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ABSTRACT 

The paper presents a mathematical rotordynamic model regarding excitation due to elliptical shaft journals in sleeve 
bearings of electrical motors also considering the gyroscopic effect. For this kind of excitation, a mathematical rotordy- 
namic model was developed considering the influence of the oil film stiffness and damping of the sleeve bearings, the 
stiffness of the end-shields and bearing housings, the stiffness of the rotor, the electromagnetic stiffness in the air gap of 
the electrical motor and the mass moment of inertia of the rotor and therefore also considering the gyroscopic effect. 
The solution of the linear differential equation system leads to the mathematical description of the absolute orbits of the 
shaft centre, the shaft journals and the bearing housings and to the relative orbits between the shaft journals and the 
bearing housings. Additionally, the bearing housing velocities can also be derived with this mathematical rotordynamic 
model. 
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1. Introduction 

In electrical motors many different kinds of excitation 
exist, like mechanical unbalance, misalignment of the 
coupling [1-3] and electromagnetic forces—e.g. unbal- 
anced magnetic pull [4-11]—which may cause vibrations. 
In this paper a special kind of excitation caused by ellip- 
tical shaft journals [12], in conjunction with sleeve bear- 
ings [13-17], is investigated, also considering the gyro- 
scopic effect of the rotor. Due to the machining process 
of the rotor, the shaft journals may get a marginal form 
deviation, so that they are no longer cylindrical. In some 
cases the shaft journals may become an elliptical shape 
instead of circular shape. However, the form deviation  
is usually very small, about 0.0005% - 0.002% referred 
to the diameter of the shaft journal. In standards and speci- 
fications the so called run out of the shaft journals is lim- 
ited by e.g. the standard IEC 60034-14 [18] and the stan- 
dard API 541 [19]. Due to this form deviation the centre 
of the shaft journal V changes its position in the sleeve 
bearings as the rotor rotates, leading to a dynamic dis- 
placement on the oil film (Figure 1). This dynamic dis- 
placement of the shaft journals on the oil film of the 
sleeve bearing represents an excitation for the rotor dy-  
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Figure 1. Two-pole induction motor with flexible shaft and 
elliptical shaft journals in sleeve bearings. 
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namic system, leading to forced vibrations. This was de- 
rived in [12], but only with a simplified rotordynamic 
model without considering the mass moments of inertia 
of the rotor and the gyroscopic effect. 

The developed rotordynamic model in [12] is more 
suitable for a stiff rotor design, where only the first bend- 
ing mode—“V-shape”—of the rotor is of interest. For 
this mode, the influence of the inertias of the mass mo- 
ments and the gyroscopic effect is usually small for elec- 
trical rotors. For flexible rotors (Figure 1) also higher 
bending modes, like “S-shape”, have to be considered, 
because here the natural frequencies of these modes are 
much lower as for a stiff rotor design and may be excited 
by the dynamic displacement of elliptical shaft journals. 

Therefore the presented rotordynamic model here is an 
enhancement of the model presented in [12], additionally 
considering mass moments of inertia of the rotor and the 
gyroscopic effect. So, the here presented rotordynamic 
model is also suitable for flexible rotors. 

2. Rotordynamic Model 

The rotordynamic model is described in Figure 2, where 
the rotor rotates with the rotor angular frequency . The 
rotordynamic model represents an enhancement of the 
rotordynamic model shown in [12], where the rotor mass 
was concentrated as a lumped mass, without mass mo-  

ments of inertia and therefore without considering the 
gyroscopic effect. The enhancement of the here presented 
rotordynamic model in Figure 2 is, that the rotor mass 
has now also mass moments of inertia, so that also the 
gyroscopic influence can be considered. 

The rotordynamic model contains the rotor mass m, 
which is concentrated as a lumped mass on an elastic 
shaft in the point W, with the mass moment of inertia Θp 
at the rotational axis and the mass moment of inertia Θa, 
normal to the rotational axis. The point W is positioned in 
the centre of the rotor shaft and with distance of l1 and l2 
to the sleeve bearings—bearing (1) and bearing (2), con- 
sidering a non-symmetrical position. The oil film stiff- 
ness and damping of the sleeve bearings are described by 
the oil film stiffness matrices Cv1 and Cv2 and the oil film 
damping matrices Dv1 and Dv2. In the oil film stiffness 
and damping matrices the oil film coefficients cij and dij 
are included, which can be derived by solving the Rey- 
nolds differential equation [13-17]. The stiffness matrices 
Cb1 and Cb2 describe a series connection of the stiffness 
of the sleeve bearing housings, the end shields and the 
stator housing in the area of the end shields. Usually, the 
damping of the bearing housing, end-shield and stator 
housing is so low, that it can be neglected. In this model, 
the machine foundation is assumed to be rigid, simulat- 
ing a massive foundation [18,19]. 
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Figure 2. Rotordynamic model. 
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The stiffness of the rotor is described in the stiffness 

matrix Cro, where crr is the radial stiffness, c the angu- 
lar stiffness and cr the cross-coupling stiffness of the 
rotor itself in point W, when the rotor is supported in 
rigid bearings. Here, the cross-coupling stiffness cr means 
that a radial force at the shaft centre point W also causes 
an angular displacement of the shaft centre point W. 
However, a moment at the shaft centre point W also 
causes a translational displacement of the shaft centre 
point W. In the model described in [12], only a radial 
stiffness was considered. The derivation of the rotor stiff- 
ness matrix is based on [3,11]. 

For electrical machines, there is an electromagnetic 
coupling between the rotor and the stator [4-11], which 
can be described by the magnetic spring matrix Cm. In 
addition to the radial magnetic spring constant cmr— 
which is described in the rotordynamic model in [12]— 
now also an angular magnetic spring constant cm is used, 
which is derived in [11]. The magnetic spring constants 
cmr and cm have a negative reaction. This means that a 
radial displacement of the rotor mass creates an electro- 
magnetic force that tries to magnify the radial displace- 
ment. However, an angular displacement of the rotor mass 
creates an electromagnetic moment which also tries to 
magnify the angular displacement. Electromagnetic field 
damping is not considered in the simplified model. 

The excitation in this model is only caused by ellipti- 
cal shaft journals. Other excitations like mechanical un- 
balance, unbalanced magnetic pull etc. are not considered 
in this paper, but of course they can be superposed. 
Therefore, the excitation is only caused by the forced 
displacement of each elliptical shaft journal on the oil 
film in each sleeve bearing. Referring to [12], the forced 
displacement s1(t) and s2(t) of the shaft journal centre 
point V1 and V2 normal to the oil film, which means in 
direction of static eccentricity, can be described by: 

   cos 2 2 ; 1,2k k ks t t k            (1) 

In the model five fixed coordinate systems are used. 
One coordinate system is positioned at the static rest po- 
sition of the point W. In this coordinate system the trans- 
lation of the shaft centre point W is described in the co- 
ordinates zW and yW and the rotation of W is described in 
the coordinates zW and yW. The translation of the shaft 
journals V1 and V2 are described in the separate coordi- 
nate systems (zV1; yV1) and (zV2; yV2), which are fixed at 
the static rest positions of the shaft journals. The transla- 
tion of the bearing housing points B1 and B2 are also de- 
scribed in the separate coordinate systems (zB1; yB1) and 
(zB2; yB2), which are positioned at the static rest position 
of the bearing housing points. 

3. Mathematical Description 

To derive the equations of motion, it is necessary to split 

up the vibration system into five individual systems: 
- Rotor mass system for shaft centre point W; 
- Shaft journal systems for shaft journal point V1 and V2; 
- Bearing housing systems for bearing housing point B1 

and B2. 

3.1. Kinematic Constraints 

Referring to [11], the kinematic constraints between the 
radial displacements of the shaft journals V1 and V2 and 
the radial and angular displacement of the rotor centre 
point W, for a rigid rotor, are described by (Figure 3): 
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3.2. Rotor Mass System 

The forces and moments, which act on the shaft centre 
point W, are shown in Figure 4. A complex coordinate 
system is introduced to afterwards describe the radial 
movement of the shaft centre point W with a complex 
vector rw. The complex vector rw describes the radial 
movement of the shaft centre point W, as if the rotor 
would be rigid. Therefore, the complex vector rw-w de- 
scribes the radial elastic deformation of the shaft. 

The equilibrium of forces and moments leads to fol- 
lowing equations: 
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Figure 4. Rotor mass system. 
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3.3. Shaft Journal System 

The forces acting on the shaft journal point V1 are shown 
in Figure 5. The complex vector rv1 describes the radial 
movement of the shaft journal point V1, the complex 
vector rb1 the movement of the bearing housing point B1. 
The complex vector s1 describes the forced displacement 
of the shaft journal point V1 on the oil film due to the 
elliptical shape, as if the rotor would be without mass and 
electromagnetism. Therefore the complex vector rv1-v1 
describes the radial displacement of the shaft journal on 
the oil film, caused by the mass inertias and electromag- 
netism. F1y and F1z are oil film forces, which correspond 
to the forced displacement s1. 

The equilibrium of forces at shaft journal point V1 lead 
to following equations: 
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The forces acting on the shaft journal point V2 are 
shown in Figure 6. 

The equilibrium of forces at shaft journal point V2 lead 
to following equations: 
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Figure 5. Shaft journal system for shaft journal (1). 
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Figure 6. Shaft journal system for shaft journal (2). 
 

Referring to [12], the oil film forces Fzk and Fyk—for 
bearing (1): k = 1; for bearing (2): k = 2—are:  
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3.4. Bearing Housing System 

The forces acting on the bearing housing points B1 and B2 
are shown in Figure 7. 

The equilibrium of forces at the bearing housing points 
B1 and B2 leads to following equations: 

  
   

bzk bk zzk vk bk zyk vk bk 
zzk vk bk zyk vk bk zk

c z c z z c y y

d z z d y y F

      

         
   (14) 
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         

   

 

  
   

byk bk yzk vk bk yyk vk bk 
yzk vk bk yyk vk bk yk

c y c z z c y y

d z z d y y F

      

         
   (15) 

  

(13) 

3.5. Differential Equation System 

With the Equations (4)-(15), the inhomogeneous differ- 
ential equation, described by mass matrix M, damping 
matrix D, gyroscopic matrix G, stiffness matrix C, coor- 
dinate vector q, and excitation vector f, can be derived: 
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Figure 7. Bearing housing systems. 
 

       M q D G q C q f          (16) 

The coordinate vector q is described by: 
T

1 1 2 2 1 1 2 2; ; ; ; ; ; ; ; ; ; ;w yw w zw v v v v b b b bz y z y z y z y z y    q (17) 

Referring to [11], the mass matrix M, damping matrix 
D, gyroscopic matrix G, stiffness matrix C are described 
by: 

1.1 1.2 1.12

2.1 2.2 2.12

12.1 12.2 12.12

1.1 1.2 1.12

2.1 2.2 2.12

12.1 12.2 12.12

;
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m m m

d d d

d d d
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
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      (18) 
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;
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C




   

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
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

       (19) 

with the matrix coefficients mi.j, di.j, gi.j, ci.j  
, described in the Appendix. The ex- 

citation vector f is described by: 
 , 1, 2,3, ,12i j  

T

1 1 2 2 1 1 2 20;0;0;0; ; ; ; ; ; ; ;z y z y z y z yF F F F F F F F  f  

(20) 

3.6. Natural Vibrations 

The natural vibrations can be calculated by solving the 
homogeneous differential equation, using a complex for- 
mulation, following [3].  

 h h h      M q D G q C q  0         (21) 

With the formulation ˆ e t
h h

 q q  the complex ei- 
genvalues 0, 0,i i ij     and eigenvectors ˆhiq  can 
be calculated well as modal damping D0,i of each eigen- 
mode with [3]: 

0,
0, 2 2

0, 0,

i
i

i i

D


 





              (22) 

For a numerical estimation of the eigenvalues, it is 
sometimes easier to use the equation of state, where 0 is 
the zero matrix and I is the unit matrix: 


 


1 1

h h

h h
 

   
 


        
      

q qI
M C M G Dq q

Sx x


  




0



m

    (23) 

But therefore, the mass matrix has to be inverted. This 
is not possible, using the mass matrix M, because of its 
singularity with m5.5 = m6.6 = m7.7 = m8.8 = m9.9 = m10.10 = 
m11.11 = m12.12 = 0. 

Therefore, an alternative mass matrix  has to be 
used, putting a fictitious mass mf (with ; e.g. mf 
 m·10−6) at the nodes Vk and Bk. 

M

fm 

3.7. Forced Vibrations 

To derive the forced vibrations, the inhomogeneous dif- 
ferential equation has to be solved. The excitation vector 
f can be split into sinusoidal and cosine components: 
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 (24) 

with: 

T
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   (26) 

The following formulation is chosen to solve the dif-
ferential equation: 

         cos sinˆ ˆcos 2 2 sin 2 2n n n
n nt t        q q q  (27) 
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The index n describes which shaft journal is causing the 
excitation. The formulation leads to following matrix 
formulation:  
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By solving this matrix equations for each single excita- 
tion, the amplitude vectors  and  can be com- 
puted and the solutions superposed: 

 
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(32) 

3.8. Absolute Orbits 

Referring to [12], the complex coordinate systems are 
now used to describe the orbit movement of each point (W, 
V1, V2, B1, B2). Index  is used for the complex pointers r, 
with: 

r z y   j    with: , 1, 2, 1, 2w v v b b      (33) 

The solutions r can be described by one complex 
vector rotating in the direction of rotor rotation (+2) and 
one rotating opposite to the direction of rotor rotation 
(−2). 
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  (37) 

The description of the orbit shape is shown in Figure 
8. 

The orbit shape of each point (W, V1, V2, B1, B2) can be 
described by the ellipse parameters with the semi-major 
axis a, the semi-minor axis b and the angle of the major 
axis , referring to [12]: 

 ˆ ˆ ˆ ˆ; ;a r r b r r                     2    (38) 

3.9. Relative Orbits 

For the evaluation of the vibration quality also the relative 
orbits between the bearing housing points Bk and the shaft 
journal points Vk have to be analyzed to identify whether 
the oil film in the sleeve bearings could be critically dis- 
turbed [18,19]. Therefore, vector rbk-vk describes the rela- 
tive orbit between the shaft journal points Vk and the 
bearing housing points Bk, referring to [12]: 

Copyright © 2013 SciRes.                                                                                  AM 



U. WERNER 

Copyright © 2013 SciRes.                                                                                  AM 

64 

 

tΩjj

tΩjj

eer

eerr












2

χ

2

χχ

χ

χ

ˆ

ˆ




j·y

z

χb

χ 


















)2(

)1(

)2(

)1(

)(

2

1

2

1

bB

bB

vV

vV

wW







Ω
χa

Notation: The orbits of W, 
V1, V2, B1, B2 are generally 
not the same; however, in 
this case, the same diagram 
is used for all of them.

Orbit of 
W, V1, V2, B1, B2

Rotor rotation

 

Figure 8. Absolute orbits described by ellipse parameters. 
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with: 
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3.10. Bearing Housing Vibrations 

In addition to the absolute and relative shaft displace- 
ments also the vibration velocities of the bearing hous- 
ings are used in practice to evaluate the vibration quality 
of the motor [18,19]. Referring to [12], the bearing hous- 
ing vibrations can be calculated by: 
 Vibration velocity in z-direction: 

  2
ˆ 2 Re Re Im Imbkz bk bk bk bkv         

2



  (42) 

 Vibration velocity in y-direction: 

  2
ˆ 2 Im Im Re Rebky bk bk bk bkv        

2
   (43) 

4. Numerical Example 

In this chapter a two-pole induction motor is analyzed. 
The motor data are described in Table 1. 

The oil film stiffness and damping coefficients for the 
two bearings are shown in Figures 9 and 10. However, 
here both sleeve bearings are identical, the oil film stiff- 

ness and damping coefficients are different. The reason is 
that the rotor mass is not symmetrically positioned be- 
tween the two bearings (l1  l2). 

In Figure 11 the angle  of the static displacement is 
shown for both bearings. 

4.1. Natural Vibrations 

Before the forced vibrations due to elliptical shaft jour- 
nals are analyzed, the natural vibrations are investigated. 
First, the natural frequencies f0,i and the modal damping 
values D0,i are calculated depending on the rotor speed 
(Figure 12). 

The modal damping values of mode 1 and mode 2, D01 
and D02, are very high (>0.58) in the whole speed range 
and therefore not pictured in Figure 12. The splitting of 
the natural frequencies of mode 5 and mode 6 is mainly 
caused by gyroscopic effect. Due to the excitation with 
twice the rotor speed (2fr = /), three critical speeds 
occur, where the 2fr line intersects the natural frequencies 
(Figure 12). The natural mode shapes at the three critical 
speeds—at the intersection points—are pictured in Fig- 
ure 13. The gyroscopic effect has the strongest influence 
on the third critical speed (nc3; mode 5), because the rotor 
shaft centre point W makes a tumbling motion here. 

4.2. Forced Vibrations 

After the natural vibrations and the critical speeds have 
been calculated, the forced vibrations caused by the el- 
liptical shaft journals are analyzed. Both shaft journals (1) 
and (2) are assumed to be elliptical with a form deviation 
of 2 μm, which is a realistic magnitude for this size of the 
shaft journal: 

1 2Δ Δ 2 μm                (44) 
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Table 1. Data of the two-pole induction motor. 

Machine data 

Mass of the rotor m = 1600 kg 

Polar mass moment of inertia of the rotor p = 70 kg·m2 

Lateral mass moment of inertia of the rotor a = 200 kg·m2 
Distance of shaft centre point W to V1 l1 = 1.05 m 

Distance of shaft centre point W to V2 l2 = 1.15 m 

Radial stiffness of the rotor in point W crr = 1.4621 × 108 kg/s2 

Angular stiffness of the rotor in point W c = 1.7380 × 108 kg·m2/s2 
Cross-coupling stiffness of the rotor in point W cr = 2.7492 × 107 kg·m/s2 

Radial magnetic stiffness cmr = 8 × 106 kg/s2 

Angular magnetic stiffness cm = 6.67 × 105 kg·m2/s2 
Vertical stiffness of bearing housing and end shield cbz1 = cbz2 = 5.7 × 108 kg/s2 

Horizontal stiffness of bearing housing and end shield cby1 = cby2 = 4.8 × 108 kg/s2 

Sleeve bearing data 

Type of bearing Side flange bearing 

Bearing shell Cylindrical 

Lubricant viscosity grade ISO VG 32 

Nominal bore diameter db = 110 mm 

Bearing width bb = 81.4 mm 

Ambient temperature Tamb = 25˚C 

Supply oil temperature Tin = 40˚C 

Mean relative bearing clearance (DIN 31698) m = 1.32‰ 
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Figure 9. Oil film stiffness and damping coefficients of bearing (1). 
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Figure 10. Oil film stiffness and damping coefficients of bearing (2). 
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Figure 11. Angle  of the static displacement in the sleeve bearings. 
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Figure 12. Critical speed map with natural frequencies and 
modal damping values. 

 
To analyze different phase angels, the angle  is in- 

troduced as the differential angle, which describes the 
different orientation of the elliptical shaft journals to 
each other.  

Figure 13. Natural mode shapes at the critical speeds. 
2 1                      (45) 

 
Here, the differential angle  is varied between 0˚ 

and 90˚. Considering different rotor speeds n—from 400 
rpm up to 4200 rpm—and the different differential an- 
gles —from 0˚ up to 90˚, the semi-major axis of the 
absolute orbits of the shaft centre point W, the shaft 
journal points V1 and V2 and the bearing housing points 
B1 and B2 are calculated as well as the semi-major axis of 
the relative orbits between the shaft journal points V1 and 
B1 and V2 and B2. Additionally, the vibration velocities at 
the bearing housing are calculated. 

and at a differential angle of 90˚ with a magnitude of 
5.15 μm. For shaft journal point V2 (Figure 16), the 
maxima occur at the same speed as for V1, but with dif- 
ferent magnitudes and other differential angles. The first 
maximum occurs at 1293 rpm with a differential angle of 
0˚ and a magnitude of 7.93 μm. The second maximum 
occurs at 3782 rpm with a differential angle of 72˚ and a 
magnitude of 4.31 μm. 

The semi-major axes of the absolute orbits of the bear- 
ing housing points B1 and B2 are shown in Figures 17 
and 18. Two maxima are obvious in each figure. For B1 
(Figure 17) the maxima occur at a rotor speed of 1293 
rpm and at a differential angle of 0˚ with a magnitude of 
8.34 μm and at a rotor speed of 3820 rpm and at a dif- 
ferential angle of 87˚ with a magnitude of 3.0 μm. For B2 
(Figure 18), the maxima occur again at the same speed 
as for B1. The first maximum occurs at a rotor speed of 
1293 rpm with a differential angle of 0˚ and a magnitude 
of 7.88 μm. The second maximum occurs at a rotor speed 
of 3820 rpm with a differential angle of 90˚ and a mag-
nitude of 2.21 μm. 

Semi-major axis of the absolute orbits: 
The semi-major axis of the absolute orbits of the shaft 

centre point W is shown in Figure 14. The maximum 
value 71.74 μm occurs at a rotor speed of 1293 rpm and 
at a differential angle of 0˚. 

The semi-major axes of the absolute orbits of the shaft 
journal points V1 and V2 are shown in Figures 15 and 16. 
Two maxima are obvious in each figure. For shaft jour- 
nal point V1 (Figure 15) the maxima occur at a rotor 
speed of 1293 rpm and at a differential angle of 12˚ with 
a magnitude of 8.58 μm and at a rotor speed of 3782 rpm  
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Figure 14. Semi-major axis aw of the absolute orbits of the shaft centre point W. 
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Figure 15. Semi-major axis av1 of the absolute orbits of the shaft journal point V1. 
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Figure 16. Semi-major axis av2 of the absolute orbits of the shaft journal point V2. 
 

Comparing the maxima of the figures with the critical 
speeds of Figure 12 it can be shown, that the rotor speeds 
of the maxima are near to the critical speed nc2 and nc3. 
The marginal differences are mostly caused by the damp- 
ing and influenced by the mode shape. The critical speed 
nc1 is not obvious in all diagrams. The reason is that nc1 
and nc2 are close together and the modal damping of the 
critical mode (mode 4) at nc2 is much lower than the mo- 

dal damping of the critical mode (mode 3) at nc1 (Figure 
13). Therefore, the critical mode (mode 4) is dominating 
the vibration at this low speed. 

Semi-major axis of the relative orbits: 
The semi-major axis of the relative orbits between the 

shaft journal point V1 and the bearing housing point B1 is 
shown in Figure 19 and between the shaft journal point 
V2 and the bearing housing point B2 in Figure 20. 

Copyright © 2013 SciRes.                                                                                  AM 



U. WERNER 69

 

S
em

i-
m

aj
or

 a
xi

s 
[

m
] ab1

 

Figure 17. Semi-major axis ab1 of the absolute orbits of the bearing housing point B1. 
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Figure 18. Semi-major axis ab2 of the absolute orbits of the bearing housing point B2. 
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Figure 19. Semi-major axis ab1-v1 of the relative orbits between shaft journal point V1 and bearing housing point B1. 
 

Again two maxima are obvious in each figure. In Fig- 
ure 19 the maxima occur at a rotor speed of 1255 rpm 
and at a differential angle of 52˚ with a magnitude of 
2.28 μm and at a rotor speed of 3725 rpm and at a dif- 
ferential angle of 90˚ with a magnitude of 2.48 μm. In 

Figure 20, the maxima occur at a rotor speed of 1312 
rpm with a differential angle of 65˚ and a magnitude of 
2.21 μm. The second maximum occurs at 3762 rpm with 
a differential angle of 50˚ and a magnitude of 2.63 μm. 

Here the difference between the rotor speeds of the 
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maxima and the critical speeds is a little bit larger. The 
reason is that a relative movement between two points is 
analyzed here and not only absolute movements. 

Bearing housing vibrations: 
The bearing housing vibrations for bearing housing 

point B1 in horizontal (y-direction) and vertical (z-direc- 

tion) direction are pictured in Figure 21. 
The maxima of the bearing housing vibrations in hori- 

zontal direction for bearing housing point B1 (Figure 
21(a)) occur at a rotor speed of 1293 rpm and at a dif- 
ferential angle of 0˚ with a magnitude of 0.98 mm/s and 
at a rotor speed of 3820 rpm and at a differential angle of  
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Figure 20. Semi-major axis ab2-v2 of the relative orbits between shaft journal point V2 and bearing housing point B2. 
 

 

Figure 21. Bearing housing vibrations of bearing housing point B1: (a) Horizontal direction; (b) Vertical direction. 
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90˚ with magnitude of 2.39 mm/s. The maxima for verti- 
cal direction (Figure 21(b)) occur at the same rotor speeds 
and at the same differential angle, but with different mag- 
nitudes. For vertical direction, the maximum occurs now 
at the low speed (1293 rpm) with a magnitude of 2.04 
mm/s. At a rotor speed of 3820 rpm the magnitude is 
1.18 mm/s. The bearing housing vibrations for bearing 
housing point B2 (Figure 22) look similar in comparison 
to bearing housing vibrations for bearing housing point 
B1 (Figure 21). 

The maxima of the bearing housing vibrations for bear- 
ing housing point B2 occur at the same rotor speeds as for 
bearing housing point B1. For horizontal direction the 
maxima are 0.93 mm/s at a rotor speed of 1293 rpm and 
at a differential angle of 0˚, and 1.76 mm/s at a rotor 
speed of 3820 rpm and at a differential angle of 90˚. For 
vertical direction the maxima are 1.92 mm/s at a rotor 
speed of 1293 rpm and at a differential angle of 0˚ and 
0.81 mm/s at a rotor speed of 3820 rpm and at a differen- 
tial angle of 90˚. 

For the analysis of the bearing housing vibrations, the 
rotor speeds of the maxima nearly coincide again with 
the critical speeds nc2 and nc3 of Figure 12. 

4.3. Discussion of the Results 

By analyzing the vibration results it can be stated, that 
without considering the mass moments of inertia of the 
rotor and therefore without considering the gyroscopic 
effect only one maximum at low speed would have been 
found. The maximum at the high speed would not have 
been found. By considering the mass moments of inertia 
and the gyroscopic influence, two critical speeds have 
been found instead of only one critical speed, when ne- 
glecting the mass moments of inertia and therefore also 
the gyroscopic effect. This is exemplarily shown in Figure 
23, where the bearing housing vibrations of the bearing 
housing point B1 is shown, without considering the mass 
moments of inertias of the rotor (Θp = Θa = 0) and there- 
fore without considering the gyroscopic effect. 

When comparing Figure 23 with Figure 21, it can be 
stated, that the maxima for the first resonance—occur- 
ring at the same rotor speed (1293 rpm)—are nearly com- 
pletely identical. Therefore, the influence of the mass 
moments of inertia and the gyroscopic effect on the first 
resonance can be neglected here. However, no second 
resonance is obvious in Figure 23, because of the ne- 

 

 

Figure 22. Bearing housing vibrations of bearing housing point B2: (a) Horizontal direction; (b) Vertical direction. 
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Figure 23. Horizontal (a) and vertical (b) bearing housing vibrations of bearing housing point B1 without considering the 
mass moments of inertia of the rotor (p = a = 0). 

 
glected mass moments of inertia. So here the mass mo- 
ments of inertia and the gyroscopic effect determine the 
second resonance in Figure 21. 

In all diagrams in Section 4.2, it is obvious that, if the 
orientation of the ellipses of the shaft journals is identical 
( = 0˚), mode 4 (Figure 13) can be excited easily. 
However, if the orientation is orthogonal ( = 90˚), 
mode 5 (Figure 13) can be excited more easily.  

5. Conclusion 

The paper presents a mathematical rotordynamic model 
regarding excitation due to elliptical shaft journals in 
sleeve bearings of electrical motors, also considering the 
gyroscopic effect. It was shown that elliptical shaft jour- 
nals lead to a forced movement of the shaft journals on 
the oil film of the sleeve bearings resulting in an excita- 
tion of the rotordynamic system. For this kind of excita- 
tion a mathematical rotordynamic model was developed 
considering the influence of the oil film stiffness and 
damping of the sleeve bearings, the stiffness of the end- 
shields and bearing housings, the stiffness of the rotor, 
the electromagnetic stiffness in the air gap of the electri- 
cal motor—radial and angular electromagnetic stiffness— 
the mass moment of inertia and the gyroscopic effect of 
the rotor. The solution of the linear differential equation  

system leads to the mathematical description of the ab- 
solute orbits of the shaft centre, the shaft journals and the 
bearing housings, and to the relative orbits between the 
shaft journals and the bearing housings. Additionally, the 
bearing housing velocities can be computed. 
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1. Appendix 

1.1. Coefficients of the Mass Matrix M 

1.1 3.3m m m  ;  2.2 4.4 am m  

The other coefficients of the matrix are zero. 

1.2. Coefficients of the Gyroscopic Matrix G 

2.4 pg   ; 4.2 pg    

The other coefficients of the matrix are zero. 

1.3. Coefficients of the Damping Matrix D 

5.5 9.9 1zzd d d  ; 5.6 9.10 1zyd d d  ; 5.9 9.5 1zzd d d   ; 

5.10 9.6 1zyd d d   ; 6.5 10.9 1yzd d d  ; 6.6 10.10 1yyd d d   

6.9 10.5 1yzd d d   ; 6.10 10.6 1yyd d d   ; 

7.7 11.11 2zzd d d  ; 7.8 11.12 2zyd d d  ; 

7.11 11.7 2zzd d d   ; 7.12 11.8 2zyd d d   ; 

8.7 12.11 2yzd d d  ; 8.8 12.12 2yyd d d  ; 

8.11 12.7 2yzd d d   ; 8.12 12.8 2yyd d d    

The other coefficients of the matrix are zero. 

1.4. Coefficients of the Stiffness Matrix C 

1.1 3.3 rr mrc c c c   ; 1.2 2.1 rc c c    
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8.7 12.11 2yzc c c  ; 
2

1 1
8.8 22 2 2

1
2rr r yy

l l
c c c c c

l l l          

8.11 12.7 2yzc c c   ; 8.12 12.8 2yyc c c   ;  9.9 1 1bz zzc c c 

10.10 1 1by yyc c c  ; 11.11 2 2bz zzc c c  ;  12.12 2 2by yyc c c 

The other coefficients of the matrix are zero.
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