relatively flat. The search region boundary distance 
is decreased. This is shown as the inner black dashed circle. The black “X” now represents the predicted point 
with a value miny  that approximates uy . This becomes the next search point. 

For this algorithm to work, the predicted point values must be reasonable approximations to the simulator 
surface. If this is not the case, some minima within the upper level specified by the ratio r ( )0 1r< ≤  will be 
missed. So adaptively sampled points to improve the fit of the emulator surface are important. The starting step 
size used in pattern search is also very important for the algorithm. Initially, when the minima are relatively far  
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Figure 3. Two Situations where uy ymin <  is on the Search Region Boundary: In the schematic on the left, the red “X” 
marks the point ymin . The blue “X” is the known minimum and uy 0.5= − . If the search region boundary distance is 
not increased (moved out), the known minimum would be found again. However, pursuant to the algorithm logic, the 
search region boundary is moved out until a ridge of higher predicted values are between ymin  (the black “X”) and 
the known minimum. That occurs when the search region boundary is the black dashed line. So, increasing the search 
region distance when uy ymin <  is effective in this situation. In the schematic on the right, the point with value 
ymin 0.8≈ −  is marked with a red “X”. The known minimum is marked with a blue “X”. Again, uy 0.5= − . The 

search starting from this point would find the minimum within the −0.8 contour. However, the algorithm can not 
distinguish between the first situation and this second situation. To protect against the first situation, since there is no 
ridge of higher predicted points between ymin  and the known minimum, the algorithm increases the search region 
distance until uy ymin ≈ , the point marked with a black “X”. This new point with the value ymin  becomes the next 
search point and should find the minimum within the −0.8 contour. So, moving the boundary out is effective in both 
situations. 

 
apart, the step size should be relatively large. This is best for finding the dominant minima, since the tendency is 
then for pattern search to “step over” minima with smaller values and zones of attraction (the region where a 
hypothetical marble, if dropped, would roll toward the minimum). As the distance of search points to current 
minima decreases, the step size is decreased accordingly. A larger step size could find a previously found 
dominant minimum. The step size is chosen as a fraction ( )0.1,0.05  of the distance to the closest known mi- 
nimum. With this smaller step size, a less dominant minimum that lies close to a known minimum is more likely 
to be found. 

The algorithm as described above is intended to search for minima for relatively smooth objective functions 
with few discontinuities. The pseudo code for this algorithm is in Section 8. If the function is expected to be ir- 
regular, or to have many discontinuities, then some modifications may be required. We discuss one such ap- 
proach in the context of the hydrology application in Section 6. 

3. Optimum Selection Methodology 
Once we have identified a set of promising minima, we can then decide which one is most useful. Optimum se-
lection should be based on a user’s decision about what is most important in choosing a robust optimum. To be 
precise about optimum features, we focus our attention on a local region of interest around each optimum, 
referred to as a “tolerance region” or defined by the tolerance distance from the optimum to the edge of the 
region. For simplicity we generally use a hypercube in the input space centered at the local argmin (the input 
value that leads to the local minimum of the output function), but other regions could be substituted (e.g., 
hyperrectangles). 

We consider four aspects of a local optimum: 1) the minimum value (lower bound), 2) the mean value in the  
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Figure 4. Minima Search for Cases where uy ymin > : The contour graph has the known minimum marked with a 
blue “X”. There is another minimum close to this known minimum indicated by the circle contours. The search re- 
gion boundary is the red dashed line. The predicted points in the search region are the blue “o”s. The first ymin  
point is marked with a red “X”. It is uncertain whether a search starting from this point ymin  would find the mi- 
nimum close to the known minimum. Since uy ymin 0.5> = − , the search boundary is moved in until uy ymin ≈ . This 
happens when the search boundary is the black dashed line. The new point ymin  becomes the point marked with the 
black “X”. Starting from this point the other minimum should be found. 

 
tolerance region, 3) the maximum value in the tolerance region (upper bound), 4) the range of values (upper 
bound minus lower bound) in the tolerance region. Consider the three local optima from a bivariate input 
function shown in Figure 5. 

The left column shows the histograms of the function values in each tolerance region. The right column 
shows the variable paths made by holding one variable constant and varying the other through the tolerance 
region. The minima are symmetric so these paths are the same for either variable. The blue dashed vertical line 
shows the global minimum value in the histograms and the horizontal blue dashed lines show the global mi- 
nimum value in the variable paths. The vertical red solid line shows the mean output value in each tolerance 
region. There are reasons to consider each of these minima: 
• The first minimum might be chosen since it has the lowest upper bound and the least variation. The lowest 

upper bound is important since, in choosing this minimum, the user can depend on having a value no more 
than this upper bound. Also, the small range demonstrates that the values in the tolerance region vary the 
least. 

• The second minimum might be chosen since it has the lowest average (solid red line), indicating good 
performance in minimization across the region. 

• The third minimum might be chosen since it has the lowest value (it is the global minimum). On the other 
hand, this minimum has the greatest variation, which makes it less desirable. 

Given these four measures, an approach is needed to formalize the decision making process. 
Such an approach must take into account the importance or weight associated with each measure by the user, 

and the contribution of each attribute based on this importance. When attributes are not known with certainty, a 
Bayesian decision approach is appropriate. For the reader unfamiliar with the Bayesian decision theory 
framework, a good reference is [16]. This approach requires a utility function be chosen which quantifies the 
importance of the measures. The optimal decision is the one that maximizes this utility function. In this case, the 
utility function weights each attribute according to its importance as specified by the user. If there were exact  
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Figure 5. Optimum Selection Measures: The right column has the histograms of the distributions of function values 
in the tolerance region for three two dimensional concave symmetric local minima. The first minimum has the least 
range and lowest upper bound. The second has the lowest mean value (vertical red solid line). The third has the 
lowest lower bound (the blue dashed vertical line, denoting the global minimum). The four measures for quantifying 
the utility of a minimum are the lower bound, the mean, the upper bound, and the range. The right column of the 
figure has the variable paths of each of the minima in the tolerance region. They are made by holding one variable 
constant while varying the other. They show that the smoothness of the minimum is related to the range. The variable 
paths are relatively flat since the y range has been compressed. If both axes had the same scale, the variable paths 
would have much more variation along the y axis. The horizontal blue dashed lines are the lower bound of the third 
minimum for reference. 

 
values for each attribute, we could just concern ourselves with a utility function that is a vector inner product  

( )( ) ( ), j jU w wθ θ= ⋅ , where ( )1 4, ,w w w=   are the weights attached to each attribute by the user and 
( ) ( ) ( )( )1 4= , ,j j jθ θ θ  are the scaled versions of the attributes for a given optimum as described below. Since the  
( )jθ  are unknowns associated with a probability distribution function, the Bayesian decision approach employs  

an expected value for determining the utility: ( )( ) ( )( ) ( ), dj j j
ja U w pθ θ θ

Θ
= ∫ . The optimum with the maximum  

expected value (highest utility) is the “best” optimum. The utility values, ja , of all of the optima rank their 
utility relative to each other. 

To fill in the details of our utility-based approach, let the importance for each measure be given as a set of 
weights iw  for { }1,2,3,4i∈  with 1iw =∑ . Each minimum has the four measures mentioned: 1) lower 
bound for the predicted values within the hypercube tolerance region where the minimum is modeled by the 
emulator; 2) average value of the predicted values; 3) upper bound for the predicted values; 4) range for the  
predicted values. It is desirable to scale these predicted values to obtain the values ( ) ( ) ( )( )1 4, ,j j jθ θ θ=   where  

1:j n= , j  indexes the minima and n  is the number of minima. Scaling is done both to make all attributes 
have comparable values, as well as to move to a maximum utility framework by flipping the axis so that more 
desirable values are larger (lower function output values have higher utility). First, a base value, B , is selected 
to be a meaningful threshold value for the user, such that any minimum of interest would be smaller than B . 
One choice for B  could be the average value of all training points or the average value of the predicted values 
for a large random sample covering the whole input space. Let G  be the global minimum value. Let the values 
for the first three un-scaled attributes, not including the range, be given as ( )( ) , 1,2,3j

iy i = . The scaled values 
become:  

( )( ) ( )( )( ) ( )( )3 1 100%j j
i iabs y B G Bθ − + = − − ×  
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So as to avoid confusion with regard to the lower bound and upper bound some comments are needed. The  
lower bound unscaled attributes of the minimum, ( )( )1

jy , become the upper bound attributes, ( )( )3
jθ , of the 

scaled measure. The upper bound unscaled attributes, ( )( )3
jy , become the lower bound scaled attributes, ( )( )1

jθ .  

In other words, the minimum measures are inverted so that they are presented as maximum measures. All scaled  
values are between 0% and 100%. The range attributes are given by ( )( ) ( )( ) ( )( )4 3 1100%j j jθ θ θ= − −  where 

( )( )1
jθ  refers to the scaled lower bound and ( )( )3

jθ  refers to the scaled upper bound. This scaling of the range  

yields higher values for smaller ranges which are preferred, and it restricts the range values to an upper limit of 
100%. 

Because the true ( )( )jθ  are unknown (unless we happen to have sampled the exact point), we instead use 

samples, ( )( )j

k
θ , from the emulator’s posterior predictive distribution. As the utility function is similarly based  

on unknown quantities, we maximize the expected utility [17], where the expectation is taken with respect to the 
posterior predictive distribution. In practice, we use a Monte Carlo approximation to the expectation, taking an 
empirical average of sampled iterates from the posterior distribution:  

( )( ) ( )( ) ( ) ( ) ( )( )1, d 1 Nj j j j
j k k

a U w p N wθ θ θ θ
=Θ

= ≈ ⋅∑∫  where k  indexes the iterates making up the distribution 

of the ( )jθ . Thus the optimal decision is J  where ( )maxJ ja a= . 

One further comment concerns the tolerance distance of the hypercube. By default, this is set to one fourth the 
smallest correlation distance of the emulator model. This distance represents the distance between input points 
that have significant correlation to each other along a given variable’s axis. The minimum point is correlated to 
all points within this distance along a given variable’s axis. Other variables have correlation distances greater 
than or equal this distance. So the minimum point is highly correlated with all points within this distance. 
Beyond this region, the simulator function may be less reliable. 

4. First Illustrative Example 
The three minima shown in the explanation of attributes in Section 3, Figure 5, are now used to illustrate the 
Bayesian decision approach. These three minima are considered to be hypothetically within the input space of a 
simulator function, having been found by a search for multiple minima. They have the same size tolerance 
region. A set of training points is selected using a Soboĺ sequence to get well spaced points within each 
minimum’s hypercube. Using these points, the TGP emulator [18] provides a statistical model of the function 
within the hypercube region and predicts a large random sample of input points. The iterates of the predicted 
points form the basic data from which are obtained: 1) The iterates for the lower bound which are the minima of 
the predicted point iterates; 2) The iterates for the average value which are the mean values for the predicted 
point iterates; 3) The iterates for the upper bound which are the maxima for the predicted point iterates. 

The value of B  for this synthetic case is chosen as −6 which makes for a good illustration. This is a 
convenient value and does not affect the Bayesian decision process, although, the greater the difference, G B− , 
is, the lesser the differences in the utility values. However, the ordering of the utility values remains the same. 
For an actual experiment, the user should choose a meaningful value for B . The lowest iterate for the lower 
bound of the global minimum is the G  value. Using the lower bound, average, and upper bound iterates, 

( )( )1,2,3
j

i k
y = , along with the values for B  and G , the scaled values, ( )( )3,2,1

j
i k
θ = , can then be computed as well as 

the range iterates ( )( )4
j

k
θ . Then the Monte Carlo estimates for the utility values are computed. In this case, each 

measure is weighted equally. The histograms of the scaled iterates are shown in Figure 6 for the three minima. 
Notice that the first minimum has the highest scaled lower bound iterates which is expected since it had the 

lowest upper bound un-scaled y values. The second minimum has the highest scaled average iterates since it had 
the lowest average un-scaled y values. The third minimum has the highest scaled upper bound iterates since it is 
the global minimum. Notice too, that the scaled range iterates show that the first minimum has the best range, 
the second minimum has the second best range, and the third minimum has the worst range (in terms utility 
contribution). Applying the Bayesian decision approach to find the utility values gives the summary of the 
utilities shown for each minimum in Figure 7. The mean scaled lower bounds are the black “|”s. The mean 
scaled averages are the blue “|”s. The mean scaled upper bounds are the red “|”s. There is a horizontal line  
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Figure 6. Scaled Iterates for the Three Minima: For each histogram, the x-axis is the emulator predicted value for the 
iterates. The y-axis is the frequency. The four histograms in each row correspond to a minimum. The columns from 
left to right are the histograms for the lower bound iterates, the mean scaled iterates, the upper bound iterates, and 
the range iterates. The first minimum has the highest scaled lower bound iterates, the second minimum has the 
highest scaled mean iterates, the third minimum has the highest scaled upper bound iterates, and the first minimum 
has the highest scaled range iterates signifying a smaller range. 

 
joining the scaled measures. The utility values computed from the iterates for the first and third minima are the 
blue “X”s and the one red “X” is the maximum utility value for the second minimum. 

Although, the second optimum (minimum) is selected for equal weights, a different choice for the weights 
could result in a different optimum selection. For a user who would like a balanced choice that weights all four 
measures the same, the choice of the second minimum is a reasonable choice. 

The user might second guess his/her assignments of the weights and how it affects the utility values. The 
graph in Figure 7 can be used as a check since it shows the means of three of the four measures for each 
minimum on a common scale. The range can be inferred from the distance between the lower and upper bound 
means. In view of the graph, a user who would like less uncertainty regarding the value might be inclined to go 
with first minimum. Since the graph either confirms or gives the user second thoughts about his/her choices 
concerning the weights, in the examples that follow, this graph accompanies the tables with the minima data. 

5. Second Illustrative Example 
In this example, the utility function is applied to the minima for a modified Schubert test function given in  
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Figure 7. Minima mean scaled measures and utility values for equal weights for three minima (labeled by the y-axis 
ordinate). The mean scaled lower bounds are black “|”s, the mean scaled averages are blue “|”s, and mean scaled 
upper bounds are red “|”s. The “X”s are the utility values for the minima. 

 
Equation (5.1) below:  

( ) ( )( )( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

5 5
1 2 1 21 1

2 2 2 2
1 2 1 2

2 2 2 2
1 2 1 2

, 0.9 cos 1 0.25 0.9 cos 1 0.25

exp 1 1 0.25exp 800 1.2 0.68

0.15exp 0.68 1.2 0.68 1.2 0.1

j jf x x j j x j j j x j

x x x x

x x I x x

= =
   = + + + × + + +   

× − − − − + − − + −

+ − − − − − + − <

∑ ∑
    (5.1) 

where 0 2ix≤ ≤  for { }1,2i∈  and ( )I ⋅  is the indicator function equal to one when its argument is true and 
zero otherwise. 

There are several differences from the original Schubert function [19]. The variables are restricted to the 
interval [ ]0,2 , rather htan the original [ ]10,10− . In the sums, the cosine terms are multiplied by 0.9 and a 
displacement of 0.25 is added to the variables in the argument of the cosines. This moves the minima to the 
interior of the input space. The exponential term multiplying the product of the cosine terms weights the center 
magnitudes more than the edges, so the dominant minima are in the center of the input space. The two 
exponential terms added modify the shape and values of the two dominant minima. The one minimum at about 
(1.2, 0.68) is increased in value and made spikier. The other is increased in value by a little less but smoothed. 

A perspective plot of the test function is shown in Figure 8, left, with the minima being peaks to improve 
visibility. The true minima are listed to the right with coordinates (to two decimal places) and optimal values. 

Application of the Algorithm 
The algorithm developed in Section 2 was used to search for the minima of the test function. One hundred 
training points were evaluated for the initial emulator model. The algorithm’s base value parameter B  was set 
to the mean value of the emulator model in the input space, and the level parameter r  was set to 0.8 in order to 
set the search limit uy  high enough to find all eight minima of the function. The algorithm guided the search 
by passing selected minimum predicted points in the search region to pattern search which then located the 
minima. Additional points were adaptively sampled to improve the emulator model before each search. After a 
minimum was located and evaluated by pattern search, additional training points were added to the minimum’s 
tolerance region (a square centered at the minimum with sides of 0.04 units) in order that the emulator could 
more accurately model that region. Modeling the tolerance region of each minimum included saving the iterates 
of the predicted points of a Latin hypercube sample (LHS) covering the tolerance region. At the end of the 
minima search, the utility function for optimum selection estimated the utility for each minimum from the iterate 
data saved for each minimum. The eight minima and their utility values are in Table 1. 

In the table, the values for the 1x  and 2x  variables are the locations. The value y  is the optimal value, 
meany  is the mean value of the function’s statistical model in the square (0.04 in width) centered at the  
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1x  2x  ( )f x  

1.20 0.68 −9.684 
0.68 1.20 −9.584 
0.17 0.68 −6.225 
0.68 0.17 −6.225 
1.20 1.72 −4.446 
1.72 1.20 −4.446 
0.17 1.72 −2.934 
1.72 0.17 −2.934 

Figure 8. Modified Schubert Test Function: The left panel is a perspective plot of the negative of the modified 
Schubert function given in Equation (5.1). The negative shows the minima as peaks for better visualization. Both 
variables have domains [0,2]. The eight minima are listed in the table on the right. 

 
Table 1. The eight minima of the modified Schubert function, ordered by utility value. The input space locations are 
x1  and x2 , y  is the minimum value found by pattern search. ymean  is the mean value , ( )sd y  is the standard 

deviation, ylower  is the lower bound, and yupper  is the upper bound, all in the tolerance region of that minimum. 
The utility value uses weights which emphasize smoothness or range, (.2,.2,.2,.4), estimating a higher utility for the 
second smallest minimum that is more smooth than the smallest minimum. 

1x  2x  y  
meany  ( )sd y  lowery  uppery  utility 

0.683 1.205 −9.59 −9.547 0.028 −9.59 −9.332 98.559 

1.202 0.681 −9.687 −9.597 0.054 −9.687 −9.205 98.487 

0.684 0.165 −6.229 −6.199 0.02 −6.229 −6.104 78.073 

0.165 0.684 −6.229 −6.199 0.02 −6.229 −6.029 78.046 

1.716 1.204 −4.45 −4.428 0.014 −4.45 −4.322 67.254 

1.204 1.716 −4.45 −4.428 0.015 −4.45 −4.362 67.242 

0.165 1.715 −2.936 −2.921 0.009 −2.936 −2.84 58.06 

1.715 0.166 −2.936 −2.921 0.01 −2.936 −2.839 58.014 

 
minimum, ( )sd y  is the standard deviation within the square, lowery  is the lower bound for the y  values in 
the square, uppery  is the upper bound. The minimum with the slightly higher optimal value has the highest 
utility. This is because this minimum is smoother than the global minimum. The weight for range was set higher 
to favor a smoother minimum. This is where the value of the weight selection by the user is important. For a 
user that wishes to emphasize optimal value, a greater weight could be given to the upper bound. 

The graph showing the means of the lower bound, mean, and upper bound measures along with the utility 
values is in Figure 9. This appears to be a good choice for an optima with more weight given to the range. 

6. Groundwater Remediation Application 
We demonstrate our methodology using a computer experiment, the Pump-and-Treat problem described in [20] 
which involves a groundwater contamination scenario based on the Lockwood Solvent Groundwater Plume 
Sites located near Billings, Montana. Two plumes (A and B) developed containing chlorinated solvents because 
of industrial practices near the Yellowstone River. The remediation to prevent contamination of the Yellowstone 
River involved drilling two pump-and-treat wells in Plume A and four pump-and-treat wells in Plume B. This  
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Figure 9. Minima Mean Scaled Measures and Utility Values for Weights = (.2,.2,.2,.4): The x-axis is scaled from 0 to 
100% where a higher value indicates more utility. The y-axis has the minimum values on ordinates 1 through 8. The 
mean scaled lower bounds are black “|”s, the mean scaled averages are blue “|”s, and mean scaled upper bounds are 
red “|”s. The “X”s are the utility values for the minima (optima). The first minimum has the highest utility value 
shown as a red “X”. Other weights would give other utility values. 

 
problem has been modeled using a computer simulator where the inputs are pumping rates and pump locations, 
and the output is the cost. If a given input of these eighteen variables causes contamination of the river, a cost 
penalty is assessed, so that a minimum cost can be found subject to the constraint of fully preventing con- 
tamination of the river. The Lockwood plume site region is about 2 kilometers by 2 kilometers. Plume A is in 
the lower left part of the region where two pumps are installed. Plume B is more centrally located in the upper 
part of the region where 4 pumps are installed. An illustration of this site is in Figure 2 of [20]. 

6.1. Algorithmic Changes for Irregular Simulator Functions 

The algorithm discussed in the previous illustration was used in this computer experiment to find multiple 
minima. However, some simulator functions, even though deterministic, may be very irregular and have many 
discontinuities. This is true of the simulator function used in the Lockwood Pump-and-Treat problem. The cost 
is the sum of the pumping rates with a cost penalty added if the location and/or pumping rates of the six pumps 
cause contamination to occur. There appear to be a very large number of local minima based on a preliminary 
study, and the contamination penalty creates irregularities in the response surface. These irregularities make it 
difficult to obtain an accurate emulator model of the underlying function. What this means, in terms of the 
minima search algorithm discussed herein, is that adjusting the search region based on the computation of the 
search limit, uy , is not viable. Significant minima may be found by searching from any input point free of 
contamination. The search, however, can be based on starting from a minimum predicted point free of con- 
tamination in a search region excluding previous known minima. 

To extend the algorithm for irregular functions, the adjustment of the search region distance is bypassed and 
the control parameter “ratio” (r) which sets the level for minima found is not used. Further, the predicted point 
with the value miny  may not be free of contamination. The algorithm attempts to adjust its pumping rates and 
pump locations to make it free of contamination. If this cannot be done, the algorithm tries the next predicted 
point with the next lowest value in the search region. This procedure continues until a point free of contamination, 
or one that can be adjusted to be free of contamination, is found in the search region. This point becomes the 
starting point for the next search. The search is not ended after two or more duplicate minima are found since, 
there are so many minima, duplicate minima are not expected. The search can be ended after a given number of 
minima have been found and at least one is as good as or better than prior information concerning the optimal 
minimum. If no prior information exists, it is ended after a certain number of minima are found. 
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Another difference in the approach for irregular functions is that the search region can be made larger. This 
means the fraction of the maximum distance from known minima to the furthest predicted point can be set 
smaller so that more predicted points closer to known minima are included in the region as possible starting 
points for the next search. The reasoning here is that any input point free of contamination could lead to a 
promising minimum if used as a starting search point. This can be true even if it is near a known minimum. 

The starting step size for pattern search is determined in the same way. Here, though, optimization runs show 
that the starting points in the Pump-and-Treat problem are often far enough from known minima in the input 
space that the initial step size does not need modification. This has been true even after many minima have been 
found. There is one other consideration regarding initial step size: It should be less than the cost penalty for 
contamination. The reasoning here is that, if a reduction in the pumping rate exceeds this cost penalty, pattern 
search could step to a point with contamination since it would have a lesser cost than a previous contamination 
free point. For the optimization methods herein, the cost penalty is chosen small enough so that the TGP 
emulator can follow the irregular simulator function, since a large discontinuous jump in the cost can present a 
problem for the emulator (TGP can handle axis-aligned discontinuities, but must work harder when discontinuities 
are not axis-aligned). 

6.2. Application of the Algorithm 
The optimization was run to find eight minima. The training points were provided by a global sensitivity ana- 
lysis based on points randomly sampled within the plumes. The algorithm guided the minimum search by 
selecting starting points free of contamination from search regions distanced from known minima to send to 
pattern search. Before each search (after the first search), the point with the highest standard deviation and the 
point with maximum expected improvement were added to the training point set to improve the emulator model. 
For each minimum found, the pump locations of the minimum found were “centered”, as we found that if the 
pump location were moved slightly from its minimum location, contamination could occur. By testing locations 
around the minimum locations, the pump could be relocated so it was within a contamination free zone, that is, 
movements of ±0.5 ft in any direction would not result in contamination. Also, it was found that increasing 
pumping rates, once the pumps were centered, did not cause contamination. Therefore, the tolerance region for 
pump location is the pump centered location ±0.5 ft and the tolerance region for pumping rate is 1% 0.99

imr± , 
where 

imr  is the minimum pumping rate of pump i . This tolerance region is based on the feasibility of of 
locating pumps within ±0.5 ft and controlling pumping rates within 1%± . Within this tolerance region, the 
pumping system remains contamination free. For each minimum found, the emulator modeled the tolerance 
region of the minimum with the aid of additional points sampled from that region. Then the emulator used this 
model to predict the points of a LHS covering the region (or other random sample with good spatial coverage) 
along with all their iterates. These are then saved for the estimation of the utility values after the search for the 
minima has ended. For this application, all four measures were given equal weights. 

The table on the left of Figure 10 has the eight minima found by our optimization method. Y  is the mi- 
nimum cost value for the input of six rates and locations. meanY  is the mean cost value, ( )sd Y  is the standard 
deviation of the Y  values, lowerY  is the lower bound, upperY  is the upper bound, all within each tolerance 
region. “Utility” is the utility value computed from the Y  iterates in the tolerance region. All values have been 
rounded to the nearest integer except for the standard deviations and the utility values which are rounded to one 
decimal place. In the table, the minima are ordered by utility value. 

Figure 10 shows the means of the lower bound, mean, and upper bound measures along with the utility 
values. This appears to be a good choice for equal weights. 

7. Conclusion 
We propose a search algorithm for efficiently exploring the whole input space, and a utility function for opti- 
mum selection that makes use of Bayesian decision theory. It quantizes the attributes of interest in optimum se- 
lection, the optimum’s smoothness and value, and takes into account the user’s specific needs. The four meas-
ures used to quantize the attributes of interest are obtained from the predictions of a statistical emulator model in 
the tolerance region. Since this emulator covers a small region relative to the input space it can be made accurate 
with a small number of training points. In other words, it makes efficient use of function evaluations. While it 
works best in combination with an online search algorithm, the selection methodology can also be employed on 
a pre-existing set of function evaluations. 
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Y  meanY  ( )sd Y  lowerY  upperY  Utility 

17,647 17,825 54.5 17,647 18,003 99.0 
18,195 18,380 58.2 18,195 18,562 96.9 
18,640 18,828 60.0 18,640 19,017 95.3 
19,716 19,915 52.4 19,716 20,114 91.3 
27,152 27,426 79.7 27,152 27,700 63.4 
27,354 27,630 99.8 27,353 27,906 62.7 
28,520 28,808 72.6 28,520 29,096 58.4 
34,419 34,766 117 34,419 35,114 36.3 

Figure 10. The eight Lockwood problem minima found by our optimization method are shown in the table on the left, 
where Y  is the minimum cost value, Ymean  is the mean cost value, ( )sd Y  is the standard deviation of the cost, 

Ylower  is the lower bound of the cost, and Yupper  is the upper bound of the cost, all within each tolerance region. The 
plot on the right shows the scaled measures and utility for these minima. The mean scaled lower bounds are black 
“|”s, the mean scaled averages are blue “|”s, and mean scaled upper bounds are red “|”s. The “X”s are the utility 
values for the minima (optima). The first minimum has the highest utility value shown as a red “X”. 
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Appendix 
Pseudo Code for Optimization 

Initialize parameters: 
Evaluate an LHS of training points 
Set base value B  and level parameter r  
Set loop count loopct  to 0 
Set tolerance region width or define tolerance region parameters 
Set interval width intd  
 

Begin loop for minimum search:  
Increment loopct  
Model simulator function with emulator and current training points and predict a large random sample 
(LHS) of points 
Determine minimum predicted point minx  and value miny   
If loop 1ct >  

Construct array with predicted points, their minimum distance from the nearest minimum and compute 
search region distance  

rd  from maximum predicted point distance maxd : max 2rd d=  
Order array by decreasing distance for computational efficiency 
Determine 

minyd , distance from minx  to the nearest minimum 
Endif 
 
Begin case processing: 
 
Case 1: If loopct  is 1, 
 

Start pattern search from minx  to find first minimum with location mins
x  and value mins

y  
Set lowest minimum, gy , to mins

y  
Set search limit, ( )u g gy y r B y= + −

  
Case 2: If loop 1ct >  and min uy y<  and the distance interval, ( )min min

,y int yd d d− , has all predicted point 
values miny> , 
 

Start pattern search from minx  to find the next minimum with location mins
x  and value mins

y  
If mins gy y< , reset gy  to mins

y
  

Case 3: If loop 1ct >  and min uy y<  and distance interval, ( )min min
,y int yd d d− , has predicted point values 

miny< , 
 

Increase search region distance from known minima by increments until Case 2 or Case 4 occurs and 
proceed to Case 2 or Case 4 
 

Case 4: If loop 1ct >  and min uy y≈ , 
 

Start pattern search from minx  to find the next minimum with location mins
x  and value mins

y  
If mins gy y< , reset gy  to mins

y
  

Case 5: If loop 1ct >  and min uy y> ,  
 

Decrease search region distance from known minima by increments until Case 4 occurs and proceed to 
Case 4 
 

End case processing 
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If duplicate minimum found, quit minimum search loop 
 
Adaptively sample points for model improvement 

 
Model tolerance region for current minimum and save predicted point iterates for the utility function for 
optimum selection 
 

End loop for minimum search 
 
Invoke utility function for optimum selection to estimate utility values 

End Pseudo Code for Optimization 
 

OPEN ACCESS                                                                                          AM 


