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ABSTRACT 

This paper presents the numerical comparison in the solution of the hyperbolic transport Equation that models the heat 
flux in thermoelectric materials at nanometric length scales when the wave propagation of heat dominates the diffusive 
transport described by Fourier’s law. The widely used standard finite difference method fails in well-reproducing some 
of the physics presented in such systems at that length scale level. As an alternative, the spectral methods assure a good 
representation of wave behavior of heat given their spectral convergence. 
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1. Introduction 

The research activity in the area of thermoelectricity be- 
gan with the discoveries of Seebek, Peltier and Thomsom 
in the early 1800’s. Since the middle of the 1900’s there 
have been numerous applications of thermoelectric bulk 
materials resulting in cooling, heating and power genera- 
tion devices. The concept of nanostructuring has revolu- 
tionized the field in the last 15 years and much investiga- 
tion has been made on nanostructuring of semiconductor 
materials to yield quantum wells and superlattices based 
devices. The main effects of semiconductor nanostruc- 
turing have been on the thermal properties of the materi- 
als. In particular, superlattices made with crystalline ma- 
terials appear as good thermoelectrics since they manage 
to scatter phonons without diminishing the electrical 
conductivity [1]. For this reason, superlattices of alter- 
nating materials are simple structures which improve 
significantly the thermoelectric properties of materials 
and therefore the well known thermoelectric figure-of- 
merit ZT [2]. The study of irreversible processes in these 
thin structures is of great relevance since due to their 
high frequency functioning, temperature may rise reduc- 
ing the life time of the device. Heat transport in the 
nanoscale is, however, different from that described by 
Fourier’s law in macrosystems. We focus in this work on 
the problem of heat transport in thermoelectric thin films 
taking into account two important features of the heat 
transport in the nanoscale, namely, memory and nonlocal 

effects and the experimentally observed reduction of the 
thermal conductivity in nanoscopic devices. Both may be 
encompassed in the framework of extended irreversible 
thermodynamics [3], as we will explain in Section 2. 
Previous works from several research groups have in- 
vestigated the effect of injecting a current peak in order 
to optimize the performance of such thermoelectric de- 
vices [4-6]. It is worth mentioning that a proper descrip- 
tion of heat transport in that kind of problems is not pos- 
sible without including the above distinctive features of 
the nanoscale transport considered in this work. 

The approach to solve the transport Equations is 
through numerical methods since they cannot be treated 
analytically. In general, use is made of low order nu- 
merical methods, namely, finite differences (FD). Since 
the non-linearity of the equation results from the source 
term is complemented with a Robin-type boundary con- 
dition, the FD method produces satisfying results. How- 
ever, when the scale of the thermoelectric devices goes to 
the nanometric length scale, other effects arise, namely, 
the heat wave propagation or ballistic transport. When 
this effect is present, the classic heat transport Equation 
is modified by a wave Equation. It is widely known that 
this type of Equation is very challenging for low order 
methods and must be solved with a high order numerical 
method. In this contribution, we focus our discussion on 
the numerical approximations of the hyperbolic heat 
transport Equation on a set of discrete grid points; we 
shall limit our discussion to the one-dimensional problem. 
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We will demonstrate the application of the Spectral 
Chebyshev Collocation (SCC) method and compare the 
results obtained by the second order FD scheme and an 
analytic solution of the linear non-homogeneous wave 
Equation. The solution with the spectral method con- 
verges quickly when the number of grid points is in- 
creased. Spectral methods have been used to study heat 
transport based on the Maxwell-Cattaneo-Vernotte equa- 
tion giving a hyperbolic transport Equation in macro- 
scopic systems [7,8] and in some microscopic devices [9]. 
In Section 3, we obtain the hyperbolic Equation which 
will be used to describe the heat transport in the system. 
In Section 4 we summarize the numerical methods used 
to solve the transport Equation obtained in Section 3. 
Section 5 will be devoted to present our main results and 
some concluding remarks are made in Section 6. 

2. Nanometric Scale Heat 

The predictions of the heat transport Equation derived 
from Fourier law and the energy conservation Equation 
fit well with experimental measurements for devices with 
lengths much larger than the mean free path of heat car- 
riers. However, heat transport at nanometric length scales 
differs from that at macroscopic scales. In the last fifteen 
years experiments have reported that heat flux along 
nanoscale is significantly lower than that predicted by the 
classical Fourier law. The results suggested a reduction 
of the thermal conductivity when the length is in the 
nanometric scale. These facts have motivated several ef- 
forts to improve heat transport description mainly in two 
directions. On the one hand, some authors have modified 
Fourier’s law in order to introduce nonlocal and memory 
effects in the transport Equation and, on the other hand, 
others have proposed a size dependent heat conductivity 
to describe adequately the drop in the heat flux when 
going to the nanoscale [10,11]. Reference [3] has con- 
sidered nonlocal and memory effects in the framework of 
extended irreversible thermodynamics where heat flux 
and higher order fluxes are taken into account as inde- 
pendent variables. This scheme is formally obtained from 
the linearized Boltzmann Equation in the relaxation time 
approximation. The theory leads to a generalized thermal 
conductivity which depends on time and position, which 
in the stationary state has the following expression [12] 
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where the relation k = 2/L has been used in order to 
explore the dependence of the thermal conductivity on 
wave numbers k of the order of magnitude of the sys- 
tem’s size L (thickness). In the above expression l is the 
mean free path of heat carriers and K0 the bulk thermal 
conductivity. The thermal conductivity K, as given by 

Equation (1), tends to the bulk value K0 when l/L  0, i.e. 
when the system’s size is much greater than the mean 
free path. On the other hand, the Equation (1) describes 
well the drop of the thermal conductivity when L is in the 
order of magnitude of l as it may be seen in [12]. Another 
consequence of the high order fluxes scheme is a relaxa- 
tion time evolution Equation for the heat flux . In the 
lower order this Equation takes the form of the Max- 
well-Cattaneo-Vernotte Equation, which reads 
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where eff is the effective heat flux relaxation time and T 
the absolute temperature. We have included the size de- 
pendence of the thermal conductivity accordingly with 
Equation (1) and constrained ourselves to one spatial 
dimension. In this work we will use Equation (2) to 
model the heat flux in a branch of a thermoelectric de- 
vice (Figure 1) when its length goes to the nanometric 
scale. In this way our system becomes a thermoelectric 
thin film. 

3. Mathematical Model 

Using the heat flux, Equation (2), along with the energy 
conservation Equation, a single thermoelectric thin film 
can be modeled by a one-dimensional hyperbolic partial 
differential Equation, 
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where J denotes the applied electric current density, re- 
spectively; Cp is the volumetric heat capacity;  is the 
electrical conductivity; whereas x and t are the spatial 
and temporal coordinates, respectively. The effective 
relaxation time eff is given in terms of the collision time 
c  l/u, where u denotes the average velocity of the heat 
carriers [9], that is eff = c/4. We introduce now the di- 
mensionless variables 
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Figure 1. Scheme of a thermoelectric device. 
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where J0 is the magnitude of the electric current through 
the film and Th is the fixed temperature at the hot side. 
Thus, dropping the asterisks, the dimensionless heat 
transport Equation reads 

2 2
2

2 2
,

T T T
J

tt x
   
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             (5) 

where the dimensionless coefficients ,  and  are de- 
fined, respectively, as 
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In this problem, two time scale coexist, namely, the 
effective relaxation scale that is given in terms of the 
collision time the diffusive time scale 
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As it can be seen, the dimensionless coefficients and 
vary with the length of the system as the diffusive time 
scale is proportional to L. It must be noted that the ther- 
mal diffusivity is also a function of the system’s length, 
see Equation (1). Note that Equation (5) is valid for times 
between the collision and the effective relaxation time 
and lengths between the wave length of heat carriers and 
the diffusion length. The boundary conditions (in dimen- 
sionless variables) can be written as 
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where the dimensionless Peltier coefficient is given by  
= sJ0L/K, and s is the Seebeck coefficient. This Peltier 
coefficient also depends with the length of the system. 
The left boundary condition can be seen as a Robin-type 
since the temperature’s gradient is proportional to the 
temperature. The right (Dirichlet) boundary condition de- 
notes the constant value at the hot side. As the initial 
condition, we state that the device is at room temperature 
(hot side temperature), that is, T(x,0) = 1. 

4. Numerical Methods 

Numerical simulations have been taking to treat the 
problem of the thermoelectric thin film. In this section 
we summarize the numerical methods, namely, finite 
differences and spectral collocation, that were used to 
solve Equation (5) along with the boundary conditions, 
Equation (8), and the initial condition stated at the end of 
the previous section. 

4.1. Finite Differences 

The code in finite differences (FD) was constructed with 
a forward difference scheme for the first derivative in 
time, while a second order central difference was ap- 

plied for the second order time and spatial derivatives. 
Uniformly spaced grid points and constant time step 
were considered during the integration. The time integra- 
tion was an explicit scheme. The solution was advanced 
in time using the second order finite difference scheme. 

4.2. Spectral Chebyshev Collocation 

The spectral code is based on the Spectral Chebyshev 
Collocation (SCC) method. This method is based on as- 
suming that an unknown PDE solution can be repre- 
sented by a global, interpolating, Chebyshev partial sum. 
In this spectral method, the PDE Equation is required to 
be satisfied exactly at the interior points, namely, the 
Gauss-Lobatto collocation points given by 

cos , 1, , 1.i
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In Equation (9), N denotes the size of the grid. Thus, 
the problem is considered in a standard Chebyshev do- 
main, that is  1x x 1   . The derivative spatial terms 
of the Equation (3) were expressed on derivative matri- 
ces expanded on Chebychev polinomials. The matrix- 
diagonalization method was used to solve the coeffi- 
cient Equation system in physical space directly. A fur- 
ther explanation of this spectral method can be found in 
[13,14]. A coordinate transformation was necessary ei- 
ther to map the computational interval to 0 < x < 1. In 
order to perform a direct comparison with the finite dif- 
ference scheme, the time derivatives and the time march- 
ing were the same as the previous method. 

5. Results 

Figure 2(a) shows the temperature profile in the ther- 
moelectric film when the length of the system remains in 
the micro-scale. We can observe that at the hot side, the 
temperature is the fixed temperature Th, whereas at the 
cold side the temperature has lowered about 3.11 degrees. 
The parabolic profile results from the heating Joule effect 
along the whole length. Figure 2(b) shows the tempera- 
ture as a function of time at the cold side. As stated in 
section 3, at t = 0 (the initial condition), the whole ther- 
moelectric is at room temperature, then the Peltier effect 
acts at the boundary reverting the heat flow and thus 
cooling and reducing the temperature till it reaches a 
steady state. 

In both figures, the two numerical solutions are plotted, 
namely, FD and SCC. In general both solutions agree 
qualitatively and quantitatively in the steady state spatial 
distribution as well as modeling the transitory state. We 
define the error between both dimensionless solutions as 

FD SCCmax .u u                (10) 

The error in the steady state spatial distribution obtained  
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(a)                                                          (b) 

Figure 2. Comparison of the numerical schemes in the micro-scale. (a) Steady state temperature profile; (b) Transient at the 
cold side. 
 
by FD approximation with N = 30 is  = 8.6 × 10−5 as 
with N = 10 in the SCC method, which is acceptable. 
However, the error in the transitory is one order of mag- 
nitude higher, that is  = 2.5 × 10−4. In both methods the 
time step is the same in order to perform a direct com- 
parison since they perform the same number of iterations. 
Although for the case mentioned above, the speed of the 
SCC method is superior, this fact is not a relevant feature 
since the gain is less than 10. 

Table 1. Dimensionless coefficients as a function of the 
length of the system. 

L (m)       

1 × 10−4 2.16 × 10−8 7.81 × 10−3 7.38 × 10−3 

1 × 10−5 2.16 × 10−6 7.81 × 10−5 7.38 × 10−4 

1 × 10−6 2.16 × 10−4 8.27 × 10−7 7.82 × 10−5 

1 × 10−7 2.16 × 10−2 2.39 × 10−8 2.26 × 10−5 

1 × 10−8 2.16 × 100 2.00 × 10−9 1.89 × 10−5 

1 × 10−9 2.16 × 102 1.97 × 10−10 1.85 × 10−5 

When L reaches the nano-scale, the wave nature of 
heat transfer appears clearly in the transient. This is due 
to the fact that the  coefficient in the heat Equation in- 
creases and the wave term becomes dominant, see Table 
1. At this scale level, the Joule heating is almost not sig- 
nificant ( ~ 10−10). Thus, the steady state is a line with 
positive slope, see Figure 3(a), whereas the transient is a 
damped harmonic oscillation, see Figure 3(b), since the 
factor of the first derivative in time in Equation (3) is 
around the order of magnitude of the  coefficient. We 
must note that the coefficient  does not vary with L, it 
remains constant ( = 2/4). Although the FD method 
models the steady state correctly, the overall error is in 
the same order of the micro scale solution,  = 9.8 × 10−5, 
this error was obtained with only N = 10 collocation 
points for the SCC and N = 60 grid points for the FD 
method. Although the steady state is well-reproduced by 
the FD method, it does not model the transitory correctly. 
It shows a variation on the amplitude ( = 6 × 10−3) of the 
oscillations as well as phase difference between the two 
signals. 

 
is assured, so that at the end we should use more grid 
points and smaller time steps for the FD in order to ob- 
tain low error accuracy. 

Although the SCC method is more difficult to code 
than FD, they have many advantages: high accuracy, 
efficiency and exponential convergence. The trial func- 
tions of the FD are overlapping local polynomials of low 
order in contrast with the global smooth functions of the 
SCC. If we continue to decrease L the wave Equation 
form would arise, since the Joule effect and the Peltier 
effect would tend to zero, coefficients  and , respec- 
tively, seeing the tendency of their values in Table 1. In 
Figure 4(a), the exact and the numerical solutions of the 
pure wave problem with both Dirichlet conditions, are 
shown at t = 0.75 with N = 1000 grid points for the FD 
and N = 200 collocation points for the SCC method. As it 
can be noted, these kinds of step-solutions solutions are 
very challenging numerically speaking. Numerical ap- 
proximations of such nonsmooth solutions would suffer 
from the well-known Gibbs phenomenon. Consequently, 
the numerical solutions become oscillatory near the sin- 
gularity and high order convergence will be lost near the 
singularity [15]. For the time-dependent problem, the 
scheme would even become unstable. Here we see that  

If we compare the stability conditions for both meth- 
ods, in the case of pure diffusion, t  x2/2 for FD, and 
for SCC t  42.55/N4, we can infer that the spectral 
method requires lower time steps in order to assure sta- 
bility of the solution. However, as we will see in the fol- 
lowing, the spectral one is more robust since with less 
collocation points than FD the convergence of the solution      
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(a)                                                          (b) 

Figure 3. Comparison of the numerical schemes in the nano-scale. (a) Steady state temperature profile; (b) Transient at the 
cold side. 
 

   
(a)                                                          (b) 

Figure 4. Comparison of the numerical schemes for the linear wave equation. (a) Profile at t = 0.75; (b) Error of the schemes 
compared to the analytical solution as a function of the grid points N. 
 
the FD numerical solution yields a small scale oscilla- 
tions at both sides of the step-solution even though the 
stability condition t  x/c (where c = 1, is the propaga- 
tion wave speed of the wave) is not violated. That is, this 
condition means that the wave speed of the numeric 
scheme must be at least as large as the wave speed of the 
exact Equation. It reflects the difficulty inherent in ap- 
proximating a discontinuous function. The exact solution 
is given in [16]. It must be noted that the Lanczos sigma 
Factor was used to reduce the Gibbs phenomenon pre- 
sented in the analytic solution. Figure 4(a) shows the 
solution behaviors for both methods. In the previous fig- 
ure, it is showed that the global structures of the solutions 
with the SC methods remain the same as the grids are 
refined. One would be led to believe that the oscillations 
could be real, however, it is found that the frequency of 

the oscillations is directly proportional to the number of 
grid points N, furthermore, the amplitude of the oscilla- 
tions does not decrease much even when the grid is 
highly refined. In other words, these oscillations are 
purely numerical artifact due to the discretization of the 
finite grid [15]. 

The solutions for the wave Equation are similar in the 
step zone [0.4:0.6], however, different global behaviors 
are different for both methods, but the results with the 
SCC method clearly shows low overall error, see Figure 
4(b). In general, the spectral methods present exponential 
convergence with the solution. In the presented simula- 
tions, after N = 300 collocation points, the error between 
the analytic and numerical approximation downs below 1 
× 10−4. Such behavior has to be compared to the almost 
constant error of the finite-difference approximation which 
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is relatively high. 

6. Concluding Remarks 

The hyperbolic heat transport partial differential Equa- 
tion representing the thermoelectric problem in thin films 
was solved on a discrete grid system using a finite dif- 
ference and a spectral collocation scheme. We have in- 
cluded in the model a system’s length dependent thermal 
conductivity to include size effects on the heat transfer. 
This is a novel aspect of heat transfer in the nanoscale 
which had not been included in other models (see for 
example [7,8]). At microscopic scale, both methods show 
comparable results, however, the error in the transient 
state is one order higher than in the steady state. At nano- 
metric scale, compared to the results with the finite dif- 
ference method, the spectral approximation reveals the 
details of dynamics of the solution with great efficiency. 
As the system’s length scale diminishes further more 
than the nanometric scale, the pure wave behavior of heat 
carriers appears which is described by the linear wave 
Equation. We have also studied the numerical issues aris- 
ing in this last Equation. In this case, the finite difference 
scheme yields short scale oscillations, the so called Gibbs 
phenomenon. In contrary, the SCC method shows the so 
called spectral convergence with low error. This may 
imply that numerical solutions of the thermoelectric 
problem with simple finite difference schemes should be 
avoided when dealing with heat transfer in the nanomet- 
ric length scale. 
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