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ABSTRACT 

Both the theoretical and practical investigations of various dynamical systems need to extend the definitions of various 
functions defined on the real axis to the set of matrices. To this end one uses mainly three methods which are based on 
1) the Jordan canonical forms, 2) the polynomial interpolation, and 3) the Cauchy integral formula. All these methods 
give the same result, say g(A), when they are applicable to given function g(t) and matrix A. But, unfortunately, each of 
them puts certain restrictions on g(t) and/or A, and needs tedious computations to find explicit exact expressions when 
the eigen-values of A are not simple. The aim of the present paper is to give an alternate method which is more logical, 
simple and applicable to all functions (continuous or discontinuous) of exponential order. It is based on the two-sided 
Laplace transform and analytical continuation concepts, and gives the result as a linear combination of certain n matri-
ces determined only through A. Here n stands for the order of A. The coefficients taking place in the combination in 
question are given through the analytical continuation of g(t) (and its derivatives if A has multiple eigen-values) to the 
set of eigen-values of A (numerical computation of inverse transforms is not needed). Some illustrative examples show 
the effectiveness of the method. 
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1. Introduction 

For many theoretical and practical applications one needs 
to extend the definitions of functions defined on the real 
axis to the set of matrices. The history of the subject goes 
back to the second half of the nineteenth century when 
Cayley, who is the main instigator of the modern nota-
tion and terminology, introduced the concept of the 
square-root of a matrix A [1]. Since then a huge work has 
been devoted to the definitions, numerical computations 
and practical applications of the matrix functions. A 
rather detailed history (including a large reference list) 
and important results (especially those concerning the 
numerical computation techniques) are extensively dis-
cussed in the book by Higham [2]. So, we eschew here of 
making a review of the historical development and giv-
ing a large reference list. 

To extend the definition of a scalar function g(t), de-
fined for , to the set of matrices, one starts from 
an explicit expression of g(t), which can be continued 
analytically into the complex plane C , and replaces 
there t by A. If the result is meaningful as a matrix, then 
it is defined to be g(A). Before going into further detail, it 
is worthwhile to clarify the meaning of the word “de-
fined” appearing in the expression of “defined for 

t



t

Th

”. It is especially important when g(t) consists of a 
multi-valued inverse function. To this end consider, for 
example, the square-root function g(t) = t1/2. Its definition 
requires, first of all, a cut connecting the branch point t = 
0 to the other branch point t =  in the complex plane C . 

en, by choosing one of its possible values at a given 
point, for example g(1), one defines it completely. The 
result consists of a well-defined branch of the square-root 
function. If one replaces t in this expression by A, then 
one gets a (unique) matrix to be denoted by A1/2. This 
matrix satisfies the equation X2 = A which may have 
many solutions denoted also by A1/2. The above-men- 
tioned function g(A), which consists merely of the exten-
sion of the above-mentioned well-defined branch of the 
square-root function, can not permit us to find all these 
solutions. For example the equation X2 = I, where I de-
notes the unit 2 × 2 matrix, has infinitely many solutions 
given by  

cos sin

sin cos

 
 

 
   

X , 

where  stands for any complex angle. All these matrices 
are defined to be the square-root I . But the above- 
mentioned matrix g(A) gives only one of them, namely I 
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or (−I).  
The known classical methods used in this context are 

grouped as follows (see [2], Sections 1, 2): 
1) Methods based on the Jordan canonical formula; 
2) Methods based on the Hermite interpolation for-

mula; 
3) Methods based on the Cauchy integral formula. 
All these methods are applicable when the function 

g(t), defined on the real axis, can be analytically contin-
ued into a domain of the complex-plane, which involves 
the spectrum of the matrix A (see def. 1.2 and def. 1.4 in 
[2]). Consider, for example, the Heaviside unit step func-
tion H(t) defined on the real axis by  

 
1, 0

1 2, 0

0, 0.

t

H t t

t


 
 

              (1a) 

It is obvious that the analytical continuation of H(t) 
into the complex z-plane, if it is exists, has the point z = 0 
as a singular point. To reveal H(z), let us try to find its 
Taylor expansion about any point a > 0. This expansion 
is valid in the circle with center at the point z = a and 
radius equal to r = a. Since all the coefficients except the 
first one are equal to naught, one gets H(z)  1 at all 
points inside the circle in question. By letting a   one 
concludes that H(z) is regular in the right half-plane z > 
0. If the above-mentioned Taylor expansion were made 
about a point a < 0, then one would get H(z)  0 for all z 
with z < 0. This shows that H(z) is a sectionally regular 
(holomorphic) function (see [3], Section 2.15). On the 
basis of the Plemelj-Sokhotiskii formulas (see [3], Sec-
tion 2.17), for the points on the imaginary axis one writes 
H = 1/2, which yields 

 
1, 0

1 2, 0

0, 0

z

H z z

z .

 
 
  

           (1b) 

Notice that (1a) and (1b) can also be obtained by com-
puting the improper integral  

   2 2

1d
,

2π 2
zH z

z








 


          (1c) 

where the bar on the integral sign stands for the Cauchy 
principal value. 

From (1b) one concludes that the seemingly general 
and elegant method 3), which is based on the Cauchy 
integral  

    11 d ,
2π

C

g
i

 


 A I A          (2) 

where C stands for a closed contour such that the domain 
bounded by C involves all the eigen-values of A and the 
function g(z) is regular there, can not be applicable to 

find H(A) (and other functions expressible through H(t)) 
when A has eigen-values having both positive and nega-
tive real parts.  

As to the methods 1) and 2), they need, in general, 
some tedious and cumbersome computations if A has 
multiple eigen-values.  

In the present note we will consider the case when the 
function g(t), defined on the real axis, is of the exponen-
tial order at both t = + and t = −, and give a new 
method which seems to be more logical and effective 
especially when the matrix A has multiple eigen-values. 
It gives the result as a linear combination of n matrices 
determined only by the matrix A. To this end we consider 
the Laplace transforms of g(t) on the right and left halves 
of the real axis, namely: 

     
0

ˆ e d ,stg s g g t


      t         (3a) 

     
0

ˆ e dstg s g g t  



    t         (3b) 

and write [4] 

     

 

1 1ˆ ˆ e d e d ,
2π 2π

, .

ts ts

L L

g t g s s g s
i i

t

 

  

  

  s
 (3c) 

If the orders of the function g(t) for t   and t  
(−) are c+ and c−, respectively, then the function 

 ĝ s  is a regular function of s in the right-half plane 
s c   and the integration path L+ appearing in (3c) 

consists of any vertical straight-line located in this half- 
plane (see Figure 1). Similarly,  ĝ s  is regular in the 
half-plane s c 

L

 and the integration path L− is any 
vertical straight-line in this half-plane (if c+ < c−, then 
one can assume L  ). Furthermore, if g(t) as well as 
its derivatives up to the order (m-1) are all naught at t = 0, 
i.e. when  

       10 0 0mg g g  0    ,      (4a) 

then one has  
 

 

c− O c+ s

s 
L+ L− 

 

Figure 1. Regularity domains of  ĝ s  and the integration 

lines L when c− < c+. 
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    ˆm mg s g s               (4b) 

and  

    ˆ ,m mg s g s              (4c) 

which yield inversely 

       

 

1 1ˆ ˆ e d  e d ,
2π 2π

, .

mm ts m ts

L L

g s s s g s s s g t
i i

t

 

  

  

 
(4d) 

It is worthwhile to remark here that the formula (4d) 
permits us to compute    mg t  only at points on the real 
axis although g(t) and its derivatives are defined in (or 
can be continued analytically into) the complex t-plane. 
Therefore, when the point t is replaced by a complex 

C  , in what follows we will replace the left hand side 
of (4d) by the analytical continuation of    mg t  to the 
point  and write  

       1 1ˆ ˆ e d  e d ,
2π 2π

.

mm s m s

L L

g s s s g s s s g
i i

C

  



 

  

 

 
 

(4e)  

The formulas (3c), (4d) and (4e) will be the basis of 
our approach. 

Let A be a square matrix of dimensions n  n. We will 
define g(A) by replacing t in (3c) by A, namely: 

     1 1ˆ ˆ e ds e d .
2π 2π

s s

L L

g g s g s s
i i 

   A AA   (5) 

Thus the computation of g(A) becomes reduced to the 
computation of exp{At}. As we will see later on, the lat-
ter consists of a linear combination of certain constant 
matrices j (  = order of A). Hence g(A) will 
also be a linear combination of these j’s for every g(t). 
It is important to notice that to compute the coefficients 
in the combinations in question we will never need to 
compute the transform functions 

1, ,j   n

 ĝ s  as well as the 
integrals of the form (5) if the analytical continuation of 

   mg t  is known at the eigen-values of A (see the ex-
amples to be given in Section 4). These points constitute 
the essential properties of the definition (5):  

1) It unifies the definition of g(A) for all functions g(t) 
of exponential order; 

2) It gives an expression of g(A) in terms of certain 
matrices which take place in the expression of exp(At) 
and are determined only by A;  

3) It reduces the computation of g(A) to the computa-
tion of exp(At) together with some scalar constants to be 
determined in terms of g(t) (and its derivatives when A 
has multiple eigen-values) at the eigen-values of A.  

The details are given in the theorems that follow.  

2. Basic Results 

In what follows we will denote a square matrix A of en-
tries ajk by A = [ajk]. Here the first and second indices 
show, respectively, the row and column where ajk is 
placed. The transpose of A will be indicated, as usual, by 
a super index T such as . The characteristic 
polynomial of A will be denoted by 

TT
jka   A

f   , i.e.  
   detf   A I .  
Theorem-1. Let A = [ajk] be an n  n matrix with char-

acteristic polynomial  f  . Then, 
1) when all the zeros of  f  , say 1, , n  , are dis-

tinct, one has 

   
0

1

exp e α
n

λ t

α

t 



 ΓA             (6a) 

with  
0
Γ  given by  

 

   
T

0
1 ,

 jk

f
af









     
Γ        (6b) 

2) when  f   has p distinct zeros, say 1, , p  , 
with multiplicities 1, , pm m , respectively, one has  

 
      1 2

1 2 0
1

exp

e
p

m m
m m

t

t t t  
 

   



 
 



    

A

  
   (6c) 

with the matrices    0, , 1k k m
a Γ   given by  

 

 

 
   

T
1

1

1
! 1 !

d .
d

k

m
m k

m k
jk

s

k m k

s
f s

af ss
















 

 



 
 

              

Γ

 (6d) 

Theorem-2. Let A = [ajk] be an nn matrix while g(z), 
defined in the complex z-plane, is regular at all the eigen- 
values of A and its restriction to the real axis is of expo-
nential order at both t = + and t = −. If all the eigen- 
values of A, say 1, , n  , are distinct, then one has 

     
0

1

.
n

g g 







  ΓA            (7) 

Here  stands for the matrix taking 
place in the expression of exp{At}.  

  0  1, ,a Γ  n

Theorem-3. Let A = [ajk] be an n  n regular matrix 
which has p distinct eigen-values 1, , p   with multi-
plicities 1, , pm m

1, , ;  0a p 

, respectively, while g(z), defined in 
the complex z-plane, is regular at all the eigen-values of 
A and its restriction to the real axis is of exponential or-
der at both t = + and t = −. Let the non-zero matrices 
taking place in the expression of exp{At} be  

. Then one has     , ,k Γ  Kk   
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G 

  

                  1 2
1 2 0

1

,
p

m mN
m mg G G 
 

  
 


  

 


    Γ Γ ΓA A                  (8) 

 
where N stands for an integer such that    NG t t g t  
and its derivatives up to the order (K-1) are all naught at t 
= 0.  

Let the characteristic polynomial of A be  f s : 

 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

a s a a

a a s a
f s

a a a








Before going into detail of proofs of the above-men- 
tioned theorems, it is worthwhile to draw the attention to 
the fact that theorems 2 and 3 give the matrix function 
g(A) as a combination of the n matrices  

k
Γ  which 

appear in the expression of exp(At). They are the same 
(invariant) for all g(t).  

s

.     (10) 

Then the entry of the inverse matrix   1
s

A I , 
which is placed at the k-th row and j-th column, can be 
computed through the polynomial  f s  as follows:  Proof of theorem-1. Our basic matrix function exp{At} 

is defined, as usual, through the infinite series  

   1 ,   , 1,2, , .
 jk

f s j k n
af s
 


      (11) 

  2 21
exp 1 ,  

2!
at at a t t       

Thus (9) yields  
by replacing there the scalar constant a by the square 
matrix A, namely: 

   
  T

1 1exp e d .
2π

ts

jkL

 f s
t s

i  af s

 
    

A   (12) 
   2 21

exp , .
2!

t I t t t t      A A A X  

Here the integration line L is any vertical straight-line 
such that all the eigen-values of A are located in the left 
side of L.  

It is obvious that X(t) defined as above is the unique 
solution to the differential equation    t XX' A t  un- 
der the initial condition X(0) = I. Hence, by applying the 
Laplace transform to this equation one gets  

    1ˆ –s s
 X A I  which permits us to write 

    1 ts1exp e d .
2π

L

t s s
i

  A A I

If the eigen-values are all simple, then the integral in 
(12) is computed by residues and gives (6a). When some 
of the eigen-values are multiple, as stated in theorem-1b, 
the residue method gives        (9) 

 

   
 

   
T1

 
1

1
.

1 d
exp e

 1 ! d

mmp
st

m
jk

s

s
t f

am f ss




s





 









                
A 



                 (13) 

 
Proof of theorem-2. When the eigen-values of A are 

all simple, in (5) one replaces exp(As) by its expression 
given in (6a) and obtains  

It is obvious that the derivatives in (13) yields a poly-
nomial in t of degree . Hence the final expres-
sion of exp(At) can be arranged as what is given in (6c). 

 1m 

 

         
T

1

1 1 1
ˆ ˆe d e d

2π 2π

n
s

jk L L

sg f g s s  g s
f a i i




 


  

 



 
s

              
  A .              (14) 

 
If all the eigen-values are real, then (3c) reduces (14) 

to (7). When some or all of the eigen-values are complex, 
we replace (3c) by (4e) with m = 0 and arrive again (7). 

Proof of theorem-3. Now consider the case when A 

has multiple non-zero eigen-values and define  G t   
 Nt g t  where the integer N will be determined appro-

priately later on. If in (5) one replaces g(t) by G(t) and 
exp{As} by (6c), then we get  

 

              1 1 2 2 0 0
1

,
p

N
m m m mg c c c
   

     


   



    Γ Γ ΓA A                     (15a) 

where  
     1 1ˆ ˆd ee

2π 2π
s sk k

k

L L

c G s s s G s s
i i

   

 

     ds                        (15b) 
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with 1, , p  

e coeffici
 and . Remark that some 

h ents 
0, , 1ak m 

 
kof t Γ  may be equal
ub-index k be K
nsi

 to naught (see 

vativ

Let g(t) be the characteristic polynomial of A (i.e. g(t)  
) 

In order to show the application and effectiveness of the 
ider some simple 

One can easily check that A has a t ple eigen-value  
= 2. Therefore the theorems 1b and 3 are applicable di-
re  

ties p and m mention
= 3. On the other hand

ex.-2) rgest s  for which one has 
  0k
 Γ . Then, by co dering the requirements in (4a), 

we will choose the integer N such that G(t) and its de-
ri es up to the order (K-1) are all naught for t = 0. In 
this case all terms existing in (15b) are computed through 
(4d) or (4e) and give (8).  

3. A Corollary (Cayley-Hamilton Theorem) 

. Let the la

f(t)). In this case all the terms taking place in (7) or (8
are equal to zero. When the eigen-values are all simple, 
from (7) one gets directly f(A) = 0, which is valid for 
both regular and singular matrices. In the case of multi-
ple eigen-values, (8) gives f(A) = 0 if A is not singular. 
We remark that the Cayley-Hamilton theorem is correct 
for all matrices. We will use this theorem to compute the 
factor A−N taking place in the formula (8) (see ex.-2). 

4. Some Illustrative Examples 

method, in what follows we will cons
examples. 

Ex.-1 As a first example consider the case where A is 
as follows: 

8 12 2 
3 4 1

1 2 2

    
   

A . 

ri

ctly for all functions of exponential order. The quanti- 

ed in those theorems are: p = 1, m1 
 from 

   3

8 12 2

3 4f




 
    1 2

1 2 2

 

  

  

 

one computes  

 
T

f 

2

2

2

2 6 12 20 4 2

5 3 10 14 2

2 4 2 4 4
jka

   
   
   

    
   

              

 

which gives (see (6c) and (6d)) 

   2 2
1 0exp  e tt t t  Γ Γ ΓA  2

where  

0 1

6 12 2

,  3 6 1

1 2 0

I

 
     
   

   

and 

2

2 4 0
1 1 2 0
2

0 0 0

 
    
  

Γ . 

Since 2  0, one has K = 2 which ows that the for-
mula (8) is applicable with 0  N  2. For example, in 
or    

sh

der to find the expressions of A  and sin A  (with  
2), one can choose N = 0 while A , sin A , sin A , 

3sin A , arcsinA etc. needs N = 1. To compute cosA, logA, 
cos A , signA and arcosA one has to choose N = 2.  

To check the formulas, we would like to compute first 
 integer  2) through the formula (7) which gives An (n =

 

 

   11 12 4 2 1 12 2n nn n n n n

   2 1 3 2
2 1 0

1

1 2 2 2 2 1 12 2 1 12 4 2 .

2 2

n n n n n n n

n n

n n n n n n n n n n

n n

    



22n n n

1

2n

          
                    
 

   

Γ Γ ΓA  

Thus for n = 2 one gets 

2

30 52 8

13 22 4

4 8 4

 
 

   
 
  

A . 

Notice that by a direct multiplication of A with itself one gets the sam  result.  
Similarly, one gets also 

e

     4 3 4 3 4 3 2 333 4
t t t       Γ Γ Γ ΓA A 1 3 4 3 3

2 1 0 2 1

2

4
,  2

9 3
t

  


   
Γ I  g t t 
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             

       

2 2 2 2
2 1

2

2 1

log log log log log

2log 2 3 4log 2 2 4log 2 ,

t

g t xt x t xt t xt t xt

x x x



        

    

Γ Γ

Γ Γ

A A

I

 
0Γ

             

          

2 2 2 2
2 1

2

2

2 1

cos  cos  cos cos cos

7
2 cos 2 sin 2 4cos 2 2 sin 2 4cos 2 ,

2 2

t

g t x t x t x t t x t t x t

x x

0

x x x x x



x

  
     

 

          
   

Γ Γ

Γ Γ

A A

I

 

Γ

             

         

2 1

2

2

2 1

sin sin  sin sin sin

3
cos 2 sin 2 cos 2 sin 2 2sin 2 ,

44 2 2

t

g t x t x t x t t x t t x t

x x x
x x x x



  
     

 

          
  

Γ Γ Γ

Γ Γ

A A

I

 

0

x

  2 2
2 1 0

30 52 8

 sign sign 2 4 4 13 22 4 sign .

4 8 4

g t t

 
            
   

Γ Γ ΓA A A  A I

 
Remark that for different branches of t , 3 t  and  

 lo one gets different expressions for 3 Ag xt  ,  

 glo xA ,  cos xA  and  sin xA  (s Section 5 ee 

and theo
Finally let us cons e branche

trigonome arcsint and 
ut as shown in Figure 2 into the 

re

 

taking place in the formula (8) can be computed rather 
easily by using the Cayley-Hamilton theorem as follows: 

rem-4). 
, ider th s of the inverse 
tric functions g(t) = h(t) = arccost 

which map the t-plane c
gions in the g- and h-planes shown in Figures 3 and 4 

(the so-called principal branches of these functions!).  
For the first function we have to choose N = 1 while 

the second one needs N = 2. The matrices A−1 and A−2 

1

6 20 4
1

5 14 2
8



 

2 4 4

 
   
  

A , 

2

56 144 32
1

36 88 16 .
64

16 32 16



  
   
  

A  

Thus, by starting from d    arcsinG t t t  an  H t   
2arccost t  one gets from (8) 

 
8 16 0

2
arcsin 4 8

  
  

  
20 4

0 10 20 2
824 4

0 0 0 4 8 0 2 4 4




40 8 6 20

4 5 14


   
    A        

           

 

and 



32 64 0 64 128 32 56 144 32
8 3

arccos 16 32 0 32 64 16 36 88 16
64 16 16

0 0 0 16 32 0 16 32 16

    
      

                
        

A  






 
with 

arcsin2, arccos2, 1 3     . 

 an interesting exercise to check that It is

π
arcsin arccos .

2
      0A A I I I

7 0 4

8 3 8

8 0 5

 
   
   

A . 

In this case one has  

which shows again that the theorems 1b and 3 are appli-  

 

Ex.-2 Now consider the case where A is as follows:  

     1 3f      , 
2
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−1 1 B+ 

B− C2 

A+ 

A− C1 

t

 

 

Figure 2. Complex plane-t cut along the lines (−) < t < −1 
and 1 < t < . 
 

g 

B− 

C2 C1 

A− 

−/2 /2 

A+ B+ 

 arcsin 

 

Figure 3. Mapping of the t-plane into the g-plane through 
the principal branch of the function g = arcsint. 
 

A− 

A+ 

C1 C2 

 O h 

B+ 

B− 
arccos  

 

Figure 4. Mapping of the t-plane into the h-plane through 
the principal branch of the function h = arccost. 
 
cable with p = 2, 1 = −1, 2 = 3, m1 = 1 and m2 = 2. 
From the expression of f() one gets easily  





Therefore from (6c) and (8) we write  

.

Since K = 0, (8) is applicable with N = 0 and g es, for 
example,  

2Γ

and  

   1 2
0 0

1 0 1 2 0 1

2 0 2 , 2 1 2

   
       Γ Γ  

2 0 2 2 0 1       

and 

 2
1

0 0 0

0 0 0

 
   Γ 0 . 

0 0 0  

   1 23
0 0e e et t t Γ ΓA  

iv

           

   

1 2
1 0 2 1 2 0

1 2
0 0

sign sign  

3 0 2

4 1 4

sign    

  

 
   

Γ Γ

Γ Γ

A

 

sign

4 0 3   

               1 2 2 2
1 0 2 1 2 0 0 H H H H     



A Γ Γ Γ Γ

2 0 1

2 1 2 .

2 0 1


   
   

 

By direct multiplication of these matrices by them-
selves one gets  

are the basic properties for the original functions 
signt and H(t). 

Similarly, one gets also 

      22
sign , H H A I A A , 

which 

2 0

arcsin 2 2 2 2

2 2 0 2

   
    
  

 



 
    
   

A  

and  

2 0

arccos 2 2 2 2

2 2 0 2

   
    
   

  
    
   

A  

with 

 arcsin 1 , arcsin3,     

 arcos 1 , arccos3    . 

Here the functions  and  arcsin t g t arccos t   
 h t  consist of the functions considered

k that  
 in the e

ove. One can easily chec
xample- 

1 ab

 and 
π

arcsin arccos 
2

 A A ,  sin arcsin A A I

h are the basic properties for the original functions 
t and arccost. 

Ex.-3 Finally, we want to give an exam e with com-
plex-valued eigen-values. To this end consider the case 
where 

whic
arcsin

pl

a b
b a

 
  
 

A  
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 has  with any real a and b. In this case one        

   

   

1 2
0 0

1 2
0 0

1 2
0 0

sign sign i sign i

 if  0

, if  0

a b a b

a

a

  

   
     

Γ Γ

Γ Γ

Γ Γ

A

I
 



1 2 ia bi ,a b       ,   I

and  1
0

1 i1
2 i 1

 
  

Γ ,  

 
2

0

1 i1 .
2 i 1

 
  Γ  

, if  0a 
0 

and  Thus, for the following functions one writes 
 

         

         

1 1
arcsin i arcsin i i arcsin i arcsin i

2 2arcsin
1 1

i arcsin i arcsin i arcsin arcsin i
2 2

a b a b a b a b

a b a b a b a b

       
  
        

A . 

Here arcsint stands for the function defined in ex.-1 
above. It is interesting to check that  

A

. Inverse Power of a Matrix 

m (= B) which cor-
respond to a given matrix A through the relation m = A. 
The next lemma and theorem concern this case. 

nction 

 

   4
6 6g w  ,    4

7 7g w  ,    5
8 8g w  . 

Theorem-4. Let A be an n  n regu  matrix with p 
different eigen-values 

lar
   2
sign  if 0,  sin arcsina  A I A   1 p n   

p different
while m is an integer. 

Then there exist at least m  matrices B such that 
Bm = A. 

co

5
Proof. Let the eigen-values of A be  1, ,

Consider a Riemann surface which  the 
function 

j j p   . 
rresponds to

From the example 1 considered above one observes 
that there are many inverse powers A1/

  1 mg t t  and denote, on e k-th sheet of this 
Riemann surface, the values of the function g(t) at 

 th
  

j by 

 B
points

 
 

   1
,  1, ,

km k
j jw k m   1 mg t t , Lemma. Let the values of the fu    

  . On the basis of  

the lemma, we can ange the cut line appropriately such 
that the values of t m at the points 

defined on a Riemann surface, at given p points  

1 2, , , p    be     0k
j jg w   , 1, ,k m  . Then 

there is a Riemann surface such that on one of its sheets 
g(t) takes previously chosen values at the points  

1, , ,

ch
1/  , , ,1 2 p    be-

co  me equal to previously chosen values. For example, 

 2 p   , namely:  

   k
j jg w   with arbitrarily chosen  

 jk   2

Proof. Let at the first r points (1  r < p) o

1,2, , , m 1, , ,j   . p

ne has 
   1

j jg w   while at 1r   one wants to have  
 1 1r r

 qg w   , where ber. 
ne the ne  which 
e branch po circ

 2, ,q m

int t = 0, en

   is any num
w cut line as a spiral curve

les the points 
Then, we defi
starts from th

, , ,1 2 r    (see 
betw

the Fi q-1) times passes gure 4) and (
een the points r and 1r  . Thus the analytic con-

   tinuation of 1
1 1g w  to j  2, ,j r   b ecomes 

 1
jw  while at 1r   it is e 1r . We continue this 

process to adjust also the values at the points 2 , ,r n

qual to  qw
   . 

No when the super index kj + 1 in  1

1

 

tice that jk

jw 
  is smaller  

than kj, we can replace kj + 1  (kj + 1 + m) because one 

has  1

1 1
jk

j jw w
  . At the end  at a plane cut  

along an appropriate (spiral) curve joining the oint 0 
to t =  such that at the given points  , ,

 by  
m

we arrive

p t = 


 1jk  

1 2 , p    the 
function g(t) has desired values  jk

jw . xample on For e
the Riemann sheet shown in Figure 5 one has  

   1
1 1g w  ,        1 1

2 2 5 5, , ,g w g w    

 1 1
1 1

m
w  ,    1 3

2 2

m
w  ,    1 2

3 3

m
w  ,  14

m    
 1
4w  etc. Since these valu n be arranged in mp dif-

fe
es ca

r (8)) can hav

 

rent forms, the right-hand side of (7) (o e 
mp different values. This proves thorem-4.  

Ex. Let a C   and b C   any numbers which differ 
from zero. Then the matrix  

2

2

0

0

a

b

 
  
 

A  

 
 

1 

7 6 5 

O 

t
 

 

 

 

 

 

 
 

 
 

8 

 

Figure 5. A cut appropriate for the particular case when r = 
5 and q = 4. 
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has four square-roots given as follows: 

0

b




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