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ABSTRACT

By using Schauder’s Fixed Point Theorem, we study the existence of traveling wave fronts for reaction-diffusion sys-
tems with spatio-temporal delays. In our results, we reduce the existence of traveling wave fronts to the existence of an
admissible pair of upper solution and lower solution which are much easier to construct in practice.
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1. Introduction

Traveling wave solutions, usually characterized as solu-
tions invariant with respect to translation in space, have
attracted much attention due to their significant nature in
science and engineering [1-18]. In which, the theory of
wave fronts of reaction diffusion systems is an important
part, and its history traces back to the so-called Fisher-
KPP equation, the celebrated mathematical works by P.
A. Fisher and by Kolmogorov, Petrovskii and Piscunov.
Since then, lots of papers are devoted to the study of
traveling wave solutions of reaction diffusion systems,
and various research methods come forth.

The present paper is mainly devoted to tackle the ex-
istence of traveling wave front solutions of the following
reaction diffusion system with spatial-temporal delays
and with some zero-diffusive coefficients,

8U(t,x) D 82U(t,x)

p” o (1.1)
+F((g*U)(t.x),.(g, *U)(1.x))

where (>0, xeR; D=diag(dy,d,), Yd’#0,
i=1

d,20, U(t,x)=(u,(t,x), ., (1)),
F=(f..f,) (R R"),

(gi *U)(t,x) :J‘;J‘j:g/(t—s,x—y)U(s,y)dyds,
j=lee,m,
Here the kernels of convolutions g, *U(j=1,---,m),
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satisfy

Jo [ g (s ) dvds =1,

0

(1.2)
g, (t,x) >0, (t,x) eR,,xR.

And the kernels used frequently in the reference are as
follows

5) g;(tx)= 5(t_7./)p/ (x)-

The remaining part of this paper is organized as fol-
lows. In the next section, some preliminaries are given.
In Section 3, we state and prove the main result of this

paper.

2. Preliminaries

A traveling wave solution of (1.1) is a special translation
invariant solution of the form U(t,x)=®(x+ct),
where @ e C? (R,R”) is the profile of the wave that
propagates through the one-dimensional spatial domain
at a constant velocity ¢ > 0. If ® is monotone and satis-

fies the asymptotic boundary conditions lim ®(s)=U"

—00

and lim CD(S):U+,

§—>+00

U(t,x)zCD(x+ct) is called a
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wave front of (1.1), where U~ :(ul','--,u; )T s

T .
U*z(uf,---,u+ eR", U <U",and U, U" are equi-

n

libria of system (1.1). If Y < Z, we also denote

BC(R;R") = {(D € C(R;R” ) : stgﬂg "CD(t)” < oo}

Bc[Y,Z]::{cD eC(]R,R"):YSCD(t)SZ,teR}

Let |||| be the supremum norm in R" and C([a’b];Rn )’
and

BC,(R;R") = {CD e C(R;R"): §B£||q’(f)|| ot OO}

BC* (R;R"):= {cp :max sup {|#(¢)[} < 0, ®,®" € BC(R;R" )supand ¢" € C(R;R), here, d, >0

di>0 4R

where p will be given in the next section. Obviously,
BC(R;R") ., BC, (R;R") and BC? (R;R”) are Ba-
nach spaces respectively with the norms

o, =splo (o). @ < ().

|®], = stlelﬂg||<1>(t)||e‘”"‘, ® e BC, (R:R"),

o, = max ||| o fsup 910} @ < 5C° (B2

d;>0

Substituting U (¢,x)=®(x+ct) into (1.1) and denot-
ing still by ¢ the traveling coordinate x+ct, we obtain
the corresponding wave equations

c®'(1)=DO" (1) + F((g * @) (1), +.(g, *@) (1))
teR,

(2.1

where ¢ > 0 is velocity, ».d}#0, d,20, i=1-n;

i=1

and
(g‘/. *@)(t) = _[;wf:gj (s,y)@(t -y —cs)dyds, 2.2)

Without loss of generality, we assume
U =0=(0,-,0), U =K=(K,,~-K,) , the as-
ymptotic boundary conditions are replaced by

lim @ (1) =0, lim ® (1) =K. (23)

In the following, we list the basic assumptions of this
paper:

(A) F(0,--,0)=F(K,-,K)=0.

(Az) There exist positive constants o; <1 and L,,
such that forall Y,,Z, e [O, K], j=1,m,

o)

|F (% 1,)-F(2,,.2,) L (24)

m

< iLj "Y/ _Zj
Jj=1

(A;) There exists an constant £ >0 such that for
j=L---,m, and CDeBC[—K,K],

.[(:mf: 8 (S’y)"q’ (t—y—CS)" dyds < ﬁ"(D”,, et
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teR

(A4) One of the following two cases holds.

(A}) '[OM g;(t,x)dt is uniformly convergent for
x€[-a,a], where a>0, ie, for given &£>0, there
exists b>0 s.t. fbmgj (t,x)dt <& for all xe[-a,a],
j = 1’ e M.

(AD) Ij: g;(t,x)dx is uniformly convergent for
1€[0,b], where b > 0, i.e., for given & >0, there exists
a>0, st J‘:ogj (t,x)dx<¢& and Ifng (t,x)dx<¢

for all te[O,b], j=Lm.

(As) There exists a matrix y = diag(y,,--,7,),% =0,
S.t.

F((8+0)(0). (. +@)(1) + (1)
> F((g%W)(),r (g, *¥)(1)+ ¥ (1)
vyhere telR Aand q),‘I’eC(R,R") satiszy
0<¥Y D<K, here and in the sequel, U denote the
constant vector function on R, taking the value
U:(ul,---,un)T eR".
At the end of this section, we give the following two

useful lemmas.
Lemma 2.1. [8] Let x:R,, > R be a differentiable

function. If liminf x(t) <lim supx(t), there are se-

t—0 t—©

2.5)

quences {s,}  and {z,}”

with lims =1lim¢ =
n=1 n n

S.t.
lggx(sn)z}irginfx(t) and x'(s,) =0,
limx(¢,) =limsupx(¢) and x'(¢,)=0.
n—0 t—

Lemma 2.2. [3,8] Let aeR, and x:[a,+)—>R

be a differentiable function. If limx(r) exists (finite)
t—>w

and the derivative function x'(¢) is uniformly continu-

ouson [a,+») then }ggx (r)=0.
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3. Main Theorem

First, we introduce the definition an upper-lower solution
of wave Equations (2.1)

Definition 3.1. A continuous function p=(p,,,0,)
R — R" is called an upper solution of (2.1), if p/(¢)
and p/(t) (if d, >0) exist almost everywhere and they
are essentially bounded, and p, satisfies almost every-
where on R

B(0)2d 7 (0)+ £ (2 P)(0) (2, #7)(1)) G

A lower solution /_)z(,_ol,---,/_)n) of (2.1) can be given

in a similar way by reversing the inequality in (3.1).

For wave equations (2.1), we have the following re-
sults.

Proposition 3.1. Assume (A;) holds. If wave equa-
tions (2.1) have a monotone solution <DeC(]R;R")
satisfying ,lin}cq)(t) =V_ and llin}@@(t) =V,_, where

4+

"F((gl*(b)(tl)’”"

J=

Thus, F((g1 *®@)(t),,(g, *CD)(t)), is uniformly con-
tinuous inR . This completes the proof of the proposi-
tion.

Proposition 3.2. Assume (A,) and (A4) hold. If wave
equations (2.1) have a monotone solution ® € C (R; R”)

satisfying llim ®(¢)=V_ and Lim®(r)=V,, where
——n (o

0<V <V, <K,V.V,eR", then

F(V_,---,V_):F(V

49

|14

+

)=0.

Proof. We only give the proof under the case (A})
and the case (A7) is similar. Firstly, we show

tim F (g, #@)(0). (g, *®)(1)) = F(V V).

—>—0
For fixed j=1,---,m, let h I g, (s,x)ds, then

by (1.2), we know [ & (x)dx=1,j=1-m. Hence,

‘v’g>0(g<mL,L:maxL/), there is a constant A4 >0

1<j<m

(&, *@)(1))-F (g *®)(&).

Zm:LIU+wI+ng s y "(D t—y cs) CD(tz—y—cs)"dydsT/ <g

X.L.HAN, L. J. PAN

then

(g, *®)())

0<V. <V.<K, V.V, eR"

F((g*@)(1).-,

is uniformly continuous in R.
Proof. It is not difficult to show ®(¢) is uniformly
continuous in R, then we know that Ve >0 sufficiently

small (e<mL L= rlna>l<L ) there is a constant &, s.t.
</<
for t,t,eR and |tl—t2|<§
"(D(tl—y—cs)—(l)(t -y—cs ||< g/mL)l/a

where 520, yeR, o=mino;,
1<j<1

, and o-,(j =1,---,m)

are given in (A,). In addition, we can obtain

(2,%®) (1)~ (g *)(r.)
(g, *@)(1,)— (g *®)(1,) €[0,K], j =1,---,m.
Then by (A;), we have

(,*@)(1))]

s.t.

o)

*‘”h.(x)dx<(e/ )/ et
[ <)ol

where o = min {O'j}. By (A)}), for the above 4, there

1<j<m

m. (3.2)

exists a constant B >0 s.t.

[ g (tx)de <(e/mL)" [(164]@], ). =1,

holds uniformly for xe[-4,4]. Since lim ®(¢)=V_,
t—>—0

om. (3.3)

for the above constants &, o, m and L, there exists an

constant 7 >0 s.t.
|0 (e) V.|| < (¢/mL)"" /4, 1 <-T. (3.4)

Obviously, (gj*(l))(t), (gj*Vf)(t)e[O,K], teR,
j=1---,m, then by (3.2)-(3.4) and (A,), we have

[F (s @)0). (. 2 @) () = F (o S [ (s oo yes) -1 favas

= :le U:J‘:gj (s,y)"CD(t—y—cs)—K||dsdy+fAI;gj (s,y)”CD(l—y—cs)—Vf"dsdy

g el y-e) -V | <,

t<-T—-A.
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Therefore,
lim 7 ((g @) (1),-++,(2, *®)(1))
=F(V.,-,V.),
similarly,
lim F (g, *®)(¢),-++, (g, *®) (1))
=F (Ve V,).

For the i that d; > 0, we denote B, :=limsupg/(¢)
>0
b, :=liminf ¢(¢),i =1,---,n, then B;> b; We claim B; =
t—0
b;, otherwise B; > b;, then by Lemma 2.1 we know there
are sequences {sy}  and {z,} ~ with

lims, = lim¢, =00 s.t.
N> N N—ow N

lim @'(SN):}LrEinf@'(t) and ¢(sy)=0,

N—o

=0
}Iiirolo #(ty)= }i_{gsup ¢/(t) and ¢/(z,)=0.

Substituting {sN}zzl and {t,} _, theith equation of
(2.1), we have cB, =ﬁ(V+,---,V+A3,cb,. = (V... 1),
as N — oo. This contradicts with B; > b;, by the mono-
tonicity and boundedness of 4, (7), lim #/(1)>0 exists

(finite). From the ith equation of (2.1), we also have
limg(¢) = dilim@'(t)—difi (V.,--,V,) exists (finite).
1—>0 . > .

Similar to the proof of the uniformly continuity of ®(7)
in Proposition 3.1, we can obtain that ¢/() is uniformly
continuous in [0,00) . Combining lim®(z)=V, and
Lemma 2.2, limg/(¢)=0, then limg/(r)=0. Therefore,
t—o© 11—
by the ith equation of (2.1), we have
SV V) =lim| e (1)-d” (1) | =0,

For the i that d, =0,(i=1,---,n), by Proposition 3.1,

we know
#(0)=1 (2% @)(¢). (8, *®)(1)) e
Is uniformly continuous in R. Considering lirntl)(t)zV+
t—0

is finite, by Lemma 2.2, we have lim¢/(¢)=0. Hence,
t—0

£((&#7.)ss(g, #V.) (1)) = clim g (£) = 0.

[ e (@) (s)ds+ [ e

E(®)(1)=

[ ) H, (@) (s)ds /c

Copyright © 2013 SciRes.

Then F(V,,---,V,)=0. Similarly, F(V_,---

The proof of Proposition 3.2 is completed.

Define H:thJﬁwamjj%BQ@&Wy
st. V@ eBC[0,K], H(®)=(H, (D), H, (D)) sat-
isfying

H(®)(1)
=F((g*®)(1), (g, *@)(1))+ 10 (1),
teR.

3.5)

Then we have the following lemma.
Lemma 3.1. Assume (A;) and (As) hold, for all @,
¥ e BC[0,K], the operator H defined by (3.5) satisfies

1) 0<H(®)(1)<yK,teR.

)If Y<o, H(P)<H (D).

3) If ®(¢) is nondecreasing in R, H(®) is also
nondecreasing in R.
Proof. 1) and 2) can be given directly by (A;) and

(As).
3)For >0, let ¥(0)=®(r+6) then

(g,%®)(t+0)=(g,*¥)(r).
j=1ee,m.

_By the monotonicity of ®(¢) we know 0<P<V¥<
K, by?2),
H(®)(1+0)=H(¥)(1)2H(D)(¢),
teR,
and this complete the proof of Lemma 3.1.

Without loss of generality, we assume y, >0 in (As),
and denote

Ay = (c—,/c2 +4y,d, )/(2d )
ifd >0
ho = e\ w474, ) f(2a,) (3.6)
y—rt if d =0.
C

Defining the integral operator P on BC [O,K ] ,
V®eBC[0,K], teR,

P(®)(t)=(R(®)(),+ B, (®)(¢))'

is given by

H)H,. (‘D)(S)ds] /di (ﬂﬁz — Ay ):| ifd, >0

3.7)
ifd =0

AM



1282 X.L.HAN, L. J. PAN

where H (®)=(H(®),,
Then we have the following two propositions.

Proposition 3.3. Assume (A2), (A4) and (AS5) hold.
The integral operator P defined by (3.7) maps BC [0 K ]
into BC[0,K],and P(®)e BC? E]R R"),

0<p(®)()<| [ "

If d,=0,0<PR(®)(r)<[ e ds yK, [e=K,.
Therefore, 0< P(®)< K. In addition, similar to the

proof of Proposition 3.2 we can obtain, V& >0 (5<mL),

there exists a constant 4 > 0 s.t. for j=1,---,m,
[ h, (x)dx <(g/mL) /"/SK
[, (x)dx<(e/mL)"" [8R.

And for this A4, there is a constant B > 0 s.t. for
j = 1’. -e,m,

J':cgj (t,x)dt < (g/mL)l/a/l6IE', xXe [—A,A]

|7

—

(g, *®)(1+A1),-,

IN
Ms

1

J

<

Ms

1

J

+

Hence, F((g1 *(D)(t),-u

H,(®))" is defined by (3.5).

7Kaﬂ

(g, *®)(t+A0))=F (& * @) (1),

LJUMJ. gj S,y "(D t+At y- cs) CD(t—y—cs)"dydsTj

V® e BC[0,K].

Proof. We only give the proof under the case (A}),
and the case (A ) is similar.

For ®eBC[0,K], by Lemma 3.1 1), we have
0<H(®)(t)<yK,teR, then,if d, >0

);/[K,.ds]/di (A —Ay) <K

where o = min {O'j}, L = min {Lj}, K= min{Ki}.

1<j<m 1<j<m 1<i<m

For fixed teR, we can find T > 0 s.t. te[—T,T].
Since ® € BC|0, K ].®(¢) is uniformly continuous in
[-(T+A+cB+1),T+A4+1], hence there is 0<5<1

sit.
1
1 .
CD(t)” < Z(ﬁj , |ad<s,

te[—(T+A+cB),T+A].

|2+ Az)-

Obviously, (gj*CD)(t+At) , (gj*CD)(t)e[O,K] ,
teR j=1,---,m, then by (A,) we obtain

(8, *®)(0))]

L/{I Jg] sy)(g/mL /4dyds+j J. g; sy)(ZK)dyds

Ew (:ng(s,y)(ZK)ddeJ' I g; sy)(ZK)dyds} <e.
,(gm*q))(;)) is continuous in R, then

H(®)(t)=F((*®)(1). .

(g, *®)(1))+72(1)

is continuous in R. In addition, by calculating directly we can obtain the following, if d, > 0,

B(®) ()= 4] e, (@) (5)ds + 4], (@) (5)s | [, (2, 2,)]

E
)
I

[ O, (@) (s)ds + H, (@)1 )}/c.

Therefore, P(®)eBC[0,K]NBC? (R; R? ) The proof
of Proposition 3.3 is completed.

Proposition 3.4. For ® e BC[0,K], ¥ € BC* (R;R" )

¥(1)= P(®)(r) iff

D (1) + W (1) + ¥ (1) = H(®)(1),
t e R. Especially, ® € BC [O,K ] is a solution of wave
Equation (2.1) if and only if @ is a fixed point of P.

Copyright © 2013 SciRes.

[ARJL I, () (s)ds+ (2 = 22 HL (@) (0)+ 23 ", (@) (s)ds | [ (4 2,)].

Proof. We only prove the case d, =0, and the proof
for the case d, >0, can be given similarly.
If

vi(1)=B(@)(1)=[ &, (@)(s)as e
let 4, =—y,/c, Weobtain cy,(1)+yy,(t)=H,(®)(¢).
On the other hand, by the above argument,
cB (@) (1)+7,B(®)(1) = H,(©)(2).
Sowehave c[y,—P (d))] ()+7.[w.—R(®)](r)=0.

Then y,(t)— P (®)(t)=ae™ where «is a constant.

AM
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By Proposition 3.3, we know V® e BC[O,K] R
P(®)e BC[0,K]. Since ¥ € BC? (R;R” ,
w,(t)-P(®)(¢) is bounded in R, hence a =0, then
v, (1)=F(®)(r). And this completes the proof of
Proposition 3.4.

By Lemma 3.1, we can easily obtain the following
lemma on the monotonicity of the integral operator P.

Lemma 3.2. Assume (A;) and (As) hold, then

DIf Y,0e BC[O,K], and ¥ <®, P(¥)<P(D).

2) If ® e BC[0,K] is nondecreasing in R, P(®P)
is also nondecreasing in R .

On the continuity of the integral operator P, we have
the following.

Proposition 3.5. Assume (A;)-(A4) hold. Then
P:BC[0,K]— BC[0,K] is continuous with respect to

the norm |, in BCu(R;Rz), where

O<u< min{ A A, ﬂ,l.}, and A4,,4,,4 are given by
(3.6).

Proof. We first claim H defined by (3.5) is continuous
in BC[O K] with respect to the norm || || .

For ‘P, <I>eBC[[O K], we know 0bV10usly (g]*CD)( ),
(g,#¥)(t)e BC[0.K], teR,j=1-,m. By (A, and
(A;), we obtain

"H((D)—H(‘P)”H

<sup{zL [H D) (1) (g, *¥)(¢)

teR

%} —ut}
[
Iisn 4

<ol S, (s o), ] slo -
S{ZLJ.,H” +;7}

where azmin{aj}sl, V= max{ } Thus Ve >0,

1<j<m 1<j<n

—1 o
5min{g[ZLngf+j7] } ,1}
=

‘I’)"# <¢ for ||CD—‘I—’||” <9,

+ 7 max sup{|¢ (1)-w, (t)|e_”"‘}

Z ,(Suppose ||(D - LP”” < 1)

choose

then we have ”H ()-

i.e., H is continuous in BC[0,K] with respect to the

Now, we show P: BC[0,K]— BC[0,K] is continu-
ous with respect to the norm || . For @, ¥e BC[O K],
similar to the method in Ma [4], we obtain there is an
constant G > 0 s.t.

||P(<D)—P(\P)||ﬂ < G||H(<D)—H(\P)||ﬂ

By the continuity of H, we know P is continuous with

Copyright © 2013 SciRes.

respect tothe norm ||||u . The proof is completed.

In the following, we state and prove the main theorem
of this paper.

Theorem 3.1. Assume (A;)-(As) hold. Suppose wave
equations (2.1) has a pair of upper and lower solution

p.peBC[0,K] satisfying

1) supp(s)< ,5(!)(0r ,g(t)sigtfﬁ(s)),t eR.

V%07 e (0.inf /_)(t)]U|:sup B(t),Kj.

Then (2.1) and (2.3) have a monotone solution, ie.,
(1.1) has a traveling wavefront solution.

To prove Theorem 3.1, we define the following profile
set

2) F(V,

1) @ is nondecreasing in R.
T[p.p|={®: 2) p<®d<p,®eBC[0.K].
3)|@(s)-@(¢)| < Mls—1],s.t R
where M = max{ 7K,/ c} we first prove two lemmas.

Lemma 3'37If the conditions of Theorem 3.1 hold,
then for CDeC(R R" ) with p<®<p , we have

pP<P(®)<p.
Proof. For e R, we denote

W (1) = (w (), (1))
T
W (1) =((B(@)0)=p (1) (B(@)(1)-£, (1))
(3.8)
then we have W eBC(R;R"). In order to obtain
P(®)> p, it suffices to prove W ()= 0.
By Proposition 3.4, we know if d, =0,
P (@) (1)+7,P(®)(t)=H,(D)(1), teR.
From the definition of lower solution, we know

cp(t)+7p (1)< H, (,2)(1), aeteR.

Considering @ = p and by Lemma 3.1 2), we obtain

[P(@)(1)-p.(0)] +7[R(@)(1)-p.(1)] 20.
ae.teR.
Let

r(t)=cw/(t)+yw (1), teR. 3.9
Then r(¢)>0. By the continuity of w,(¢) and for-
mula of variant of constants, we have

w, (1) = aet + J:tm e'i"('f‘v)r, (s)ds,

i

(3.10)

where ¢ is a constant. By Lemma 3.1, we know F(®),

PI.(CD)’ are both bounded, It follows by (3.8) that w, (¢),
w/(¢) are essentially bounded in R, then by (3.9),

AM
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r,(t) is also essentially bounded in R, so a=0 in
(3.10), and P(®)=p,, (ford,=0). In a similar way,
we can obtain P(®)Z p,, (ford,>0) therefore P(®)2
p . Similarly, we can prove P(®)<p. The proof is
completed.

Lemma 3.4. If the conditions of Theorem 3.1 hold,
then P is equi-continuous.

Proof. For @ ¢ BC[O,K], if d,>0, by Lemma 3.1
1) and Proposition 3.3, we have, for ¢ e R,

' Ay
P(O® >— -1 ds
I( )(t) d(/l,z /111 J. e (7/1 1) >=
and,
’ ﬂ, oo 5 (t—s) 7/K
P(O® <—-2 2 K. )ds <~
l( )(t) di(/ll-z_/lil)J; € (;/l 1) < c 2

then, JPI. (CD)’ (t)|<7.K;/c, this is also holds for the
case d, =0, the'proofis similar and we omit here.
Ve>0, we choose §=&/M , here Mzrln_ax{yiKi/c},

then for P(®

)e P(BC[0,K ]), by Lagrange theorem,

1242 tl _t2| <5»
R(@)(1)-B(@)(e)] |2 (@) (1)1~ Ml .
nie(tl’tZ)’
then |P(®)(1,)-P(®)(1,)|<e, ie. P(BC[0,K]) is

equi-continuous. This completes the proof of Lemma 3.4.
Proof of Theorem 3.1. We divide the proof of Theo-
rem 3.1 into five steps.
Step 1, F[ P2, Z)J is a nonempty and convex set.

1) Denote ®(t)= s:g),g(s)(or (1) = lglfp(s)),t eR.
Obviously, @ is continuous and nondecreasing in R,
then by Lemma 3.2 1), P(CD) is nondecreasing in R

2) By Theorem 3.1(a), we know 0<p<®<p<K,
then by lemma 3.2 1) and Lemma 3.3 we have

p<P(p)<P(®)<P(p)<p.

3) By the above 1) and 2) we also know ® e BC[0,K],
similar to the proof of Lemma 3.4 ,we obtain

|P(®@)(1)-P(®)(5)| < Mo -], m e (8o1,).

Therefore, P(d))el“[,e,p}, then F[E,EJ is non-

empty. It is obvious that F[ P ,BJ is convex.
Step 2, F[E,;ﬂ is a closed setin BC, (R;R”), ie

if sequences
~|(stat)]  =rp7]

'},

converge to @ with respect to the norm ||||#, then
@erfp,ﬁ]. Since

"CDk - CD"” = max sup {|¢

I<i<n ,cp

gl o,

Copyright © 2013 SciRes.

for the fixed ¢

o (1) - (1)) < |0 - <1>|| 150, ask >o. (3.11)

Ve >0, we choose & =¢/3M,
{CD" }; c F[/_),,BJ we know

l@k(t)—q)k(t+At)"<g/3, lad <5, teR, k=12,
y (3.11), there is a N s.t. for the above 7, At

|0 (1)-@ ()| < 2/3,

then by

and
|0 ¢+ Ar) - (2 + At)| < /3.
Therefore, for fixed reR, if |Af<d,
(1)@ (2 +Az)|
<D(t)||+||cDN (¢

+||<DN (t+At)—<D(t+At)||< £

<o (1)- )- " (¢+a1)|

i.e., ®(t) iscontinuousin R. Inaddition, we have
1) Vi, t,eR, t<t,, since @ (1)<®*(1,),
k=12, by 3.11),

O(t)-0(1,) <@ (1,)-

O(1,)+@" (1,)-D(t,) <0,
ie., ®(t) iscontinuousin R.

2) VteR, since d)k()sﬁ() =1,2,---,by (3.11),
O(1)-p(1)<D(1)-D"(¢)<0. Similarly <D>p S0
® < BC[0,K].

3) Since ”(Dk ()" |s t|, s,teR,
k=12,

||CD(s)—<D(t)||
<[t (s) =@ (s)|+ Ms —t] +|@* () - ()],

combining with (3.11), we obtain
"CD(S) - <D(t)|| < M|s - t|. Therefore, ® € F[/_), ,5].

Step 3, P(F[e, ,5]) c F[,g, Z)}. This can be easily
proved followed by Proposition 3.3 and Lemma 3.2 - 3.4.

Step 4, P(F[ P /3]) is sequentially compact.

For @€ F[ P ,5]. by Proposition 3.3 we know
P(®)eBC[0,K], then |P(®)| <K, ie, P(T[p.5])

is uniformly bounded. It follows by Lemma 3.4 that
P(F[e, ﬁﬁ is equi-continuous. We define two opera-
tors

P, =(Py,,-P,,) :BC[0,K]— BC[0,K]
and
QN :<Ql’”.’QNn )T BC[O,K] - C([_N,N],R”)

satisfying

AM
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P(®)(N),te(N,+x)
[-N.N]
P(®)(-N),t e(-%,-N)

By (@)(t) =1 P()(¢).1

where NeN. For P(®)eP(I[p,p])< BC[0,K],

we have "PN (D) —P(d))”#S 2Ke— uN, therefore Ve >

0, there is an constant N e N, s.t. “PM (®)- <D)H”< 2,

Vb e F[ P [7] .Tothe N, by the above argument,

Oy (P(l"[ P ,BJ)) is uniformly bounded and equi-con-
tinuous in [N, N], then by Arzela-Ascoli theorem,

Oy (P(F[ P ,5})) is sequentially compact in

(C([—N, N],R” ),"") Forthee, Qf (P(l" [/_), ,5])) has

afinite ¢/3 - net, we denote this £/3 —net by
J
{QN<P<CI)j))}_ . where @, eT[p.pl.j=lJ, ie,

Jj=

min [0 (P(®))-0; (P(®, )| <2/3. voeT[p.7].
Thus
min|P(®)-P(®) |
< min PN((D)—PN<CD/.)H”+||PN(CD -P(o)],
iy Py(@,)-P(,) .
< i (0107, (0,0}
teR
+|p (@)-P(@)], +max |7 (d)/)—P(d)j)H# <e,
vq>er[,_a,/3].

Then {P(d)j)}J_ 1 is the finite e-net of P(F[p,ﬁ})
= £

and so P(F[ P ,5]) is sequentially compact.

Step 5, (2.1) and (2.3) have a monotone solution.

By Proposition 3.5, we know P: F[/_J, /ﬂ - F|:/_J, /ﬂ
is continuous with respect to the norm solution.

By Proposition 3.5, we know P: F[p,p} - F[p,p]
is continuous with respect to the norm || || combining
with step 1 - 4, P satisfies all conditions of Schauder
fixed point theorem in I'| p,p |, therefore P has fixed
point ® in F[ p.p |, by Proposmon 34, © is the
monotone solution of (2.1) and (2.3). Since
Q¢ F[ 0, /ﬂ < BC[0,K] is monotone and bounded in

R, V_:=lim ©(t)andV, = lim O(r) exists, by Propo-
1—>—x0 t—>—0

Copyright © 2013 SciRes.

QN(CD)(I):CD([)‘[—N,N]’
CDEBC[O,K],

sition 3.2, F(V_,---,V.)=F(V,,---,V,)=0. It follows

p<O<p,0<V <infp(t), and
te

by ®el"[p, ] that
sup p(t) <V, <K. Then by (A,) and condition (b) of

teR

Theorem 3.1, V_ =0,V, =K, ie., O satisfies the as-
ymptotic boundary condition (2.3). Therefore (1.1) has a
wave front U (¢,x)=0(x+ct). And this completes the
proof of Theorem 3.1.

4. Conclusion

In this paper, we study reaction-diffusion systems with
spatio-temporal delays, and obtain the existence of trav-
eling wave fronts by using Schauder’s Fixed Point Theo-
rem. In our results, we reduce the existence of traveling
wave fronts to the existence of an admissible pair of up-
per solution and lower solution, which are much easier to
construct in practice.
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