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ABSTRACT 

We have applied the Lie-Trotter operator splitting method to model the dynamics of both the sum and difference of two 
correlated constant elasticity of variance (CEV) stochastic variables. Within the Lie-Trotter splitting approximation, 
both the sum and difference are shown to follow a shifted CEV stochastic process, and approximate probability distri-
butions are determined in closed form. Illustrative numerical examples are presented to demonstrate the validity and 
accuracy of these approximate distributions. These approximate probability distributions can be used to valuate 
two-asset options, e.g. spread options and basket options, where the CEV variables represent the forward prices of the 
underlying assets. Moreover, we believe that this new approach can be extended to study the algebraic sum of N CEV 
variables with potential applications in pricing multi-asset options. 
 
Keywords: Constant Elasticity of Variance Stochastic Variables; Probability Distribution Functions; Backward  

Kolmogorov Equation; Lie-Trotter Splitting Approximation 

1. Introduction 

Recently Lo [1] proposed a new simple approach to tackle 
the long-standing problem: “Given two correlated log-
normal stochastic variables, what is the stochastic dy-
namics of the sum or difference of the two variables?”; or 
equivalently, “What is the probability distribution of the 
sum or difference of two correlated lognormal stochastic 
variables?” The solution to this problem has wide appli-
cations in many fields including financial modelling, actu-
arial sciences, telecommunications, biosciences and phys-
ics [2-15]. By means of the Lie-Trotter operator splitting 
method [16], Lo showed that both the sum and difference 
of two correlated lognormal stochastic processes could 
be approximated by a shifted lognormal stochastic proc-
ess, and approximate probability distributions were de-
termined in closed form. Unlike previous studies which 
treat the sum and difference in a separate manner [2-5, 
8,13,15,17-27], Lo’s method provides a new unified ap-
proach to model the dynamics of both the sum and dif-
ference of the two stochastic variables. In addition, in 
terms of the approximate solutions, Lo presented an ana-
lytical series expansion of the exact solutions, which can 
allow us to improve the approximation systematically. 

In this communication we extend Lo’s approach to 
study the dynamics of both the sum and difference of two 
correlated constant elasticity of variance (CEV) stochas-
tic processes. The CEV process was first proposed by 
Cox and Ross [28] as an alternative to the lognormal 
stochastic movements of stock prices in the Black- 
Scholes model. The CEV process, which is defined by 
the stochastic differential equation 

2d d for 0S S Z 2          (1) 

with dZ being a standard Weiner process, has been 
receiving much attention because it has the ability to give 
rise to a volatility skew and to explain the volatility smile 
[29-41]. In the limiting case 2  , the CEV model 
returns to the conventional Black-Scholes model, whilst 
it is reduced to the Ornstein-Uhlenbeck model in the case 
of 0  . By the Lie-Trotter operator splitting method, 
we show that both the sum and difference of two corre-
lated CEV processes can be modelled by a shifted CEV 
process. Approximate probability distributions of both the 
sum and difference are determined in closed form, and 
illustrative numerical examples are presented to demon-
strate the validity and accuracy of these approximate dis-
tributions. 
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2. Lie-Trotter Operator Splitting Method 

We consider two CEV stochastic variables 1  and 2 , 
which are described by the stochastic differential equa- 
tions: 

S S

2d d  ,i i i iS S Z i 1,2

2

           (2) 

for 0   . Here d iZ  denotes a standard Weiner 
process associated with , and the two Weiner proc-
esses are correlated as 1 2

iS
d d dZ Z t

1

. Without loss of 
generality, we also assume that 2  . The joint prob-
ability distribution function  , ,S t1 2, ,P S S t 10 20 0  of the 
two correlated CEV variables obeys the backward Kol-
mogorov equation [42-45] 
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subject to the boundary condition 

   1 2 10 20 0 1 10 2 20, , ; , ,P S S t S S t t S S S S     .



(5) 

This joint probability distribution function tells us how 
probable the two CEV variables assume the values  
and 2  at time 0 , provided that their values at  
are given by 10  and 20 . Once  
is found, the probability distribution of the sum or dif-
ference, namely 1 2 , of the two correlated 
CEV variables can be obtained by evaluating the integral 

1S

0t
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S t t



S S

S S 

 1 2 10 20, , ; ,P S S t S S
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, ; , ,

d d , , ; , , .

P S t S S t

S S P S S t S S t S S S


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      
(6) 

Unfortunately, the joint probability distribution function 
is not available in closed form, except for the case of 

0  . Hence, we must resort to numerical methods, e.g. 
the finite-difference method or Monte Carlo simulation. 
Nevertheless, the numerically exact solution does not 
provide any information about the stochastic dynamics of 
the sum or difference explicitly. 

It is observed that the probability distribution of the 
sum or difference of the two correlated CEV variables, 
i.e.  10 20 0, ; , ,P S t S S t

  , also satisfies the same back-
ward Kolmogorov equation given in Equation (3), but 
with a different boundary condition [43] 

  10 20 0 10 20, ; , , .P S t S S t t S S S 
        (7) 

To solve for  10 20 0, ; , ,
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2 2
1 2 1 22 .                  (12) 

The corresponding boundary condition now becomes 

  0 0 0 0, ; , , .P S t S S t t S S    
          (13) 

Accordingly, the formal solution of Equation (8) is 
readily given by 

 
     

0 0 0

0 0 0

, ; , ,

ˆ ˆ ˆexp .

P S t S S t

t t L L L S S

  


 
     

   (14) 

Since the exponential operator  

   0 0
ˆ ˆ ˆexp t t L L L     is difficult to evaluate, we  

apply the Lie-Trotter operator splitting method1 to ap-

*Suppose that one needs to exponentiate an operator  which can be Ĉ

split into two different parts, namely Â  and B̂ . For simplicity, let us 

assume that ˆ ˆ ˆC A B  , where the exponential operator  ˆexp C is 

difficult to evaluate but  ˆexp A  and  ˆexp B  are either solvable or 

easy to deal with. Under such circumstances the exponential operator 

 ˆexp C , with   being a small parameter, can be approximated by 

the Lie-Trotter splitting formula (Trotter, 1959): 

       2ˆ ˆ ˆexp exp exp .C A B O      

This can be seen as the approximation to the solution at t  of the 

equation  ˆˆ ˆ ˆd dY t A B Y  by a composition of the exact solutions 

of the equations ˆˆ ˆd dY t AY  and ˆ ˆd dY t BY

P S t S S t
 , we first rewrite the 

backward Kolmogorov equation in terms of the new 
variables  as 0 10 2S S S   ˆ  at time t  . 0
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proximate the operator by [16,46-49] 

      0 0 0
ˆ ˆ ˆ ˆexp exp ,LTO t t L t t L L        (15) 

and obtain an approximation to the formal solution 
 0 0 0, ; , ,P S t S S t  

 , namely 

 
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where the relation  

      0 0 0 0
ˆ ˆexp t t L L S S S S          is util-

ized. For  2

0 0 1S S   , which is normally valid unless  

10  and 20  are both close to zero, the operators S S L̂  
and  can be approximately expressed as L̂
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in terms of the two new variables: 
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Here the parameters   and   are defined by 

22


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Obviously, both  and S  S   are CEV random vari-
ables defined by the stochastic differential equations 

2dS S Z  d ,             (22) 

and their closed-form probability distribution functions 
are given by 
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(23) 

for 0 , where  denotes the modified Bessel 
function of order 

t t  I 
 . As a result, it can be inferred that 

within the Lie-Trotter splitting approximation both S   
and S   are governed by a shifted CEV process. It 
should be noted that for the Lie-Trotter splitting ap-
proximation to be valid,  needs to be small. 2

0t t  

3. Illustrative Numerical Examples 

In Figure 1 we plot the approximate closed-form prob-
ability distribution function of the sum  of two un-
correlated CEV variables ( i.e. 

S 

0  ) given in Equation 
(23) for different values of the input parameters. We start 
with 10 110S  , 20 105S  , 1 0.5   and 2 0.3   in 
Figure 1(a). Then, in order to examine the effect of 20 , 
we decrease its value to  in Figure 1(b) and to 65 in 
Figure 1(c). In Figures 1(d)-(f) we repeat the same 
investigation with a new set of values for 1

S
85

  and 2 , 
namely 1 0.3   and 2 0.2  . Without loss of gener-
ality, we set 0 1t t   for simplicity. The (numerically) 
exact results which are obtained by numerical integra-
tions are also included for comparison. It is clear that the 
proposed approximation can provide accurate estimates 
for the exact values. 

In order to have a clearer picture of the accuracy, we 
plot the corresponding errors of the estimation in Figure 
2. We can easily see that major discrepancies appear 
around the peak of the probability distribution function 
and that the estimation deteriorates as the elasticity pa-
rameter   increases. It should be noted that the pro-
posed approximation is exact in the special case of 

0  , i.e. the Ornstein-Uhlenbeck model. We also 
observed that the errors increase with the ratio 0 0SS    
and 2  (or equivalently, 1  and 2 ) as expected. 

Next, we apply the same sequence of analysis to the 
approximate closed-form probability distribution func-
tion of the difference S   given in Equation (23). Simi-
lar observations about the accuracy of the proposed ap-
proximation can be made for the difference S  , too (see 
Figures 3 and 4). 

4. Conclusion 

In this communication we have applied a new unified 
approach proposed by Lo (2012) to model the dynamics 
of both the sum and difference of two correlated CEV 
stochastic variables. By the Lie-Trotter operator splitting 
method, both the sum and difference are shown to follow 
a shifted CEV stochastic process, and approximate 
probability distributions are determined in closed form. 
Illustrative numerical examples are presented to demon-
strate the validity and accuracy of these approximate 
distributions. These approximate probability distributions 
can be used to valuate two-asset options, e.g. the spread 
options, where the CEV variables represent the forward 
prices of the underlying assets. Moreover, we believe 
that this new approach can be extended to study the  
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(a)                                                  (b) 

    
(c)                                                  (d) 

    
(e)                                                  (f) 

Figure 1. Probability density vs. S1 + S2: the dotted lines denote the distributions of the approximate shifted CEV process, and 
the solid lines show the exact results. (a) S10 = 110, S20 = 105, σ1 = 0.5 and σ2 = 0.3; (b) S10 = 110, S20 = 85, σ1 = 0.5 and σ2 = 0.3; 
(c) S10 = 110, S20 = 65, σ1 = 0.5 and σ2 = 0.3; (d) S10 = 110, S20 = 105, σ1 = 0.3 and σ2 = 0.2; (e) S10 = 110, S20 = 85, σ1 = 0.3 and σ2 
= 0.2; (f) S10 = 110, S20 = 65, σ1 = 0.3 and σ2 = 0.2. 
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(a)                                                            (b) 

    
(c)                                                            (d) 

    
(e)                                                            (f) 

Figure 2. Error vs. S1 + S2: the error is calculated by subtracting the approximate estimate from the exact result. (a) S10 = 
110, S20 = 105, σ1 = 0.5 and σ2 = 0.3; (b) S10 = 110, S20 = 85, σ1 = 0.5 and σ2 = 0.3; (c) S10 = 110, S20 = 65, σ1 = 0.5 and σ2 = 0.3; (d) 
S10 = 110, S20 = 105, σ1 = 0.3 and σ2 = 0.2; (e) S10 = 110, S20 = 85, σ1 = 0.3 and σ2 = 0.2; (f) S10 = 110, S20 = 65, σ1 = 0.3 and σ2 = 
0.2. 
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(a)                                                            (b) 

   
(c)                                                            (d) 

   
(e)                                                            (f) 

Figure 3. Probability density vs. S1 − S2: the dotted lines denote the distributions of the approximate shifted CEV process, and 
the solid lines show the exact results. (a) S10 = 110, S20 = 105, σ1 = 0.5 and σ2 = 0.3; (b) S10 = 110, S20 = 85, σ1 = 0.5 and σ2 = 0.3; 
(c) S10 = 110, S20 = 65, σ1 = 0.5 and σ2 = 0.3; (d) S10 = 110, S20 = 105, σ1 = 0.3 and σ2 = 0.2; (e) S10 = 110, S20 = 85, σ1 = 0.3 and σ2 
= 0.2; (f) S10 = 110, S20 = 65, σ1 = 0.3 and σ2 = 0.2. 
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(a)                                                            (b) 

   
(c)                                                            (d) 

   
(e)                                                            (f) 

Figure 4. Error vs. S1 − S2: the error is calculated by subtracting the approximate estimate from the exact result. (a) S10 = 
110, S20 = 105, σ1 = 0.5 and σ2 = 0.3; (b) S10 = 110, S20 = 85, σ1 = 0.5 and σ2 = 0.3; (c) S10 = 110, S20 = 65, σ1 = 0.5 and σ2 = 0.3; (d) 
S10 = 110, S20 = 105, σ1 = 0.3 and σ2 = 0.2; (e) S10 = 110, S20 = 85, σ1 = 0.3 and σ2 = 0.2; (f) S10 = 110, S20 = 65, σ1 = 0.3 and σ2 = 
0.2. 
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algebraic sum of N CEV variables with potential applica-
tions in pricing multi-asset options. 
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