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ABSTRACT 
In a recent decade, many DNA sequencing projects are developed on cells, plants and animals over the world 
into huge DNA databases. Researchers notice that mammalian genomes encoding thousands of large noncoding 
RNAs (lncRNAs), interact with chromatin regulatory complexes, and are thought to play a role in localizing 
these complexes to target loci across the genome. It is a challenge target using higher dimensional tools to orga- 
nize various complex interactive properties as visual maps. In this paper, a Pseudo DNA Variant MapPDVM is 
proposed following Cellular Automata to represent multiple maps that use four Meta symbols as well as DNA or 
RNA representations. The system architecture of key components and the core mechanism on the PDVM are 
described. Key modules, equations and their I/O parameters are discussed. Applying the PDVM, two sets of real 
DNA sequences from both the sample human (noncoding DNA) and corn (coding DNA) genomes are collected in 
comparison with two sets of pseudo DNA sequences generated by a stream cipher HC-256 under different modes 
to show their intrinsic properties in higher levels of similar relationships among relevant DNA sequences on 2D maps. 
Sample 2D maps are listed and their characteristics are illustrated under a controllable environment. Various distri- 
butions can be observed on both noncoding and coding conditions from their symmetric properties on 2D maps. 
 
KEYWORDS 
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1. Introduction 
Finding a proper generation mechanism for specific functional DNA sequences is a challenge task in the modern 
bioinformatics. DNA sequences are composed of four meta symbols on {A,C,T,G}. From an algebraic view- 
point, it is feasible to transfer any 0 - 1 sequence under Cellular Automata following a 2 bits transforming table 
to generate pseudo DNA sequences. Considering different configurations, there is 24 = 4! possible rules in 
transformation. Considering generations of 0 - 1 sequences, pseudo random number generation mechanism [1,2] 
takes the central position in modern cryptography [3-6]. Associated with advanced development of bioinfor- 
matics, advanced DNA sequencing and analyzing techniques [7-24] have significantly progressed over the past 
decade. 

1.1. Large Non-Coding DNA & RNA 
In DNA analysis, visualization methods play a key role in the Human Genome Project (HGP) [8]. After HGP 
completed successfully, a public research consortium, the Encyclopedia of DNA Elements (ENCODE) was 
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launched by the National Human Genome Research Institute (NHGRI) in 2003 to find all functional elements in 
the human genome. 

In 2012, ENCODE released a coordinated set of 37 papers published in key Journals of Nature, Science, Ge- 
nome Biology and Genome Research. These publications show that approximately 20% of non-coding DNA in 
the human genome is functional while an additional 60% is transcribed with no known function [13]. Much of 
this functional non-coding DNA is involved in the regulation of the expression of coding genes [14]. 

Furthermore the expression of each coding gene is controlled by multiple regulatory sites located both near 
and distant from the gene. These results demonstrate that gene regulation is far more complex than previously 
believed [15]. Mammalian genomes encode thousands of large non-coding RNAs (lncRNAs), many of which 
regulate gene expression, interact with chromatin regulatory complexes, and are thought to play a role in loca- 
lizing these complexes to target loci across the genome [17]. Associated with different international projects, 
larger numbers of Genome Databases are established and mass Genome-wide gene expression measurements are 
developed over the world. 

1.2. DNA Analysis 
DNA analysis plays a key role in modern genomic application [8]. The HGP is heavily relevant to advanced 
DNA sequencing and analysis techniques. DNA sequences are composed of four Meta symbols on {A,T,G,C} 
as basic structure. Classical DNA double helix structure makes the first level of pair construction of DNA se- 
quences with A:T and G:C complementary structures on the first level of symmetric relationships. A typical 
DNA sequencing result is shown in Figure 1(a). Four Meta symbols could be separated as four projective se- 
quences. 

In ENCODE, recent Genomic analysis results are indicated that encoded sequences have only 20 percent in 
human genomes and around 80 percent genomes look like useless sequences. Under further assumptions, it 
seems that additional symmetric properties are required to satisfy the second, third and higher levels of structural 
constructions to explore complex interactive properties [8-18]. 

In current situation, it is necessary for advanced researchers to shift focus in computational cell biology from 
directly sequencing data to making higher-level interpretation and exploring efficient content-based retrieval 
mechanism for genomes. 

1.3. DNA Cryptography 
DNA cryptography makes joined research in the field of DNA computing and cryptography. Different results 
are published such as simulating DNA evolution [3], DNA pseudorandom number generator [7,19,20,23], DNA 
cryptography [4,21,22] and so on. 

In typical results of DNA cryptography on encryption, different coding schemes could be randomly selected. 
E.g. the algorithm in paper [21] applies an encoding formula to express the plaintext on DNA sequence: {00 → 
C, 01 → T, 10 → A, 11 → G}; however in paper [22], the same author uses the coding formula {00 → A, 01 → 
T, 10 → C, 11 → G} for the plaintext on DNA sequence. In encryption environment, all 24 possible encoding 
methods could be equally used in different applications. 

1.4. Stream Cipher HC-256 
Stream ciphers are an important class of encryption algorithms. A stream cipher is a symmetric cipher which 
operates with a time-varying transformation on individual plaintext digits. HC-256 is a stream cipher designed 
to provide bulk encryption in software at high speeds while permitting strong confidence in security. A 128-bit 
variant was submitted in 2004 as an eSTREAM cipher candidate; it has been selected as one of the four final 
contestants in the software profile [6] in 2008 as the most advanced scheme in modern network environ- 
ment. 

1.5. Variant Construction and DNA 
Variant construction is a new structure on Cellular Automata composed of logic, measurement and visualization 
models to analyze 0 - 1 sequences under variant conditions. The further details of this construction can be 
checked on variant logic [25,26], 2D maps [27,28], variant pseudo-random number generator [29-31], DNA 
maps [32,33] and dynamic properties on variant phase spaces [28]. Since the variant construction uses another 
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set of four Meta symbols { }, , ,⊥ + −   to describe relevant systems, a typical correspondence shown in Figure 
1(b) may provides a natural mapping between DNA and variant data sequences. 

Since DNA sequences are played an essential role to explore different symmetric properties based on analysis 
approaches, in this paper, measurement and visual models are proposed systematically to use a fixed segment 
structure to measure four Meta symbols distributions in their spectrum construction. Under this construction, re- 
fined symmetric features can be identified from various polarized distributions and further symmetric properties 
are visualized. 

1.6. Target of This Paper 
This paper establishes a Pseudo DNA Variant Map (PDVM) following Cellular Automata. The PDVMis a uni- 
fied framework to analyze complex DNA interactions for both artificial and natural DNA sequences. This paper 
provides an extending version on [33] that proposed an initial framework VMS to support some simulation 
properties for mode = 1 cases only. The PDVM has designed to use variant logic schemes on Cellular Automata 
[25-33] applying multiple maps on four Meta symbols as DNA or RNA representations. System architecture of 
key components and core mechanism on the PDVM are described. Key modules, equations and their I/O para- 
meters are discussed. Applying the PDVM, two sets of real DNA sequences from both human (non-coding DNA) 
and corn (coding DNA) genomes are collected in comparison with two sets of pseudo DNA sequences generated 
by HC-256 on mode = {1,2} to show their intrinsic properties in higher levels of similar relationships among 
DNA sequences on 2D maps. Further descriptions and discussions are systematically provided respectively. 

2. System Architecture 
In this section, system architecture and their core components are discussed with the use of diagrams. The re- 
fined definitions and equations of this system are described in the next section—Pseudo DNA Variant Map. 

Specific symbols for groups are listed as follows: 
t  An integer indicates the t-th DNA sequence selected, 0 t T≤ <  
r  An integer indicates a relationship distance among elements in a binary sequence, r 1≥  
mode  An integer indicates the mode of elements in a sequence, { }mode 0,1,2∈ , mode = 0 for a DNA se- 

quence, mode = {1,2} for a binary sequence 
tN  An integer indicates the number of elements in the t-th DNA sequence, tN r  
tY  An input data vector with tN  elements, { }t t tN N 2Nt

mode 0 mode 1 mode 2
Y D ,B ,B

= = =
∈  

n  An integer indicates the number of elements in a segment, n 0>  
V A symbol is selected from four DNA symbols { }A,G,T,C D= , V D∈  
k  An integer indicates the control parameter for mapping, k 0>  

tX  A unified DNA vector with tN  elements, tNtX D∈  
{ }V

lρ  Four sets of probability measurements with t0 l m , V D≤ < ∈  

( ){ }k k
V Vx , y  Four paired values, k 0,V D> ∈  

 

    

 

DNA Sequences Variant Logic 

G 0 - 0: ⊥  

A 0 - 1: + 

T 1 - 0: −  

C 1 - 1:   

 
 

(a)                                    (b) 

Figure 1. Modern DNA sequencing & correspondences on Variant Logic. (a) A sample DNA sequencing and its four 
projection sequences; (b) Four Meta DNA Symbols and linkages to Variant Logic. 
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{ }VMap  Four 2D maps, V D∈  

{ }t
VM  Four 0 - 1 vectors with tN  elements, ( ) { } tNt t

V VM I 0,1 B,M B ,V D∈ = ∈ ∈  

( ){ }VH ρ  Four histograms for relevant probability measurements, V D∈  

( ){ }V
HP ρ  Four normalized histograms for relevant probability measurements, V D∈  

∀t All DNA sequences are selected, 0 t T≤ <  

2.1. Architecture 
The four components of a PDVM are the Binary To DNA (BTD), the Binary Probability Measurement (BPM), 
the Mapping Position (MP), and the Visual Map (VM) as shown in Figure 2. 

The architecture is shown in Figure 2(a) with the key modules of the four core components being shown in 
Figures 2(b)-(e) respectively. 

In the first part of the system, the t-th sequence tY  on either {0,1} or {A,G,T,C} are input data to get into 
the BTD module. The main function of the BTM is to output a unified sequence tX  either to transfer a 0 - 1 
sequence or to keep a pseudo DNA sequence as a pseudo or pure DNA sequence under a set of controlled para- 
meters. Under different mode condition, various lengths can be identified between input 0 - 1 sequence and 
output pseudo DNA sequence. 

 
 

{ }mod 1 00 t , | , | ,t tN Nt
e modeT Y B D= =≤ < ∈

 
tNt

t t t1,0 N ,X D ,m N nr n≥ < ∈ =  
BTD  Binary To DNA; 
BPM  Binary Probability Measurement; 
MP   Mapping Position; 
VM   Visual Map 

{ }n,V D∈  

 
{ }ttt,N ,Y

 
{ }

t

V
l 0 l m
ρ

≤ <  
BPM BTD 

{ }r,mode  

tX  

{ }V V D
Map

∈  

tt,Y∀  k 

{ }
t

V
l 0 l m
ρ

≤ <  ( ){ }k k
V V V D

x ,y
∈  MP VM 

 
(a) 

 

BTD  Binary To DNA 

{ }r,mode  
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 { }t
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n,V D∈  

{ }
t

V
l 0 l m
ρ

≤ <  
BM PM 

tX  

BM  Binary Measure; 
PM  Probability Measurement  

(b)                                               (c) 

 
{ }V

HP (ρ )
 

{ }VH(ρ )
 HIS NH 

k 
HIS Histogram; NHNormalized Histogram; 
PPPair Position 

{ }V
HP (ρ )

 PP ( ){ }k k
V V V D

x ,y
∈  

{ }
t

V
l 0 l m
ρ

≤ <  

   

 

VM   Visual Map 

tt,Y∀  

VM ( ){ }k k
V V V D

x ,y
∈  

{ }V V D
Map

∈  

 
(d)                                                  (e) 

Figure 2. Pseudo DNA Variant Map PDVM and key components (a) Architecture of PDVM composed of four com- 
ponents: BTD, BPM, MP and VM; (b) BTD Binary to DNA module is itself: BTD; (c) BPM Binary Probability Mea- 
surement module is composed of two components: BM and MP; (d) MP Mapping Position module is composed of 
three components: HIS, NH and PP; (e) VM module is itself: VM. 
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Using this unified DNA sequence, four vectors of probability measurements are created from the t-th selected 
DNA sequence with tN  elements as an input. Multiple segments are partitioned by a fixed number of n ele- 
ments for each segment; at least tm  segments can be identified by the BPM component. Next component uses 
the four vectors of probability measurements and a given k value as input data, a pair of position values are 
created for each Meta symbol. Four pairs of values are generated by the MP component. Then, in order to 
process multiple selected DNA sequences, all selected sequences are processed by the VM component and each 
sequence may provide a set of pair values to generate relevant variant maps to indicate their distribution proper- 
ties respectively. 

With eight parameters in an input group, there are three sets of parameters in the intermediate group and one 
set of parameters in the output group. 

The three groups of parameters are listed as follows. 
Input Group: 
( )t 0 t T≤ < , ( )r r 1≥ , { }( )mode mode 0,1∈ , 

( )t tN N r , { }( )t t tN N 2Nt t

mode 0 mode 1 mode 2
Y Y D ,B ,B

= = =
∈ , 

( )n n 0> , ( )V V D∈ , ( )k k 0>  
Intermediate Group: 

( )tNt tX X D∈ , { }( )V
l tρ 0 l m ,V D≤ < ∈ , 

( ){ }( )k k
V Vx , y k 0,V D> ∈  

Output Group: 
{ }( )VMap V D∈  

2.2. BTD Binary to DNA 
The BTD component shown in Figure 2(b) is composed of one module: BTD itself. Five parameters are shown 
as input signals and one unified vector is generated by the BTD component as the output group. 

Input Group: 
( )t 0 t T≤ < , ( )r r 1≥ , { }( )mode mode 0,1∈  

( )t tN N r , { }( )t t tN N 2Nt t

mode 0 mode 1 mode 2
Y Y D ,B ,B

= = =
∈  

Output Group: 

( )tNt tX X D∈  

If mode = 2 condition, double number of 0 - 1 elements are required to generate a given length pseudo DNA 
sequence than mode = 1 condition. The BTD component uses an input vector on either binary or DNA format as 
input, under a set of input parameters to process transformation. The output of the BTD component is composed 
of a unified vector of DNA format in a given set of conditions. 

2.3. BPM Binary Probability Measurement 
The BPM component shown in Figure 2(c) is composed of two modules: BM Binary Measure and PM Proba- 
bility Measurement. Three parameters are listed as input signals; four vectors of binary measures are outputted 
from the BM component as an intermediate group and four sets of probability measurements are outputted as an 
output group. 

Input Group: 
( )n n 0> , ( )V V D∈ , ( )tNt tX X D∈  

Intermediate Group: 

{ } ( ) { }( )tNt t t
V V VM M I 0,1 B,M B ,V D∈ = ∈ ∈  

Output Group: 
{ }( )V

l t0 l m ,V Dρ ≤ < ∈  

The BPM component transforms a selected DNA sequence to generate four 0 - 1 vectors by BM module for 
the input DNA sequence. Then four probability vectors are generated by the PM module as the output of the 
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BPM under a fixed length of segment condition. 

2.4. MP Mapping Position 
The MP component shown in Figure 2(d) is composed of three modules: HIS Histogram, NH Normalized His- 
togram and PP Pair Position. Two parameters are listed as input signals; four histograms and four normalized 
histograms are generated from the HIS component and the NH component as intermediate groups respectively. 
Four paired values are generated by the PP component as the output group. 

Input Group: 
{ }( )V

l t0 l m ,V Dρ ≤ < ∈ , ( )k k 0>  

Intermediate Group: 

( ){ } ( ){ } ( )V V
HH , P , V Dρ ρ ∈  

Output Group: 

( ){ }( )k k
V Vx , y k 0,V D> ∈  

The MP component uses probability measurements as input, under a given k condition to generate each rele- 
vant histogram and its normalized distribution. The output of the MP component is composed of four paired 
values controlled in a given condition 

2.5. VM Visual Map 
The VM component shown in Figure 2(e) is composed of one module: VM Visual Map. Three parameters are 
input signals. Collected all selected DNA sequences, four 2D maps are generated by the VM component as the 
output result. 

Input Group: 
( )tt 0 T∀ ≤ < , 

{ }( )t t tN N 2Nt t

mode 0 mode 1 mode 2
Y Y D ,B ,B

= = =
∈ , 

( ){ }( )k k
V Vx , y k 0,V D> ∈  

Output Group: 
{ }( )VMap V D∈  
The VM component processes all selected DNA sequences as input to generate paired values for each se- 

quence. The output of the VM component is composed of four 2D maps to show the final visual distribution for 
the system. 

3. Pseudo DNA Variant Map PDVM 
In this section, definitions and equations are provided to describe the PDVM. In addition to the initial prepara- 
tion, seven core modules are involved in the BTD, BM, PM, HIS, NH, PP and VM components respectively. 

3.1. Initial Preparation 
Let r  an input parameter make all pairs of elements with r distance in a binary sequence to be a pseudo DNA 
vector, mode  a controlled parameter indicate various pairs of operations performed if mode 1≥ . Denote 

{ }B 0,1=  a binary base and { }D A,G,T,C=  a DNA base respectively. 

3.2. BTD Module 
Let Y  an input sequence with N elements, 0 I N≤ < , ( ) ( ){ }N N

mode 1 mode 0
,Y I B Y I D

≥ =
∈ ∈ . This input vector 

could be expressed as follows. 

( ) ( ) ( )( )
( ) ( ){ }N N

mode 1 mode 0

Y Y 0 , ,Y I , ,Y N 1 , 0 I

Y I B Y I D, .

N

≥ =

= − ≤ <

∈ ∈

 

                          (1) 

Let X denote a DNA sequence with N elements, D denote a symbol set with four elements i.e. 
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{ }D A,G,T,C= . This type of a DNA sequence can be described by a four valued vector as follows: 

( ) ( ) ( )( )
( ) { } N

X X 0 , ,X I , ,X N 1 ,0 I ,

A,G,T,C ,X D

N

X I D

= − ≤ <

∈ = ∈

 

                          (2) 

From this input and associated parameters, following operations are performed. 
If mode = 0, for all I, ( )Y I D∈ , the output vector is equal to the input vector. 

( ) ( )I, X I Y I , 0 I N∀ = ≤ <                                          (3) 

If mode = 1, for all pairs of I and ( )I r mod N+  elements of Y, Y(I), ( )Y I r B+ ∈ , the I-th output element 
( )X I  can be determined by the corresponding conditions shown in Figure 1(b) as follows. 

( )

( )
( ) ( )
( ) ( )
( ) ( )

G, if Y(I) 0 &  I r 0

A, if Y I 0 &  I r 1
X I , 0 I , r 1.

T, if Y I 1&  I r 0

C, if Y I 1&  I r 1

Y

Y
N

Y

Y

= + =


= + =
= ≤ < ≥

= + =
 = + =

                  (4) 

Under this condition, a 0 - 1 sequence with N elements can generate a pseudo DNA sequence with the same 
elements. 

If mode = 2, only half pairs of I ( )( )I r mod 2 0=    and I r+  elements of Y, Y(I), ( )Y I r B+ ∈ , the I-th 
output element ( )X I  can be determined by the corresponding conditions shown in Figure 1(b) as follows. 

( )

( )
( ) ( )
( ) ( )
( ) ( )

( )

G, if Y(I) 0 &  I r 0

A, if Y I 0 &  I r 1
X I ,

T, if Y I 1&  I r 0

C, if Y I 1&  I r 1

0 I, I r , I r mod 2 0, r 1.

Y

Y

Y

Y

N

= + =


= + =
= 

= + =
 = + =

≤ + < = ≥  

                             (5) 

Under this condition, a 0 - 1 sequence with N element can generate a pseudo DNA sequence with N 2    
elements. 

In both conditions, X  will be a unified vector with four values as the output of the BTD shown in Figure 
2(b). 

e.g. Let a binary sequence Y 100111001011,=  N 12= , three pseudo DNA sequences ( )r 1, r 2, r 3= = =  
under two mode conditions can be represented as follows. 

r 1

r 2

r 3

r 1

r 2

r 3

12 12 6

mode 1 mode 2

Y 100111001011
mode 1
X TGACCTGATACC
X TAACTTAGCACT
X CAATTCGACATT
mode 2
X TACGTC
X TATTCA
X CAAGAC

Y B ,X D ,X ,D

=

=

=

=

=

=

= =

=
=
=
=
=

=
=
=
=

∈ ∈ ∈

 

Selecting a certain r  value and a fixed mode, a relevant pseudo DNA sequence can be generated from an 
input binary sequence. 

Normal rules of DNA cryptography [21,22] take only r = 1 and mode = 2 conditions for transformations. For 
mode = 1 situations, normal rules cannot be covered. 
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From a Cellular Automata viewpoint, this type of transformation plays a key role in the PDVM. This is a sig- 
nificantly distinguishable condition to check whether generated pseudo DNA sequences with/without non-cod- 
ing properties. 

3.3. BM Module 
For a given I-th element, four projective operators can be defined and denoted as ( ) ( ) ( ) ( ){ }A G T CM I ,M I ,M I ,M I . 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A G

T C

1,if X I A; 1,if X I G;
M I M I

0,Otherwise; 0,Otherwise;

1, if X I T; 1,if X I C;
M I M I

0,Otherwise; 0,Otherwise

 =  = = = 
  
 =  = = = 
  

                   (6) 

Applying the four operators to all elements, the DNA sequence X can be reorganized into the four binary se- 
quences of 0 - 1 values. i.e. 

( ){ } ( ) ( ) ( ) ( ){ }
( ) { }

N 1 N 1
V A G T CI 0 I 0

V

M : X I M I ,M I ,M I ,M I ,

M I B 0,1 ,V

,

D

− −

= =
→

∈ = ∈
              (7) 

e.g. Let a DNA sequence X CTGATTAGCCAT,=  N 12= , its four binary sequences can be represented as fol- 
lows: 

A

G

T

C

X CTGATTAGCCAT
M 000100100010
M 001000010000
M 010011000001
M 100000001100

=
=
=

=
=

 

It is interesting to notice that the basic relationship between a DNA sequence X and its four VM  sequences 
are exactly same as in a modern DNA sequencing procedure to separate a selected DNA sequence into the four 
Meta symbol sequences shown in Figure 1(a). This correspondence could be the key feature to apply the pro- 
posed scheme naturally in simulating complex behaviors for any DNA sequence. 

The projection VM  provides the essential operation in the BM component as the first module shown in 
Figure 2(c). 

3.4. PM Module 
For this set of the four binary sequences, it is convenient to partition them into m segments and each segment 
contained a fixed number of n elements. 

For the l-th segment, let 0 l ,0m j n≤ < ≤ < , the I-th position will be I l n j= ∗ + , four probability measure- 
ments { }A G T C, , , ,ρ ρ ρ ρ can be defined. 

( )( )l 1 n 1
VV I l n

l

M I
, V D, 0 I

n
N n mρ

+ ∗ −

= ∗= ∈ ≤ < = ∗∑                         (8) 

Under this construction, four sets of probability measurements established. 

( ) ( ) ( ) ( ){ } { }m 1N 1V A G T C
A G T C l l l lI 0 l 0

: M I , M I ,M I ,M I , , , , ,ρ ρ ρ ρ ρ
−−

= =
→              (9) 

The probability operator Vρ  generates four probability measurement vectors in the PM component as the 
second module shown in Figure 2(c). After the BM and PM processes, the whole procedure of the BPM com- 
ponent is complete in Figure 2(c). 

3.5. HIS Module 
Since the BPM generates four sets of probability measurement, it is necessary to perform further operations in 
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the MP component shown in Figure 2(d) as follows. 

In the HIS component as the first module in Figure 2(d), each probability sequence { }m 1V
l l 0
ρ , ,V D

−

=
∈  can be  

calculated from n positions, at most n + 1 distinguished values identified in a vector. Under this organization, a 
histogram distribution can be established. 

Let ( )H .  be a histogram operator, for each position, it satisfies following relation, 

( )
V

V l
l

i1, if ,V D;
H n

0, Otherwise,0 i n.

ρ
ρ

 = ∈= 
 ≤ ≤

                           (10) 

Collecting all possible values, a histogram distribution can be established, 

( ) ( )m 1V V
ll 0H Hρ ρ−

=
= ∑                                      (11) 

The histogram ( )VH ρ  is the output of the HIS module. Four histograms are generated after HIS process. 
Further normalized process will be performed in the NH component as the second module in Figure 2(d). 

3.6. NH Module 
Under this construction, a normalized histogram can be defined as 

( ) ( )V V
HP H mρ ρ=                                       (12) 

After the NH component processed, its output provides the PP component for further operations as the third 
module in Figure 2(d). 

3.7. PP Module 
Relevant probability vectors have (n + 1) distinguished values; four sets of normalized vectors can be organized 
as a linear order as follows, 

m 1V V V
i l ll 0

ip H m, 0 i n
n

ρ ρ−

=

 = = ≤ ≤ 
 

∑                               (13) 

Under this condition, four linear sets of probability vectors are established, 

( ) { } [ ]
nV A G T C V

H i i i i ii 0
P p , p , p , p , , p 0,1 , V D, 0 i nρ

=
= ∈ ∈ ≤ ≤                   (14) 

For four vectors, their components can be normalized respectively, 
n V

ii 0 p 1,V D
=

= ∈∑                                                 (15) 

Four sets of probability vectors are composed of a complete partition on their measurements. 
Using this set of measurements, two mapping functions can be established to calculate a pair of values to map 

analyzed DNA sequence into a 2D map as follows. 
Let ( )y F P,V,k=  and ( )x F P,V,1 k=  or ( )k k

V Vx , y  be a pair of values defined by following equations, 

( ) ( ) ( ) ( )
k kn nk V k Vk k

V i V ii 0 i 0y F P,V,k p x F P& ,V,1 k p ,V D
= =

= = = = ∈∑ ∑            (16) 

In the PP component, four paired values are generated and each pair indicates a specific position on a 2D map 
for the selected DNA sequence. The core operations of three key components: BTD, BPM and MP for a selected 
sequence are performed in Figures 2(b)-(d). 

3.8. VM Module 
Since only one point of a 2D map is determined for a selected DNA sequence, it is essential to apply relative- 

OPEN ACCESS                                                                                          AM 



J. ZHENG  ET  AL. 162 

larger number of DNA sequences as inputs to generate visible distributions. This type of operations will be per- 
formed in the VM component shown in Figure 2(e). 

In a general condition, the VM component processes a selected data set { }T 1t

t 0
Y

−

=
 composed of T sequences, 

the t-th sequence with tN  elements can be expressed by 

( ) ( ) ( )( )t t t t
tY Y 0 , ,Y I , ,Y N 1 ,= −   ( ) ( ){ }t t t2N N Nt

mode 2 mode 1 mode 0
Y Y I B B Y, , I .D

= = =
∈ ∈ ∈  

Each sequence can be processed to apply the same procedures of the BTD, BPM and MP components. Since 
for each segment, its length n will be fixed for all selected sequences, it is essential to make number of segments 
be t

tm N n=     in convention to match each sequence. Under this expression, the last module VM collects all 
T pairs of positions on relevant 2D visual maps as follows, 

{ } ( ){ } { }
T 1T 1 tt k k

V V Vt 0 t 0
VM : X x , y MAP ,V D

−−

= =
→ → ∈                  (17) 

A sample 2D map of VM is shown in Figure 3. This provides an assistant illustration for this type of visual 
maps on a case of multiple sequences. 

Under this construction, a total number of T DNA sequences are transformed as T visual points on four 2D 
visual maps that would be help analyzers to explore their intrinsic symmetry properties among four binary se- 
quences. 

4. Sample Results on 2D Maps 
Two types of data sets are selected for comparison. The first type of data sets is real DNA data sequences col- 
lected from both human and plan genomes to illustrate their differences on 2D maps. The second type of data set 
is collected from the Stream Cipher HC-256 to generate a pseudo random binary sequence under a certain con- 
dition. 

4.1. DNA Data Resources 
It is important to use some real DNA sequences to illustrate various test results of the PDVM. Two sets of DNA 
sequences are selected and relevant resource features are described as follows. 

The first data set originally comes from the human genome assembly version 37 and was taken from the ref- 
erence sequences of 13 anonymous volunteers from Buffalo, New York. Hi-C technology used to analyze chro- 
matin interaction role in genome. From a genomic analysis viewpoint, this set of data may contain more com- 
plex secondary or higher level structures. A special structure nearly the GRCh37 DNA sequence has been iden- 
tified to explore their spatial characteristics. After positive and negative sequencing, each data file contain 2700 
DNA sequences and each sequence has around 500 elements stored in one file right. 

The second DNA data set are selected from some plant gene database for comparison. One set of DNA se- 
quences of Corn genomes are stored in file 201 - 500 that contains 2700 DNA sequences and each sequence has 
around 200 - 600 elements. It may be ordinary single sequences without complex secondary structures. 
 

 

( )1

kn k
i

Pi
=∑  

1

n kk
i

Pi
=∑  

 
Figure 3. A sample 2D map of VM on multiple sequences. 
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4.2. Pseudo DNA Data Resources 
The Stream Cipher HC-256 has being used to generate a binary sequence on a total length of 2700 500×  
(mode = 1) and 2700 1000×  (mode = 2) bits in the file hc256 that has been partitioned as 2700 subsequences 
and each sub-sequence in 500/1000 bits respectively. 

Using the PDVM in various parameters, six sets of pseudo DNA sequences are generated and their 2D maps 
are illustrated, analyzed and compared in following subsections. 

4.3. Sample Results 
Using the two files of DNA sequences and two pseudo binary sequences in three parameters, relevant 2D maps 
are listed in Figures 4-7 under different conditions to illustrate their spatial distributions using the PDVM in a 
controllable environment. 

In Figure 4, four groups of sixteen 2D maps are shown in the range of n 3~50,=  k 7,=  N 200~600,≅  
T 2700=  for comparison; (a1 - a4) four AMap  maps for the file Right; (b1 - b4) four GMap  maps for the 
file 201 - 500; (c1 - c4) four AMap  maps for the file hc256, mode = 1; (d1 - d4) four AMap maps for the file 
hc256, mode = 2 respectively. 

In Figure 5, two groups of eight 2D maps for the files right and 201 - 500 are selected in the range of 
n 15,=  { }k 2,3,4,7= , N 500,≅  T 2700= ; (a) group (a1 - a4) four VMap  maps for file right; (b) group (b1 
- b4) four VMap  maps for the file 201 - 500. 

In Figure 6, six groups of twenty four 2D maps for the file hc256 are compared in the range of n 12,=  
k 7,= N 500,≅  T 2700,=  { }r 1, 2,3 ,=  { }mode 1,2 ;=  (a) (c) (e) groups for mode = 1 (a1 - a4) four VMap  
maps r = 1; (c1 - c4) four VMap  maps r = 2; (e1 - e4) four VMap maps r = 3; (b) (d) (f) groups for mode = 2 
(b1 - b4) four VMap  maps r = 1; (d1 - d4) four VMap  maps r = 2; (f1 - f4) four VMap  maps r = 3. 

In Figure 7, six groups of twenty four 2D maps for three files right, 201 - 500 and hc256 are compared in the 
range of k 7,=  N 500,≅  T 2700= ; (a) the file right n = 15, mode = 0; (b) the file hc256 n = 12, mode = 1, r 
= 1; (c) the file hc256 n = 12, mode = 1, r = 3; (d) the file hc256 n = 12, mode = 2, r = 1; (e) the file hc256 n = 
12, mode = 2, r = 3; (f) the file 201 - 500, n = 15, mode = 0; (a1 - f1) AMap  maps; (a2 - f2) TMap  maps; (a3 - 
f3) GMap  maps; (a4 - f4) CMap  maps. 

4.4. Result Analysis of 2D Maps 
Four groups of 2D maps contain different Information, it is necessary to make a brief discussion on their impor- 
tant issues as follows. 

The first group of results shown in Figure 4 presents four sets of sixteen 2D maps from three data files: right, 
201 - 500 and hc256 (mode = {1,2}) undertaken various lengths of basic segment from 3 - 50 to illustrate their 
variations respectively. Four 2D maps of each group in Figure 4 (a1 - a4) show significant trace on their visual 
distributions; the numbers of main visible clusters identified are decreased when the length of segment has being 
increased e.g. (a3 - a4). However, lesser length of segment does not provide refined visual distinctions with larg- 
er region in fuzzy areas e.g. (a1 - a2). From a structural viewpoint, middle ranged numbers of length provide 
better clustering results e.g. (a2 - a3) for further analysis targets. To check another four 2D maps of Figure 4 (b1 
- b4) for the file 201 - 500, significantly different visual distributions can be observed than (a1 - a4); the num- 
bers of main visible clusters identified are decreased when the length of segment has being increased less sig- 
nificantly e.g. (b1 - b4). However lesser length of segment does not provide refined visual distinctions with 
wider regions in fuzzy areas e.g. (b1 - b2). In general, middle ranged numbers of length still provide better clus- 
tering effects e.g. (b3 - b4) for further analysis purpose. Eight 2D maps of Figure 4 (c - d) (c1 - c4) for the file 
hc256 r = 1, mode = 1, and (d1 - d4) for the file hc256 r = 1, mode = 2, similar visual distributions can be ob- 
served than (a1 - a4) and significantly differences are observed than (b1 - b4); the numbers of main visible clus- 
ters identified are decreased when the length of segment has being increased less significantly e.g. (c3 - c4)/(d3 - 
d4). However lesser length of segment does provide refined visual distinctions with regions in fuzzy areas e.g. 
(c1)/(d1). In general, middle ranged numbers of length still provide better clustering effects e.g. (c2 - c3)/(d2 - 
d3) for further analysis purpose. From their distributions, groups (a) and (c - d) have shared much stronger simi- 
lar properties than Group (b). 

Using a set of selected parameters, two groups of eight 2D maps are compared in Figure 5 for two files: right 
and 201 - 500 to explore higher levels of symmetric properties for secondary or higher levels of structures 

OPEN ACCESS                                                                                          AM 



J. ZHENG  ET  AL. 164 

 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

scatter diagram of A% 

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 
( )7pi∑

 

( )( )7

pi∑
 

×1012 

  
 

10 

8 

6 

4 

2 

0 

scatter diagram of G% 

0 0.1 

( )( )7

pi∑
 

×1011 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
( )7pi∑

 

12 

14 

16 

18 

 

 
n = 3: (a1)                                                  (b1) 

 

0 

scatter diagram of A% 

0.01 

×1012 

 

0.02 0.03 0.04 0.05 
( )7pi∑

 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 
5 

5.5 

( )( )7

pi∑
 

  
 

0.5 

scatter diagram of A% 

0.01 

×1012 

 

0.02 0.03 0.04 0.05 
( )7pi∑

 

1 

1.5 

2 

2.5 

3 

( )( )7

pi∑
 

0 

 
n = 3: (c1)                                                   (d1) 
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n = 3: (c2)                                                   (d1) 
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Figure 4. Four groups of sixteen 2D maps in the range of n = 3 - 50, k = 7, N ≅  200 - 600, T = 2700; (a1 - a4) 𝐌𝐌𝐌𝐌𝐌𝐌𝐀𝐀 
for the file right; (b1 - b4) MapG for the file 201 - 500; (c1 - c4) MapA for the file hc256 mode = 1, r = 1, (d1 - d4) 
MapA for the filehc256 mode = 2, r = 3. 
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Figure 5. Two groups of eight 2D maps in the range of n = 15, k = 7, N ≅  200 ~ 600, T = 2700; (a) group (a1 - a4) 
four MapV maps for the file right; (b) group (b1 - b4) four MapV maps for the file 201 - 500. 
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(b3) MapG                                                  (b4) MapC 
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(d3) MapG                                                  (d4) MapC 
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(f3) MapG                                                  (f4) MapC 

Figure 6. Six groups of twenty six 2D maps in the range of n = 12, k = 7, N = 500, T = 2700 for the file hc256, r = {1,2, 
3}, mode = {1,2}; (a1 - 4) Four maps for the file hc256, r = 1, mode = 1; (b1 - 4) Four maps for the file hc256, r = 1, 
mode = 2; (c1 - 4) Four maps for the file hc256, r = 2, mode = 1; (d1 - 4) Four maps for the file hc256, r = 2, mode = 2; 
(e1 - 4) Four maps for the file hc256, r = 3, mode = 1; (f1 - 4) Four maps for the file hc256, r = 3, mode = 2. 
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Figure 7. Six groups of twenty-four maps in the ranges: N = 500, T = 2700, k = 7; (a) (f) Real DNA Data; (a1 - 4) DNA 
sequences from the file right, n = 15, mode = 0; (b - e) Simulation Data; (b1 - 4) Binary Sequences from the file hc256, 
n = 12, r = 1, mode = 1; (c1 - 4) Binary Sequences from the file hc256, n = 12, r = 3, mode = 1; (d1 - 4) Binary Se- 
quences from the file hc256, n = 12, r = 1, mode = 2; (e1 - 4) Binary Sequences from the file hc256, n = 12, r = 3, mode 
= 2; (f1 - 4) DNA sequences from the file 201 - 500, n = 15, mode = 0. 

 
potentially contained in DNA sequences. Selected parameters are in the range of n 15,k 7, N 500,T 2700= = ≅ = . 
Group (a) provides four VMap  maps (a1 - a4) for the file right; group (b) uses four VMap  maps (b1 - b4) for 
the file 201 - 500. 

In convenient description, let ~ be a similar operator, for groups (a) & (b), four pairs of {(a1) ~ (a2), (a3) ~ 
(a4), (b1) ~ (b2) ~ (b3) ~ (b4)} maps i.e. (right-A ~ right-T, right-C ~ right-G, 201-500-A ~ 201-500-T ~ 
201-500-C ~ 201-500-C). Two sets of maps have a stronger similar distribution among their projections. From a 
symmetric viewpoint, three clustering classes could be identified as {(a1) ~ (a2), (a3) ~ (a4), (b1) ~ (b2) ~ (b3) ~ 
(b4)} respectively. This type of similar clustering distributions may strongly indicate eight maps with intrinsi- 
cally higher levels of DNA sequences with clear A-T & G-C pairs of symmetric relationships on right for non- 
coding sequences. And another set of four maps may have similar distributions for coding sequences. 

Using a set of selected parameters, six groups of twenty four 2D maps are listed in Figure 6 for the file hc256, 
r = {1, 2, 3}, mode = {1,2} to explore properties for their higher levels of structures potentially contained in 
pseudo DNA sequences. Selected parameters are in the range of n 12,k 7, N 500,T 2700= = ≅ = . Groups (a) - 
(b) for r = 1 provide two sets of four MapV  maps(a1 - a4) mode = 1, (b1 - b4) mode = 2; groups (c) - (d) for r 
= 2 uses two sets of four VMap  maps (c1 - c4) mode = 1, (d1 - d4) mode = 2; groups (e) - (f) for r = 3 use two 
sets offour MapV  maps (e1 - e4) mode = 1, (f1 - f4) mode = 2. Using a similar operator, for groups (a - f), fol- 
lowing relations are identified {(a1) ~ (c1) ~ (e1) ~ (a2) ~ (c2) ~ (e2), (a3) ~ (c3) ~ (e3) ~ (a4) ~ (c4) ~ (e4), (b1) 
~ (d1) ~ (f1) ~ (b2) ~ (d2) ~ (f2) ~ (b3) ~ (d3) ~ (f3) ~ (b4) ~ (d4) ~ (f4)} maps for A ~ T, G ~ C (mode = 1) and 
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A ~ T ~ G ~ C (mode = 2). i.e. three sets of maps are shown in (A ~ T, G ~ C) and another three sets of maps are 
shown in (A ~ T ~ G ~ C) respectively. 

In a convenient comparison, using a set of selected parameters, six groups of twenty four 2D maps are com- 
pared in Figure 7 for the files: right, 201 - 500 and hc256, r = {1,3}, mode = {1,2} from (a) - (f) to check their 
distribution properties contained in both DNA and created pseudo DNA sequences. Group (a) provides four 
MapV  maps (a1 - a4) for the file right; groups (b) and (c) for hc256, mode = 1 provide four VMap  maps (b1 - 
b4) for r = 1 and (c1 - c4) for r = 3; groups (d) and (e) for hc256, mode = 2 provide four VMap  maps (d1 - d4) 
for r = 1 and (e1 - e4) for r = 3. Group (f) provides four VMap  maps (f1 - f4) for the file 201 - 500. 

Using a similar operator ~ , for groups (a - f), four pairs of {(a1) ~  (a2), (a3) ~ (a4), (b1) ~  (b2), (b3) ~ 
(b4), (c1) ~ (c2), (c3) ~ (c4), (d1) ~ (d2) ~ (d3) ~ (d4), (e1) ~ (e2) ~ (e3) ~ (e4), (f1) ~ (f2) ~ (f3) ~ (f4)} maps 
have similar distributions among maps. i.e. Three groups’ maps are shown in relationships among (A ~ T,G ~ C) 
for non-coding sequences and pseudo DNA sequences on mode = 1 condition and another three groups are 
shown in the relationships on (A ~ T ~ G ~ C)for coding sequences and pseudo DNA sequences on mode = 2 
condition respectively. 

In general, this set of map results illustrates directly visual comparisons with similarity between real DNA and 
pseudo DNA sequences on PDVM maps, their similarly clustering distributions may indicate those simulation 
results with comparable mechanism to analogy complex behaviors of real DNA sequences with extra A-T & 
G-C pairs of symmetric relationships or A-T-G-C equal distributions in their higher levels of relationships ap- 
plying the Stream Cipher mechanism. 

5. Conclusion 
This paper proposes the architecture to support the Pseudo DNA Variant Map on Cellular Automata. Using a 
binary random sequence as input, a set of special pseudo DNA sequences can be generated. Under variant 
measures, probability measurement and normalized histogram, a pair of values can be determined by a series of 
controlled parameters. Collecting relevant pairs on multiple DNA sequences, four 2D maps can be generated. 

The main results of this paper provide the PDVM architecture description in diagrams, main components, 
modules, expressions and important equations for the PDVM. Core models and diagrams, sample results are il- 
lustrated to apply two types of data sets selected from real DNA sequences and two types of controllable modes 
to generate relevant pseudo random sequences from the Stream Cipher HC-256 for comparison under the 
PDVM testing. After the proper set of parameters selected, suitable visual distributions could be observed using 
the PDVM. Results in Figures 4-7 provide useful evidences systematically to support proposed PDVM useful in 
checking higher levels of symmetric/similar properties among complex DNA sequences in both natural and the 
artificial environment. 

This construction could provide useful insights to simulate spatial information on complex DNA expressions 
especially on both large non-coding and coding RNA/DNA construction via 2D maps to explore higher levels of 
complex interactive environments using Cellular Automata schemes in near future. 
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