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ABSTRACT 

In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the 
threshold value which determines the global dynamics and the outcome of the disease. The model has a disease-free 
equilibrium which is unstable when the basic reproduction number is greater than unity. At the same time, it has a 
unique endemic equilibrium when the basic reproduction number is greater than unity. According to the mathematical 
dynamics analysis, we show that disease-free equilibrium and endemic equilibrium are locally asymptotically stable by 
using Hurwitz criterion and they are globally asymptotically stable by using suitable Lyapunov functions for any .  
Besides, the SEIQR model with nonlinear incidence rate is studied, and the 0  that the basic reproduction number is a 

unity can be found out. Finally, numerical simulations are performed to illustrate and verify the conclusions that will be 
useful for us to control the spread of infectious diseases. Meanwhile, the 1,k  3k  will effect changing trends of ,S  ,E  ,I  

,Q  R  in system (1), which is obvious in simulations. Here, we take 3k  as an example to explain that. 
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1. Introduction 

Many people have been paying attention to the study of 
some epidemics, and have accumulated a lot of experi- 
ence. By establishing reasonable mathematical models, 
they put forward the measures which controlled the 
spread of epidemics effectively. And many scholars re- 
searched specific diseases and considered the diseases 
with incubation period, recovery time, quarantine and so 
on [1-6]. So many epidemics were controlled. Generally 
speaking, when epidemics spread, there are many kinds 
of delays, which include immunity period delay [7-9], 
infectious period delay, incubation period delay. In [10], 
Enatsu et al. studied stability analysis of delayed SIR 
epidemic models with a class of nonlinear incidence rates, 
at the same time, they proved disease-free equilibrium 
was globally asymptotically stable and endemic equilib- 
rium was permanent under certain conditions. At the 
same time, global stability of an SIR (where S, I, R de- 
note the number of susceptible individuals, infectious 
individuals, recovery individuals) epidemic model with 
constant infectious period was studied by Zhang et al.  

[11], they showed the endemic equilibrium was globally 
asymptotically stable with appropriate Lyapunov func- 
tions. And in [12], Gao et al. discussed pulse vaccination 
of an SEIR (E denote the number of exposed individuals) 
epidemic model with delay and bilinear incidence. Mean- 
while, impulsive vaccination of SEIR epidemic model 
with time delay and nonlinear incidence rate was re- 
searched by Zhao et al. [13], and showed the pulse sys- 
tem that was similar to the pulse system with bilinear 
incidence rate. Besides, on the basis of [13], Xu and Ma 
introduced the saturated incidence rate. Meanwhile, they 
showed disease-free equilibrium and endemic equilib- 
rium were globally asymptotically stable under certain 
condition in [14]. However, in addition to the bilinear 
incidence rate, nonlinear incidence rate and saturated in- 
cidence rate, there were some scholars who studied the 
non-monotone incidence. For example, an SIRS epide- 
mic model with pulse vaccination and non-monotonic in- 
cidence rate was discussed by Zhang et al. [15], and they 
proved the disease-free equilibrium and endemic equilib- 
rium were asymptotically stable under certain conditions. 
Besides, some scholars studied a delayed SEIQR (Q de- 
note the number of quarantined individuals) epidemic *Corresponding author. 
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model with pulse vaccination and the quarantine measure, 
and they showed that the disease-free equilibrium of the 
system was globally attractive and endemic equilibrium 
was permanent under certain conditions. In this paper, we 
study a delayed SEIQR epidemic model without pulse on 
the basis of [14,16]. 

The organization of this paper is as follows: In Section 
2, SIQR epidemic model and its basic reproduction 
number and existence of equilibrium are given. In Sec- 
tion 3, the local stability of endemic equilibrium and 
disease-free equilibrium is showed by using Hurwitz 
criterion. By using suitable Lyapunov functions and La- 
Salle’s invariance principle, we prove the disease-free 
equilibrium is globally asymptotically stable when the 
basic reproduction number is less than unity and the en- 
demic equilibrium is globally asymptotically stable when 
the basic reproduction number is greater than unity. At 
the same time, the system with the nonlinear incidence 
rate is discussed in Section 3. In Section 4, presents the 
numerical simulations of the system followed by a con- 
clusion in Section 3. At last, a brief discussion is given in 
Section 5 to conclude this work. 

2. Establishment of the Model 

We establish the following SEIQR epidemic model, Here 
 S t  represents the number of individuals who are sus- 

ceptible to disease, that is, who are not yet infected at 
time t.  E t  is the number of individuals who are in- 
fected but hardly infectious. So we think they can’t infect 
other people, but they need to be quarantined.  I t  re- 
presents the number of infected individuals who are in- 
fectious and are able to spread the disease by contact 
with susceptible individuals.  Q t  is the number of in- 
fectious individuals who are quarantined at time t. 
 R t  represents the number of recovered individuals at 

time t. 
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And the feasible region of the model with the initial 
conditions above is 
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It is easy to show that 1  is positively invariant with 
respect to system (1). 

Where all the parameters are positive constants, A  is  
the recruitment rate of the susceptible population, 1 , 

2 ,  3 ,  4 ,  5  are the natural death rate of the 
susceptible, exposed, infectious, quarantine and recov- 
ered respectively,   is the disease transmission coeffi- 
cient, 1  is the death rate due to disease without quar- 
antine, 2  is the death rate due to disease after quar- 
antine,   is the recovery rate after quarantine,   is 
the recovery rate without quarantine, 1k , 2k  are 
quarantine rate of E , I  respectively, 3k  is the re- 
covery rate of E  and   is the latent period of the epi- 
demic. 

Because the variables R and Q do not appear in the 
first three equations in system (1), we further simplify 
system (1) and then obtain the following model 
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(2) 

In this paper, we are concerned with system (2). 
The initial conditions for system (2) are 
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And the feasible region of the model with the initial 
condition above is 
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 1 2 3min , , .     

It is easy to show that 2  is positively invariant with 
respect to system (2). 

According to the practical significance of the epidemic 
model, system (2) always has a disease-free equilibrium 
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Denote the basic reproduction number of system (2) 
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Define 3 1 2 .a k       If the basic reproductive 
number 0 1,R   system (2) has an unique endemic equi- 
librium 
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3. The Stability of Equilibrium 

In this section, we discuss the local stability of endemic 
equilibrium and disease-free equilibrium of system (2) by 
analyzing the corresponding characteristic equations re- 
spectively. By defining reasonable Lyapunov functions, 
we resolve the global dynamics of equilibriums without 
requiring any extra conditions. In addition, system (2) 
with nonlinear incidence is studied. 

3.1. Stability of Disease-Free Equilibrium 

Theorem 3.1.1. If 0 1R  , the disease-free equilibrium 

0E  of system (2) is locally asymptotically stable for 
any   in 2 . If 0 1R  , it is unstable for any   in 

2 . 
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When 0,   the characteristic equation at the dis-
ease-free equilibrium 0E  of system (2) takes the form 
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Clearly, system (2) always has two negative real roots 
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so there is a positive real root at least. The disease-free 
equilibrium 0E  of system (2) is unstable. 

When 0,   it is easy for us to prove the disease-free 
equilibrium 0E  of system (2) is locally asymptotically 
stable. 

Theorem 3.1.2. If 0 1R  , the disease-free equilib- 
rium 0E  of system (2) is globally asymptotically stable 
for any   in 2 . 
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, 0, 0.S A E I    

For all t, it is easy to show that 0E  is the largest in- 
variant subset of the set   , , : 0 .S E I V   Because of 
LaSalle’s invariance principle, disease-free equilibrium 

0E  of system (2) is globally asymptotically stable. This 
completes the proof. 

3.2. The Stability of Endemic Equilibrium 

Theorem 3.2.1. For any  , if 0 1,R   the endemic 
equilibrium *E  of system (2) is locally asymptotically 
stable in 2.  
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   

   

 



  

 

 

 

    


  


   
   

　　　
 

Application of the conclusions of [17], we can know 
that positive z  doesn’t exist. Hence   also doesn’t 
exist. There are not pure imaginary roots in system (2). 
Therefore all the roots have negative real component. So 
endemic equilibrium *E  of system (2) is locally asymp- 
totically stable. 
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Theorem 3.2.2. If 0 1,R   when 0,   the endemic 
equilibrium *E  of system (2) is globally asymptotically 
stable in 2.  

Proof. Define a differentiable Lyapunov function 

1 2.V V V   

* *
1 1 *

* *
2 2 *

ln ,

ln .

S
V S S S

S

I
V I I I

I





       


       

 

1 20, 0,    both of them are real numbers. The func- 
tion is positive definite. Calculating the derivative of V  
along positive solutions of system (2), it follows that 

1 2.V V V     

On substituting * * * *
1 , ,A S S I a S      we have 

 

 

2*
1* * *

1 1 1 1 1 1 1

2* *

* * *
1 1 1 1 2 2

* * *
2 2 .

S
V S S I S SI

S

S I
S S I SI S I

S

SI S I


        


        

   

    

    

 



 

Let 1 2 .   
So 0.V   In addition, when 0,V   if and only if 

* * *, , .S S E E I I    
It is easy to show that *E  is the largest invariant sub- 

set of the set   , , : 0 .S E I V   Because of LaSalle’s 
invariance principle, the endemic equilibrium *E  of 
system (2) is globally asymptotically stable when 0  . 
This completes the proof. 
Theorem 3.2.3. If 0 1,R   when 0,   the endemic 

equilibrium *E  of system (2) is globally asymptotically 
stable in 2.  

Proof. For 0,t   define a differentiable Lyapunov 
function 

1 2.V V V   

Order 

       

2* * * *
1 1 2* *

* * * *
2 2 * *

ln e ln ,

ln d .
t

t

S I
V S S S I I I

S I

S I
V S I S I S I

S I

 



 

 
    



                


     
 


 

1 20, 0,    both of them are real numbers. Let  
* * * *

1 , .A S S I a S      

Then the derivative of V  along the solution of sys- 
tem (2) satisfies 

 
   

   

   
   

*
* * *1

1 1 1 1 1

2* *
1 *

1 2

*
2* * *

2 2

2 2

* *
2

2

ln .

S
V S S S I SI

S

S I
S I S t I t

S

S t I t I
S I S I

I

SI S t I t

S t I t
S I

SI


      

 
     

   
   

     

 
 

 
     

 

    

 
  

   

 




 

*
* 1

1 12 0.
S

S S
S


     

Then 

 

   

   

 

 

2* *
1* *

1 1

* * *
1 2 2 *

*
2* *

2

2* **
2* * * *

2 2*

2* *
2* *

2

ln

ln

2 .

S I
V S I SI

S
S t I t

S I SI S I
S I

I S t I t
S I

I

S IS
S I S I

SI

S I
S I

S

 
   

 
     

   
 

 
   

 
 

  

 
  

 
 

  

 



 

Simplify, we can get 

 
 

 

* *
2 2 1 1

2* *
2 * *

2

2* *
1* *

1 .

V S S S S I

S I
S I

S

S I
S I

S

       

 
 

 
 

   

 

 



 

Order 2 1,   0.V   Besides, when 0,V   if and 
only if * * *, , .S S E E I I    

It is easy to show that *E  is the largest invariant sub- 
set of the set   , , : 0 .S E I V   Because of LaSalle’s 
invariance principle, the endemic equilibrium *E  of sys- 
tem (2) is globally asymptotically stable when 0  . 
This completes the proof. 

3.3. The SEIQR Epidemic Model with Nonlinear 
Incidence Rate 

Zhao et al. studied delay SEIR epidemic model with the 
nonlinear incidence rate like pS I  in the case of pulse. 
In this paper, the model without pulse is discussed. 
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     

     

 

2

2

1

2 1 3

3 2

1 2 4

3 5

d
,

d
d

e ,
d
d

e ,
d
d

,
d
d

.
d

p

p p

p

S
A S S I

t
E

S I S t I t k k E
t
I

S t I t k I
t
Q

k E k I Q
t
R

Q I k E R
t

 

 

 

    

     

 

  





   

       

       



   

    

 

It is easy to show disease-free equilibrium is globally 
asymptotically stable, endemic equilibrium is locally 
asymptotically stable. The ways we use are similar to 
that in system (1), here they are omitted. 

4. The Numerical Simulations 

In this section, we study system (1) numerically. Ac- 
cording to the different datas that can reflect the actual 
situation, we get the different simulation images to prove 
our conclusions obviously (Figures 1-9). 

Here, according to the different actual situations, while 
take different parameters, we can get different simulation 
diagrams of the disease-free equilibrium. At the same 
time, we find out the disease will die out after much 
more time when 0R  increases. For example, 

1 2 3

4 5 1 2 1

2 3

0.2, 1, 0.1, 0.15, 0.2,

0.05, 0.06, 0.4, 0.2, 0.3,

0.8, 0.2, 0.5, 0.3, 3.

A

k

k k

   
   

  

    
    

    

　 　 　 　

　

　 　 　 　

 

Here 0 0.7502,R   see Figure 1. 
 

1 2 3 4

5 1 2 1 2 3

0.2, 1, 0.05, 0.1, 0.2, 0.05,

0.06, 0.4, 0.2, 0.3, 0.8, 0.2,

0.5, 0.3, 10.

A

k k k

    
  
  

     

     

  

　 　 　 　 　

　 　 　 　 　

　 　

 

 

 

Figure 1. Simulation diagram of the disease-free equilib- 
rium when 0 0.7502R  . 

 

 

Figure 2. Simulation diagram of the disease-free equilib- 
rium when 0 0.8656R  . 

 

Figure 3. Simulation diagram of the endemic equilibrium 
when k3 0.001 . 

 

 

Figure 4. Simulation diagram of the endemic equilibrium 
when 3 0.95k  . 
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Figure 5. Simulation diagram of the endemic equilibrium 
when 0 31.6816R  . 

 

 

Figure 6. Simulation diagram of I  when 0 31.6816R  . 

 

 

Figure 7. Simulation diagram of E  when 0 31.6816R  . 

 
Here 0 0.8656,R   see Figure 2. 
When take different 3k , we can get different simula- 

tion images. In other words, the R  increases when 3k  
increases, which is obvious in Figures 3 and 4. And then 
it is easy for us to find that how 3k  effects changing 
trends of S , E , I , Q , R . 

 

Figure 8. Simulation diagram of I  when 3 . 
 

 

Figure 9. Simulation diagram of basic reproduction num- 
ber. 
 

1 2 3

4 5 1 2 1

2 3

0.2, 2, 0.04, 0.1, 0.2,

0.05, 0.06, 0.4, 0.2, 0.3,

0.6, 0.001, 0.7, 0.5, 11.

A

k

k k

   
   

  

    

    

    

 

Here 0 1.9 ,581R   see Figure 3. 

1 2 3

4 5 1 2 1

2 3

0.2, 2, 0.04, 0.1, 0.2,

0.05, 0.06, 0.4, 0.2, 0.3,

0.6, 0.95, 0.7, 0.5, 11.

A

k

k k

   
   

  

    

    

    

 

Here 0 1.9 ,581R   see Figure 4. 
At last, if the basic reproduction number is much lar- 

ger and we will get new diagrams. For example, let 

1 2 3

4 5 1 2 1

2 3

0.8, 2, 0.04, 0.1, 0.1,

0.05, 0.06, 0.05, 0.2, 0.3,

0.6, 0.1, 0.7, 0.5, 0.1.

A

k

k k

   
   

  

    
    

    

 

Here 0 31.6816,R   see Figure 5. 
At the same time, the changing trends of I  and E  

are shown in Figures 6 and 7. And the time which I  
comes peak will become large as   increases, the *I  
will decrease. For example, 3  , see Figure 8. In 
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addition, when   changes, 0R  will change. And we 
can find out that when 034.657, 1.R    That is, dis- 
ease will be endemic disease while 34.657,   see Fig- 
ure 9. 

5. Discussions 

In this paper, a kind of a delayed SEIQR epidemic model 
with the quarantine and latent is studied. Using Hurwitz 
criterion, the local stability of the disease-free equilib- 
rium and endemic equilibrium of system (2) is proved. 
For any time delay ,  we prove the disease-free equi- 
librium is globally asymptotically stable when the basic 
reproduction number is less than unity and the endemic 
equilibrium is globally asymptotically stable when the 
basic reproduction number is greater than unity by means 
of suitable Lyapunov functions and LaSalle’s invariance 
principle. So the delay is harmless to system (2). From 
the biological point of view, the delay here has no influ- 
ence on the transmission of diseases. However, in [16], 
the disease-free equilibrium is periodic and globally at- 
tractive. At the same time, the disease will be endemic 
after some period of time. Above all, we consider that 
E  is quarantined and can recover in this model, which 
will effect changing trends of S , E , I , Q , R . Here, 
we take 3k  as an example to explain that. Meanwhile, 
the simulation image which 0R  changes as   can be 
obtained and we can find out 0  which the basic repro- 
duction number is a unity. Those are useful for us to con- 
trol epidemics. At last, the conclusions above are verified 
by numerical simulations. 
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