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ABSTRACT 

With the growth of the internet it is becoming increasingly important to understand how the behaviour of players is af- 
fected by the topology of the network interconnecting them. Many models which involve networks of interacting play- 
ers have been proposed and best response games are amongst the simplest. In best response games each vertex simulta- 
neously updates to employ the best response to their current surroundings. We concentrate upon trying to understand 
the dynamics of best response games on regular graphs with many strategies. When more than two strategies are present 
highly complex dynamics can ensue. We focus upon trying to understand exactly how best response games on regular 
graphs sample from the space of possible cellular automata. To understand this issue we investigate convex divisions in 
high dimensional space and we prove that almost every division of k − 1 dimensional space into k convex regions in- 
cludes a single point where all regions meet. We then find connections between the convex geometry of best response 
games and the theory of alternating circuits on graphs. Exploiting these unexpected connections allows us to gain an 
interesting answer to our question of when cellular automata are best response games. 
 
Keywords: Games on Graphs; Cellular Automata; Best Response Games; Social Networks 

1. Introduction 

Game theory is a rich subject which has become more 
diverse over the years. Early game theory [1] focused on 
how rational players would behave in strategic conflicts. 
Concepts like the Nash equilibrium [2] helped theorists 
to predict final outcomes of games, and this benefited 
areas like economics. A more recent development is evo- 
lutionary game theory [3]. Rather than assuming that 
players are hyper-rational, evolutionary game theory con- 
cerns itself with large populations of players that change 
their strategies via simple selection mechanisms. Players 
repeatedly engage in games with other members of the 
population and the way the populations strategies evolve 
depends upon the selection mechanism employed. 

One way to introduce a spatial aspect into evolutionary 
games is to imagine the players as vertices within a graph 
[4,5]. The links represent interactions so vertices play 
games with their neighbours. The players adapt their stra- 
tegies over time to try to increase their success against 
neighbours. Many kinds of update rules have been inves- 
tigated. These include imitation, where vertices imitate 
their most successful neighbour, and best response, where 
vertices update to employ the strategy best suiting their 
current surroundings. In [6] the authors study a two- 

dimensional cellular automata with update rules based 
upon games, beautiful patterns emerge. 

In previous studies we investigated the dynamics of 
games on networks where the players update asynchro- 
nously [7-10] as they engage in congestion games (where 
an individual’s payoff decreases with the number of their 
neighbours using the same strategy). We have also inves- 
tigated more exotic scenarios, where the network struc- 
ture itself changes as a result of the strategic interactions 
between the players/vertices. These type of game based 
network dynamics can produce remarkably complex struc- 
tures despite being based upon extremely simple rules, 
involving reproducing vertices [11-14]. In some of these 
game based network growth systems, small initial net- 
works can lead to the creation of thousands of different 
structures which morph and self replicate in complex 
ways [15,16]. 

The update mechanism that we concentrate upon in 
this paper is best response, where vertices update to em- 
ploy the strategy that maximise their total payoff in a 
game with each neighbour. The vertices update their stra- 
tegies myopically and synchronously (i.e., in this paper 
we focus on systems where all players update their stra- 
tegies simultaneously, every time step). The strategy a 
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vertex updates to may not be optimal because neighbour- 
ing vertices change their strategies at the same time. 
Work on these kind of systems includes [17] and [18], 
where it was shown that a two strategy game running 
upon any graph will eventually reach a fixed point or pe- 
riod two orbit. Two strategy best response games on va- 
rious graph structures were also studied in [19]. 

The systems we consider are essentially cellular auto- 
mata with update rules that are induced by the details of 
the game. In our consideration of best response games on 
the circle we will see many of Wolfram’s 256 elementary 
cellular automata [20] appear. Under these models the 
states of the vertices on a circle or line graph take values 
in {0,1}. The states of vertices change with time so that 
the future state of any cell depends upon the current state 
of itself and its neigbours. Each systems is specified by a  

mapping  so that    3
: 0,1 0,1f   1, ,i i i 1f x x x   is  

the future state of a vertex in state ix  with neighbours 
in states 1ix   and 1ix   to its left and right. Each system 
is indexed with a number 

     
     
   

0 1

3 4

6 7

0,0,0 2 0,0,1 2 0,1,0 2

0,1,1 2 1,0,0 2 1,0,1 2

1,1,0 2 1,1,1 2

f f f

f f f

f f

    

    

   

2

5



 

We concentrate upon games on the circle because they 
provide the easiest ways to illustrate our results. Our me- 
thods can easily be extended to other graph structures, 
even non-regular ones. 

1.1. Definitions 

For a set  let  to be the set of size  multi 
sets of elements from  i.e.  is the set of all 
unordered -tuples 

S

d

 d S
S

d
 d S

, d , ,1 2s s 

 v

s

G V

S

 of members of , 
including those -tuples containing more than one of 
the same element. Let us define a regular automata as a 
quad , where  is a regular 
degree  graph,  is a set of states,  is an 
assignment of a state 

S
d

  ,G F
S

0

0

d
, ,G S   , E




 G0

  to each vertex v V  
(the initial configuration) and  : dF S  S  is the up- 
date function/rule. 

Such a regular automata evolves so that at time step 
, the future state of a vertex , at time 0t v 1t  , will 

be 

    1
1 2, , ,t

dv F s s s             (1.1) 

where 

      1 2, , , t
ds s s u u Ne v       (1.2) 

is the set of states of vertices in ’s neighbourhood, 
, at time . 

v
 Ne v t

, MA game   consists of a set of strategies 
 which we label with integers, together 

with a 


k1, 2, ,  

k k  payoff matrix  such that ,i jM M 
i
 is 

the payoff that a player receives from employing the th 
strategy against the th strategy. j

The best response games we consider take place on a 
degree  regular graph . At time t  each 
vertex 

d
v V

 , E G V
  employs a strategy  vt  . The total 

payoff 

   t u
e v

 ,t v 
u N
 M              (1.3) 

of  at time  is the sum of payoffs that  receives 
from using its strategy in a game with each neighboring 
player. At time  each vertex simultaneously updates 
its strategy, so that at time  it will employ the stra- 
tegy that would have maximised its total payoff, given 
what its neighbours played at time . In other words 
each player updates to play the best response to its cur- 
rent surroundings. 

v t v

t
1t 

t

Best response games on regular graphs are quads  

  , , ,G G M0 , which are defined by a regular graph  

G , a game  , M  and an assignment  0 G  of an 
initial strategy to  v0   to each vertex of G . A 
best response game is a regular automata  

  , , ,G G 0 F  with an update function F such that, 
for every unordered -tuple of strategies  d
   1 2 d, ,s s , s d  , we have   1 2, , , dF s s s  is 
the strategy in     that maximises 

, i
1

.
d

s
i
 M               (1.4) 

We refer to F  as the update function induced by the 
game  , M . Note that in rare cases the payoff matrix 
could be such that two strategies are tied as best re- 
sponses to a possible local strategy configuration 
 , d1 2, ,s s s . In such a case   1 2, , , dF s s  s

1, nv 

 is not 
properly defined. Such a problem can always be allevi- 
ated by an infinitesimal perturbation of the elements in 
the payoff matrix . We always assume our matrix is 
such that this problem never occurs. 

M

n

1.2. Examples on the Circle 

The circle graph  has vertices  0 1  with 
 is adjacent to 

C , ,v v

iv jv  if and only if 1modi j n 
  ,C M

.  

Every best response game  on the  0, ,n nC  

circle is a regular automata , where    0, , ,n nC C  F

the strategy  i
1t v   employed by vertex  at time  iv

1t   will be        1mod 1mod
t t

i nv ,i n F v , which is  

the strategy that maximises the vertices’s total payoff 
against its neighbours strategies  and   1mod

t
i nv  

  1modi n
t v  . 

The payoff matrix 
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1 0

4 2
M

 
   

              (1.5) 

is a Hawk-Dove game, where 1 is the passive dove stra- 
tegy and 2 is the aggressive hawk strategy. Let us con- 
sider the best response game , 
where  and M is as above. This corresponds  

  0, , ,n nC C  M

  ,C F
 1,2 

to the regular automata  with update  0, ,n nC  

function ,  and    1,1 2F 
 1

  1,2 2F 
  2,2F . We picture how this automata will evo- 

lves on a 30 vertex circle from a random strategy con- 
figuration, with the space time plot pictured in Figure 1. 

A space time plot [20] is a grid where the x  axis is 
the index of the vertex of the circle and the  axis 
(reading downwards) is the time step. Light gray blocks 
denote employers of strategy 1 whilst dark blocks re- 
present employers of strategy 2. In our game a player ad- 
jacent to an employer of dove and employer of hawk gets 
updated to play the hawk strategy, hence if a block on 
our space time plot has a dark gray block on its left and a 
light gray block on its right then the block below it will 
be dark gray. The system corresponds to Wolfram’s cel- 
lular automata number 95, which is well known to have 
simple dynamics. Every initial configuration evolving 
quickly to a fixed point or period 2 orbit. This system is 
an example of a threshold game [17,18]. 

y

More complicated dynamics occur under the 3 strategy 
game with payoff matrix 

3 94 46

33 85 66 ,

52 2 67

 
 
 
 

M 
             (1.6) 

Figure 2 shows the evolution of the system from a 
random initial configuration on a 60 vertex circle over 40 
time steps. In this case dark gray, white and light gray 
blocks represent strategies 1, 2 and 3 respectively. The 
resulting cellular automata can be reduced to Wolfram’s 
cellular automata number 90 which has been proven to 
be chaotic [21] when running on an infinite circle. 

In this paper we will enumerate all the update func- 
tions F  that can be induced by 2, 3 or 4 strategy best 
response games on the circle by consideration of the con- 
vex geometry behind best response game. Understanding 
this convex geometry allows one to understand how the 
update rules of arbitrary best response games are in- 
duced. 

1.3. Overview 

In Section 2 we discuss some important relationships 
between best response games and divisions of the sim- 
plex into convex regions. By using games on the circle as 
examples, we describe the relationships with convex di- 
visions, and then present Theorem 2.1, which is our key 

 

Figure 1. A space time plot showing the evolution of the 
Hawk-Dove example game on the circle. 
 

 

Figure 2. A space time plot showing the evolution of the 
three strategy game described by the payoff matrix in Equ- 
ation (1.6). 
 
theoretical result. 

In Section 3 we discuss how our theory of convex 
divisions can be used to find all the different best re- 
sponse games on the circle which have two or three 
strategies. We also describe the dynamics of the different 
two strategy games on the circle, and point out relation- 
ships with famous games. 

In Section 4 we discuss how our theory can be ex- 
tended to games with more than three strategies. In parti- 
cular, we derive Theorem 4.3 which relates our problem 
of enumerating games on the circle with  strategies to 
the theory of alternating cycles in graphs. 

k

In Section 5 we discuss how our theory can be used to 
investigate the dynamics of best response games on more 
general types of graphs. In particular, we demonstrate 
how our game enumeration methods can easily be ex- 
tended to count the number of different games on generic 
regular graphs. We also explain how our results can be 
applied to non-regular graphs. 

2. Convex Geometry behind Best Response 
Games 

For a game  , M , let us think of each strategy  
 , ,1, 2i   k  as a unit vector 

   1, 2, ,, , , k
i i k ii   e   ,        (1.7) 

where ,i j  is the Kronecker delta. 
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The strategy space  is the convex hull of the 
set of unit strategy vectors. The points 

k  

 1 2, , , kx x xx            (1.8) 

are probability distributions over the set of strategies   
so that ix  is the fraction of the th strategy employed 
in the strategy vector . 

i
x

The affine hull of   i i e  forms the extended 
strategy space S  which we can write as 

 T| 1k  S x x1 ,         (1.9) 

where  is the length  vector with each entry equal 
to 1. Here 

1 k
S  is isomorphic to  and 1k   S  so 

we think of  as a  dimensional unit simplex, 
with the  unit strategy vectors  as its vertices. 
For each pair of strategy vectors  the payoff 
one receives from playing  against  is 

 1

x

k 
k  ie

,x y
y
 S

T .xMy                   (1.10) 

The best response set to any strategy vector x S  is 
the set of pure strategies  such that i j    

   T .i je My e MyT          (1.11) 

The th best response region i  is the set of all 
points in 

i R S
S  that have a best response set equal to 

i  , in other words  is the set of points iR x S  
where  

    ,
i j

j   Mx Mx .i



     (1.12) 

Let us define a “division” of a subset of Euclidian 
space to be a collection of closed regions such that every 
point of the space lies within some region, and the in- 
teriors of any pair of distinct regions do not intersect. We 
say a division is convex when each of its regions is con- 
vex. Every k  strategy game   induces a divi- 
sion of 

, M
S  into  convex best response regions 

i , because every point of 
m k

R S  belongs to some best res- 
ponse region i , and pairs of distinct best response 
regions only intersect at their boundaries. 

R

Let d  be the set of all points  that can 
be written as 

 T x

 
i D

i

d

 e

               (1.13) 

for some  dD   (where our sum takes into ac- 
count that some elements may occur in  several 
times). The set of points d  will be partitioned into dif- 
ferent best response regions i d  and the nature of 
this partition determines the update function 

D
T

R T
F  of the 

regular automata that occurs when the game  is 
used for a best response game on a  regular graph. 
We say that the partition of d  into different best res- 
ponse regions  is the best response partition of 

 induced by the game 

 M,
d

T

iR T d

dT  , M . 
Suppose we have a generic best response game 

  0, , ,G G  M , where  is a regular degree  
graph. This will be a regular automata 

G d
 0, ,G G  , F  

where  F D  is the strategy j   such that 

 
 ,j D .di D

i

d
   
 e

R          (1.14) 

Consider for example the Hawk-Dove game discussed 
in the previous section. This is a two strategy game so 
our strategy space   is the unit line. We can plot the 
payoffs one receives from playing strategy 1 or 2 against 
the different strategy vectors  as shown in Figure 
3. This induces a convex division of  into two best 
response regions 1  and 2 . The update function 

x

R


R F  
is determined by considering how the points of  

      2 1,0 , 1 2,1 2 , 0,1T        (1.15) 

are divided up into these best response regions. For 
example   21 2,1 2  R  so .   1,2 2F 

For a 3 strategy game the simplex  is the unit 
triangle. Again we can plot the payoffs one receives from 
playing pure strategies against strategy vectors in  . In 
Figure 4 (left) the x-y plane represents the different 
strategy vectors, and the z coordinate representing the 
payoffs one receives from employing different pure stra- 
tegies against these vectors. Again this induces a division 
of the simplex   into convex best response regions. 

Theorem 1 , 0d k   
A partition of the points of d  into  subsets 

i d  is induced by the best response division as- 
sociated with some  strategy game   if and  

T m k

, M
 TW

k
 

 

Figure 3. A plot showing the payoff received from using 
pure strategies against mixed strategies in the game de- 
scribed by Equation (1.5). The best response division is cal- 
culated by observing the pure strategy that scores best 
against each point of the strategy space. 
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Figure 4. On the left is an illustration of how pure strategies score different payoffs against mixed strategies in three strategy 
games. On the right is the best response division associated with the game described by Equation (1.6). 
 
only if the convex hulls of each pair of distinct subsets 

 and iW jW  do not intersect. 
Theorem 1 allows us to determine when a given  

state regular automata is a best response game. The proof 
is in the appendix and the remainder of this section de- 
scribes the geometry of best response divisions in more 
detail. Given a non-singular payoff matrix  we can 
find a division of the -dimensional space 

k

M
 1k   S  into 

(open) best response regions i . First we will consider 
best response divisions of 

R
S . Later we will consider 

how such divisions divide up the points of the simplex of 
attainable strategies  

 : 0   x S x .           (1.16) 

For each pair  , 1, 2, , :i j k i j   let  ,i j H S  
be the set of all  where x S

    .
i
Mx Mx

j
            (1.17) 

The hyperplane  is the set where the payoffs 
to pure strategies i and j are equal. Since M is non- 
singular this hyperplane has dimension 

 ,i jH

2k  . The 
hyperplane divides S  into two regions, one where the 
payoff to pure strategy  exceeds that to pure strategy 

, and the other where the payoff to pure strategy   
i

j j

exceeds that to pure strategy . Each of the i
 1

2

n n 
  

pairs  define such a dividing hyperplane. The set  ,i j

 , 1,2, , :
,

i j k i j
i j

 
H

         (1.18) 

of all of these hyperplanes together divide up the space 
S  into the  distinct regions corresponding to the 
distinct orderings of the  payoffs at each point. The 
best response region i  is the union of 

!k
k

R  1 !k   of 
these  regions, and these are necessarily contiguous. 
The set of regions correspond to the orderings of 

, i.e. the permutations. The Cayley graph of 
the group k

!k

,k 2, 1,
S  under the generator set of transposition of 

adjacent elements corresponds to the adjacency of the 

i . Each transposition corresponds to the crossing of a 
hyperplane where there is equality of the payoffs for the 
elements which are transposed. 

R

Alternately we can consider the sets 

     1,2, , ,i k B  i          (1.19) 

and   iH B  is the set of  where the payoffs to 
the elements of 

x S
 iB  are equal. Since  is non- 

singular there exists a unique value 
M

1

T 1





M l

x
l M l

             (1.20) 

(A Nash equilibrium of the system.) Each   iH B  
passes through x  and on one side the payoff to  is 
greater than that to all the others, and on the other side it 
is less. We consider the set of  rays consisting of 

i

k
 kx  and that part of   iH B

V

 where the payoff to  
is less than the payoff to the other strategies, i . Since 
our matrix is non-singular the set of rays form a basis for 
the simplex. For some set  the convex 
combination of the corresponding rays, ii V

 is the 
set where there is equality of the payoffs to the set of 
payoffs indexed by the elements not in , all elements 
in  having lower payoffs. The regions i  are the 
interiors of the (closed) regions generated by convex 
combinations of points from . Each of these 

 closed regions is bounded by  rays. 

i
U


U

R

 ,k


V

 i
1

1, 2,

V B
k 

V

k
Thus we have that the division of the unit simplex into 

the  best response regions is simply achieved by tak- 
ing a point in the hyperplane containing the unit simplex, 
and  rays emanating from that point with the condi- 
tion that the reflection of any ray in the central point lies 
in the convex hull of the other  rays. 

k

k

 1k  
The converse of the above argument is simply that if 

we have a division of the hyperplane containing the unit 
simplex according to the above rule then we can find a 
unique matrix which corresponds to those rays. Of course 
in the context of a game on a circle there will be many 
sets of rays which produce the same best response re- 
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gions, and thus many payoff matrices. Suppose then that 
we are given the specification of the rays as a set of 
linearly independent vectors i  for  and 
form the matrix  which has the columns equal to the 

i , then we select any matrix 

u 1, 2, ,i k 
U

u A  with  column 
which have equal entries except for the diagonal entry 
which is smaller. Now we only require to find matrix 

 such that 

ith

M
MU A               (1.21) 

i.e. , for this matrix M to provide us with 
an appropriate payoff matrix, though we may require to 
add a constant to all elements if we require payoffs to be 
positive. 

1M AU

Example. Suppose the rays from the central equili- 
brium value are such that the matrix  is given by  U

1 2 3 3

2 3 4 1

3 1 2 4

4 4 1 2

 
 
 
 
 
 

U  

Note that the columns add to a constant but this is not 
required. Now we can select any appropriate matrix A . 
For ease we take , where  is the unit matrix. We 
have 

I I

0.5444 0.2333 0.3444 0.0111

0.3889 0.1667 0.3889 0.2778

0.1111 0.3333 0.1111 0.2222

0.3667 0.3000 0.0333 0.0333

  
 
  

 

M


 



 

 

and we can add 1 if we require positive entries. 

3. Games on the Circle with 2 or 3 Strategies 

We can apply Theorem 1 to enumerate the two strategy 
best response games on the circle. To do this we must 
simply list all the different possible ways to divide up our 
simplex , the unit line, into two or less convex regions, 
with respect to the three points of —the lines two end 
points and the mid point. 


2T

There are only two ways of doing this, either all points 
belong to the same region or one end point belongs to 
one region and the other two points belong to the other. 
We can take each of these two unlabeled divisions and 
apply labels to the regions, deciding which best response 
regions they represent. We hence find that there are six 
non-identical two strategy best response game on the 
circle, three of which are permuationally distinct, mean- 
ing there are three fundamentally different types of two 
strategy best response games (see Table 1). 

The first type are games where one strategy strictly 
dominates. These systems induce very dull dynamics 
with every vertex constantly playing the dominating 
strategy. Figure 1 depicts the dynamics of a game of the  

Table 1. The payoff inequalities describe the three types of 
two strategy game that induce fundamentally different dy- 
namics in best response games on the circle. 

Payoff inequalities that generate game type Example game

1,1 2,1M M ,  1,2 2,2M M Trivial 

2,1 1,1M M , ,  2,1 2,2 1,1 1,2  M M M M 1,2 2,2M M Hawk-Dove

1,1 2,1M M , ,  2,1 2,2 1,1 1,2  M M M M 2,2 1,2M M Stag Hunt 

 
second type. The dynamics induced correspond to Wol- 
fram’s automata number 95. When the circle has even 
length there are two repelling fixed points, where no 
adjacent vertices share the same strategy. The system has 
many period two orbits which quickly attract other con- 
figurations. The third type of game corresponds to Wolf- 
ram’s automata number 160. When the circle has even 
length there is a repelling period two orbit—jumping 
between the two configurations with no adjacent vertices 
sharing the same strategy. The system has many fixed 
points which quickly attract other configurations. 

We can use Theorem 1 again to enumerate the best re- 
sponse games on the circle with three strategies. Recall 
how the best response division depicted at the right of 
Figure 4 induces the dynamics depicted in Figure 2. Our 
theorem implies that any division of  (which is the 
unit triangle) into three or less convex regions is induced 
by some game. The update function induced by such a 
division depends upon the way the six points of 2  (the 
3 vertices and 3 edge-midpoints of the triangle) are par- 
titioned into these best response regions. 



T

To enumerate all of the three strategy games we must 
simply list all the fundamentally different ways of divid- 
ing up   into three or less convex regions with respect 
to the points of 2 . There are 12 fundamentally different 
ways to perform such a division. 

T

Each division  induces an equivalence class, which 
is the set of best response divisions of 2  which can be 
attained by taking  and labeling the regions with dif- 
ferent strategies-deciding which best response region 
each region of  represents. By looking at the different 
labellings of the 12 divisions we find that there are 285 
non-identical three strategy best response games on the 
circle, 52 of which are permutationaly distinct. We give 
space time plots of the 52 cases in the appendix (sub- 
section 6.4), together with diagrams that show the di- 
visions corresponding to the equivalence classes of the 
games. 

p

p

T
p

4. Games with More Strategies 

Enumeration of best response games on the circle with 
more than three strategies is difficult to do in the same 
visual manner as above. The reason is that the simplex is 
high dimensional and the number of different convex 
divisions of the simplex with respect to  is large. 2T
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Since the set of  strategy best response games on the 
circle are a subset of the set of  state regular automata 
one fruitful question to ask is when is a  state regular 
automata on the circle not a  strategy best response 
game? 

k

D

k

k
k

G

 2,

We can think of each regular automata,  
  0, , ,G S G F

T


k
S

, on a d regular graph , as inducing 
a partition of d  in a similar way to the way we 
did for best response games. To do this is that we think 
of our set of states as numbers  and we 
think of each  as a point 

 

d
1, ,S 

 

 
 

i D
d

i



D
d

 
 e

P T           (1.22) 

in the simplex. We think of the points  
    : d

d D D S T P
m k
 DP  


iW

 as being partitioned into 
 subsets  where W  is the set of all points 
 such that 

i

F D i . 
The converse of Theorem 1 is that a regular automata 

 is not a k  strategy best response 
game if and only if the partition of  that  

  0, , ,G S G F

  0, , ,G S G F




d

 induces has a distinct pair of sets  
and 

T

iW

jW  with intersecting convex hulls. 
So to answer our question, we should find all of the 

pairs of disjoint subsets  , dX Y   S  such the convex 
hulls of     and D D XP     intersect. 
We call such an 

D D YP
,X Y

k

S
 1

 pair ble be- 
cause a  state regular automata  on 
a  regular graph is not a best response game if and 
only if  has a pair of states , such that  



i 

,k d  unaccepta
 0G S G

j

  , F , ,
d

  ,1F i F j   are  unacceptable. ,k d
Clearly if a pair  , dX Y  S  are such that there is 

a pair X X   and Y  where Y  ,X Y   are  ,m d  
unacceptable, for , then m k ,X Y  are  un- 
acceptable. Knowing this we can tighten the definition of 
unacceptable pairs, to lessen the number of objects we 
need to catalogue to determine whether or not a regular 
automata is a best response game. 

 , k d

We say that a pair  , dX Y S


   are fundamentally 
 unacceptable if and only if  ,k d ,X Y  are  ,k d  

unacceptable and X X   , ,  we 
have that 

Y Y m  k
,X Y   are  ,m d  unacceptable implies  

   , ,X Y Y X   and m k . 
In other words a fundamentally unacceptable pair is an 

unacceptable pair that properly contains no other unac- 
ceptable pairs. So we arrive at Theorem 2. 

Theorem 2  , 0d k 
A  state regular automata  on a 
 regular graph is a best response game if and only if 

, for every pair of states  of , there does 
not exist a pair 

k

k

  , , ,G S G F

i j S

0
d

m 
 1X F i ,  that is fun- 

damentally 
 j1Y F 

 ,m d  unacceptable. 
Our enumeration problem is hence transformed into 

the problem of finding the set of permuationally distinct 

fundamentally unacceptable pairs. The set of different 
convex partitions of d  can be found by listing all the 
permuationally distinct partitions of d  and then filter- 
ing out those partitions which involve a pairs 

T
T

,X Y  such 
that X X  , Y Y 

m k
 is fundamentally  unac- 

ceptable, for 
 ,m d

 . 
Let us consider the problem on the circle, when 2d  . 

There are no fundamentally  unacceptable pair 
because 

1, 2
  2 1  cannot be split into two disjoint non- 

empty sets. The fundamentally  unacceptable 
pairs can be found visually, the only permuationally dis- 
tinct way one may choose two disjoint subsets 

2,2

A  and 
 of B       0,12  such that the con- 

vex hulls of 
1,0 ,T 1 2,1 2 ,
A  and  intersect is B     0,11,0 ,A   

and   B 1 2,1 2 . The pair ,X Y , where  

    1,1 , 2,2X   and  is hence the only 
permuationally distinct fundamentally  unaccept- 
able pair. 

  1, 2Y  




2, 2

The set of fundamentally  unacceptable pairs 
can again be found visually. It is easy to see that, if the 
convex hulls of two disjoint sets of 2T , in the unit 
triangle, intersect, then one of the two situations depicted 
in Figure 5 must have occurred. 

3,2

For a pair of disjoint sets  2,X Y   S , let 
 ,Gr X Y  be the graph with a vertex set consisting of 

all x S  such that x  is a member of a pair in X  or 
, and edge set consisting of dark gray edges Y X  and 

light gray edges . An alternating walk on such a graph Y
 ,Gr X Y  is a walk on the edges of  such 

that every edge traversed is a different colour to the 
previously traversed edge. An alternating cycle of such a 
graph is an alternating walk that finishes on the same 
vertex where it started returning along an edge of a dif- 
ferent colour to the colour of the edge that the walk first 
traversed. 

 ,Gr X Y 

Lemma 1 A pair ,X Y  is   unacceptable if and 
only if 

, 2k
 ,Gr X Y  has an alternating cycle. 

This leads to a result that allows us to completely cha- 
 

 

Figure 5. The two fundamentally  unacceptable pairs 

within the two dimensional simplex Δ. The left shows 

 3,2

    2,2 , 1,3 ,     3,3 , 1,2 , the right shows  

    1,2 , 2,3 ,     2,2 , 1,3 . 
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racterise the et of fundam ntally  unacceptable  s e  , 2k

nC  dgraphs for generic k . Recall that enotes the n  
vertex circle graph, let 1C  be a single vertex with a self 
loop. Let a k  vertex dumbbell graph  ,

k
Dum a b , 

where a b k  , be the fusing of two c hs 

1aC   an to the two end points of a line graph (by 
i entifying/ lapping vertices) so that the resulting 
graph,  ,

k
Dum a b , has k  vertices (see Figure 6). 

Note that 1b k   , the connecting line be- 
tween the two circ

ircle grap
d bC

o
1  

ver

when 

d

a
es il n  ,

k
a b  has no edges, and 

hence  ,
k

Dum a b  resem ure-eight in that it 
consists of two circles intersecting at one vertex. 

Let a good colouring of a graph G  be a colouring of 
its  r

Dum
bles a fig

 edges with dark gray and light ay such that, if a 
vertex v G  only has two edges incident on it then the 
two edg e painted different colours and otherwise 
two edges incident on a vertex v  are painted different 
colours if and only if they do not lie on the same cycle of 
G . 

Theorem 3 ,

g

es ar

X Y  is fundamentally  , 2k  unaccept- 
able if and only e of the following co ons hold: 

1) 2k   and 
 if on nditi

 ,Gr X Y  is a good colouring of 
 D

2
0,0

 2k 
um ; 

 is eve2) n and  ,X Y  is a good colouring Gr
of

 and is a good colou

 C  ,
k

Dum a b  , 0,1, ,b k   are 
even d such k ; 

3) 2k   is odd  ,Gr X Y ring 
of um a

k  or 
an

 where a
b  that a 

 
,

k
D b  where  ,a b k  are even and 

such k . 
Using T  2 and lgorithm to 

ch

, 0, 1,
 that a b

heorems 3 we can make an a

graphs, the different 

eck if a regular automata on the circle corresponds to a 
best response game and hence we can solve the problem 
of finding all of the fundamentally different 4 strategy 
best response games on the circle. The way we do this is 
to use a computer to generate the set of all four state de- 
gree 2 regular automata and then filter this set, removing 
those rules that do not correspond to best response games. 
We find that there are 143,524 non-identical four strategy 
games and 6041 permutationally distinct games. 

5. Games on Other Graphs 

When dealing with degree three 
update functions F that can occur correspond to convex 
divisions of   with respect to the points of 3T . With 
two strategies, we may enumerate the possible best re- 
 

 

Figure 6. On the left is an illustration of  Dum
5

2,0 . On 

the right is an illustration of  Dum
5

5,0 . Both graphs have 

sponse games by listing the visions of the unit 
line 

been given a good colouring. 

different di
  into 2  convex regions with respect to the 

points of         3 1,0 , 1 3,2 3 , 2 3,1 3 , 0,1T . Using 
this approach  can determine the 5 permutationally 
distinct update  by two 
strategy best response games on degree three graphs. Its 
important to note that the update rules found in this way 
could be evolved upon many different graph topologies. 
One could consider dynamics of the cube, the Peterson 
graph or any other degree three graph. The circle with 
self-linkage is the degree three graph obtained by taking 
a circle and linking each vertex to itself. Looking at best 
response games on the circle with self linkage is bene- 
ficial because the resulting one dimensional cellular auto- 
mata can be visualised using space time plots. The per- 
mutationally distinct two strategy best response games 
running on the circle with self linkage correspond to 
rules Wolfram’s elementary cellular automata numbers 0, 
23, 127, 128 and 232. One may enumerate the different 
three strategy games on degree three graphs in a similar 
manner by listing the different ways to cut up the unit tri- 
angle into convex regions with respect to the points of 

3T . Using this method one finds that there are 82 fun- 
damentally different three strategy best response games 

 degree three graphs. 
These methods can be applied to enumerate the num- 

ber of k  strategy game

one
 functions F that could be induced

on

s on degree graphs. Such an 
en

  and  

d  
umeration seems difficult to do for generic k  and d . 

Theore 1 provides a way to do such an enumeration in 
theory but with no result like Theorem 3 (which allow  
us to quickly filter out unviable regular automata) the 
computation would be slow for 2d  . 

Our results can be extended to deal with non-regular 
graphs. Suppose we have a graph

m 
s

G
 :1i i nd    is the set of all id  such that there is a 
vertex of G  with degree id . To numerat

nse games on G  o e must simply list all 
the differe ways to divide   into k  or less convex 
regions with respect to the points of 

1 i

n

di
T . 
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6. Appendix 

6.1. Proof of Theorem 1 

Any game   will induce a division of the ex- 
tended strategy space 

,G M
S  into best response regions i . 

To show these best response region are convex, consider 
two points  and  within , then  

R

x y iR

   >
i j

Mx Mx  and    i j
My My ,  

 1, 2, ,j k   i , by definition. Since  is a linear 
mapping any convex combination 

M
1  x y  , for 

 0,1 
     M x y

 will be such that  

   y1 1
i

   M x
j


i

, 

 1, 2, ,j k   . This means  1  x
R

y  also lies 
within the best response region i . So every best res- 
ponse region i  is convex. This means our game in- 
duces partition of d  into best response regions  

, such that the convex hulls of any two sets 
 do not overlap. 

R
T

i i dW R T
W Wi j

Proving the converse is more involved. 
Suppose we have a partition of the points of d  into 

 sets iW  such that the convex hulls of each pair 
of sets do not overlap. There will be a family of ap- 
propriate divisions of , into  convex open 
sets , that generate such a partition of  in that 

T
m k

iP

1kS   k
Td i , 

. i i d

Each such division, where every region i  has non 
zero volume, must be generated by a set of dividing hy- 
perplanes, which is a set of  dimensional hyper- 
planes that cut up the space into different regions. Each 

i  is a polyhedral set and every  dimensional 
face of i  is the intersection of the closure of i  with 
one of its neighboring regions. The set of dividing hyper- 
planes which generates such a division is the set of affine 
hulls of all such faces of all regions. 

W R T
P

2k 

P 2k 
P P

Among our family of appropriate divisions there will 
be a division of S  into  non-zero volume, convex 
sets i  with the property that each set of 

k
P 1k   divid- 

ing hyperplanes involved in this division will meet at a 
single point, we will call such a division proper. It is a 
well known result that almost every arrangement of 

 hyperplanes of dimension  in 1k  2k  1k  will 
have a common point, such a point will always exist 
provided no two of these hyperplanes have parallel sub- 
spaces. Any division can be made proper by doing an 
infinitesimal perturbation of the positioning of the divid- 
ing hyperplanes involved. Since the points of dT  are 
distantly spaced such a perturbation will not effect the 
way d  is partitioned up. This means an appropriate 
proper division exists. 

T

Suppose i  is a region within an appropriate proper 
division. We shall use a proof by contradiction to show 
that i  has a finite extreme point (a vertex). Suppose 
(falsely) that  does not have a finite extreme point.  

P

P

iP

Let X  denote the closure of X . Any closed convex 
set, like iP , with no finite extreme point, must contain a 
line L  (extending infinitely in both directions). Any 
translation of L  that intersects with iP  must also be 
contained within iP . Let jP  be a region adjacent to i . 
Any translation of 

P
L  that intersects with i j  must 

be contained within 
P P

i j . This means any translation 
of 

P P
L  that intersects jP  must be contained within jP . 

This argument can be continued to show that every re- 
gion contains a translation of L  and every dividing 
hyperplane contains a translation of L . This contradicts 
our assumption that the division is proper because such 
an arrangement of dividing hyperplanes cannot meet at a 
point. Every 2k   dimensional cross section of our 
hyperplane arrangement attained by slicing perpendicular 
to L  will look the same (irrespective of how far along 
L  one chooses to slice) so there cannot be a point where 
all the dividing hyperplanes meet. This contradiction im- 
plies every region  must have a vertex. iP

1Since i  is P k   dimensional a vertex of i  must 
be the intersection of at least  of its faces. Each of 

i ‘s faces is 

P
1k 

P i j  for some neighbouring region P P jP . 
There are only  regions so i  can have at most k P

1k   faces. Hence i  has just one vertex , and  is 
the intersection of the closures of all k  regions. Let 

P v v

 iI  be the intersection of the closures of every region 
except i , it follows that  will be a one dimen- 
sional ray that is a common one dimensional edge of 
every region except i . There will be  such one di- 
mensional rays 

P  iI

P k
 iI , that all meet at  and every re- 

gion 
v

jP  will be the interior of the convex hull of 
    j: 1, 2, , ka a I  . Each ray must lie outside of 

the convex hull of the other  rays (otherwise the 
interior of two regions would intersect and we would not 
have a division). An equivalent way to say this is that the 
reflection of any ray in  lies within the convex hull of 
the other 

1k 

v
1k   rays. 

Since our regions meet at a central point with  
emanating rays (that meet the appropriate conditions) we 
can use the results from section 0.2 to construct a non- 
singular payoff matrix  which generates our convex 
division. Under the game with payoff matrix  the 

th best response region  will be equal to the convex 
region , 

k

M

iR
M

i

iP  1,2,i  , k .                     □ 

6.2. Proof of Lemma 1 

We will show that a pairs unacceptability implies the 
presence of an alternating cycle. Suppose that  

 2,X Y   S  is a  , 2k  unacceptable pair, then by 
definition, there must exist subsets X X  , Y Y    

and sets of positive reals     , 0 : ,a b a b X   ,  

    , 0 : ,a b a b Y    such that 
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 
 

 
 ,

, ,

1a b a b
a b X a b Y

 
  

  ,         (1.23) 

and 

 
      

 
      

,
,

,
,

2

2.

a b
a b X

a b
a b Y

a b

a b











 





e e

e e
     (1.24) 

Now consider the graph  with each dark 
gray edge  weighted with the constant  ,a b

 ,Gr X Y 
 ,a b X    

and each light gray edge  weighted with the 
constant  ,a b

 ,a b Y 
 . The sum of the weights of the dark gray 

edges incident upon any vertex will be equal to the sum 
of the weights of the light gray edges that are incident 
upon that vertex (where self edges are counted as being 
incident twice). Suppose  is the minimal weight on 
any edge of , let us multiply all of the 
weights of ’s edges by 

w



 ,Gr X 

 ,Gr X Y
Y

 3 w , so that all of 
the weights will be at least 3. 

Now start on any vertex of , and walk 
along a dark gray edge, when the walk traverses an edge, 
reduce the weight of that edge by 1. After traversing a 
dark gray edge, let the walk traverse a light gray edge, 
then a dark gray edge, then a light gray... and continue in 
this manner, reducing the weight of every traversed edge. 
When an edge reaches weight 

 ,Gr X Y 

0



  it disappears and can 
no longer be used. 

Every vertex must have at least two incident edges, 
one of each colour and such a walk is allowed to traverse 
each edge at least twice. Moreover, every time the walk 
approaches a vertex with an edge of one colour, it will be 
able to leave the vertex with an edge of the other colour 
(at least this will be true until an edge has been traversed 
twice). Clearly such a walk will be allowed to continue, 
in an alternating manner, until an edge is traversed three 
times. After an edge has been traversed three times it 
follows that some vertex  must have been visited three 
times. This implies that an alternating cycle has been 
generated. To see this suppose, without loss of generality, 
that our walk first leaves  along a dark gray edge. If 
the walk returns to , for the first time, along a light 
gray edge then an alternating cycle has clearly been 
generated. If, on the other hand, the walk returns to , 
for the first time along a dark gray edge then it must 
leave , for the second time, along a light gray edge. 
When the walk returns to  for the second time it will 
complete an alternating cycle. To see this note that what- 
ever the colour of the edge which the walk uses to return 
to  for the second time, the walk will have used an 
edge of the opposite colour to leave  previously. This 
shows a pairs unacceptability implies the presence of an 
alternating cycle. 

v

v

v

v

v

v

v
v

To see the converse suppose that the graph  ,Gr X Y  

contains an alternating cycle  with  ,Gr X Y  X X  , 
Y Y  . Now  ,a b X    let  ,a b  be the number of 
times that the edge  ,a b  is traversed in the alternating 
cycle  Y,XGr   . Similarly  let  ,a b ,a b Y     be 
the number of times that the edge  is traversed in   ,a b
the alternating cycle  ,Y Gr X . We refer to  ,a b  as  

the weight of the dark gray edge  ,a b X   and we 
refer to  ,a b  as the weight of the light gray edge 
 ,a b Y  . 

Our alternating cycle will be such that the number of 
traversals of dark gray edges must be equal to the num- 
ber of traversals of light gray edges, and hence our co- 
efficients will be such that 

 
 

 
,

, ,
a b

a b X a b
 , ,a b

Y

I 
  

  

0I 

        (1.25) 

for some constant . 
The alternating cycle will be a walk such that every 

time a vertex is approached along an edge of one colour 
the walk will leave the vertex along an edge of another 
colour and each edge   Gr

v

,a b  of  is tra- 
versed by this walk a number of times equal to its weight. 
It follows that, for every vertex  of 

 ,Y

X



 ,Y

X

Gr   , the 
sum of the weights of ’s incident dark gray edges is 
equal to the sum of the weights of ’s incident light 
gray edges (where self edges are counted as being in- 
cident twice). 

v

 
 

v

Hence we get 

    

 
      

,
,

,
,

a b
a b X

a b
a b Y









2

2,

a b

a b



 





e e

e e
      (1.26) 

so we can divide all of our parameters  ,a b  and  ,a b  
by our constant I  to get the set of convex coefficients 
which describe a point where the convex hull of  

  XD DP  and   YD DP  intersect.      □ 

6.3. Proof of Theorem 3 

Suppose ,X Y  is fundamentally  unacceptable, 
then according to the definition of fundamentally un- 
acceptable pairs and lemma 1,  is an alternat- 
ing cycle, and hence must be connected. Moreover there 
can only be one recolouring of the edges of 

k

 ,Gr X Y





, 2

 ,X YGr , 
then is an alternating cycle (that recolouring which just 
swaps the colours of every edge). If this were not so then 

 ,YGr X  would contain more than one fundamentally 
different alternating cycle, and hence would not be fun- 
damentally unacceptable. 

Now suppose that  ,Gr X Y  has an even cycle C on 
more than three vertices. C can be recoloured to be an 
alternating cycle, and this means that  con-  ,YGr X
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sists of exactly C and nothing more. Note that C is a 
good colouring a circle graph on an even number of ver- 
tices. 

Next suppose that  has no even cycles, and 
at most one odd cycle. In this case 

 ,Gr X Y 
,X Y  can not be 

fundamentally  , 2k  unacceptable. To see this consider 
a walk which is an alternating cycle. Such a walk must 
traverse a cycle of the graph. The walk cannot take place 
on a purely linear graph (i.e. a line graph) because this 
would imply that the walk must change direction at some 
point -back tracking along the edge just used, but this 
violates our requirement that the colours of edges used 
alternate. Now let us (falsely) suppose that our  

 ,Gr X Y  does have a walk which is an alternating 
cycle. Since our walk is required to traverse a cycle of 

 ,Gr X Y  we can assume (without loss of generality) 
that the walk begins at a vertex  on the odd cycle of v

 ,Gr X Y  and immediately traverses the cycle. When 
the walk returns to , for the first time, it will do so 
along an edge of the same colour as the first edge tra- 
versed in the walk. To complete an alternating cycle the 
walk must return to  along a different colour. Clearly 
traversing the odd cycle again is not going to achieve this. 
The only other way to try (in our efforts to form an 
alternating cycle) is to have the walk leave the odd cycle, 
to visit other vertices of 

v

v

 ,Gr X Y . This cannot be done 
however because  ,X YGr  only holds one cycle. Once 
our walk leaves this cycle it will have no way to return 
except to backtrack, which we have already shown is not 
allowed. 

Now the only other possible case is that  ,Gr X Y
C

 
contains no even cycles and at least two odd cycles   
and C. Since  ,Gr X Y

C

C

 is connected there must be a 
linear path  (a sequence of end to end edges forming 
a line graph) between  and C. Now  can 
be given an edge recolouring (the good colouring of 

) that is an alternating cycle. We shall con- 
struct such a cycle by describing a walk (it will be clear 
that ’s edges can be coloured in such a way 
that the edge colours alternate on this walk). Suppose our 
walk starts off at the intersection of  and C

P

C

 

C P C 

P

C P 

C P

  (the 
vertex  of  which is an point of the line graph 

). Suppose the walk begins by traversing 
e

P
C

C , starting 
off with a dark gray edge. After traversing , the walk 
will return to  along a dark gray edge. Next the walk 
travels along a light gray edge of P towards . Suppose 
the walk continues traveling along P until it reaches the 
other end point, e, of P (which intersects with C). The 
walk then moves around C, returning to  on the same 
colour edge by which it set off (on C), and then the walk 
travels back along P, to . When the walk returns to 

 it will do so along a light gray edge, thus completing 
the alternating cycle. So we have shown that if  

C

e



C
e

e
e

 ,Gr X Y  contains more than one odd cycle, then  
 ,Gr X Y  must exactly be of the form C P C  , 

which is exactly the form of a dumbbell graph  
 k

,DUM a b  where  are even and 
such that 

, 0,1, ,a b k  
a b k  . Such a graph will only have one 

fundamentally different alternating cycle, which can be 
found by doing a good colouring of it. 

So we have shown that all the graphs associated with 
fundamentally  , 2k  unacceptable pairs ,X Y  lie in 
the set k  of graphs described in the theorem (even 
length circle graphs and dumbbell graphs with odd cy- 
cles). All that remains is to show that there are not any 
graphs within this set that are not  unacceptable. 
We know that each of these graphs has at most one 
fundamentally different alternating cycle and no unne- 
cessary extra structure, so all that is left is to show that 
no graph in 

 , 2k 

k  has a proper subgraph that is a member 
of m  for m k . For a dumbbell graph with two odd 
cycles, this is obvious since every proper subgraph of it 
is neither a dumbbell graph, nor a circle graph of even 
length. Similarly no proper subgraph of a circle graph is 
a circle graph or a dumbbell graph.                □ 

6.4. The Different Three Strategy Games on the 
Circle 

In this subsection we give example space time plots 
(from random initial conditions) showing the dynamics 
of each of the 52 non-identical best response games on 
the circle (see Section 3). We group these plots together 
with the diagrams that show the unlabeled partitions of 

2  which can be coloured to yield their best response 
partitions (see Figures 7-14). 
T

 

 

Figure 7. Diagrams of partitions 1 and 2 of T2, and space- 
time plots of the associated best response games. 
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Figure 11. A Diagram of partition 8 of T2, and space-time 
plots of the associated best response games. 
 

 

Figure 8. Diagrams of partitions 3 and 4 of T2, and space- 
time plots of the associated best response games. 
 

 

Figure 12. A Diagram of partition 9 of T2, and space-time 
plots of the associated best response games. 
 

 Figure 9. Diagrams of partitions 5 and 6 of T2, and space- 
time plots of the associated best response games. 

Figure 13. Diagrams of partitions 10 and 11 of T2, and 
space-time plots of the associated best response games. 

 

 

 

 

Figure 14. A Diagram of partition 12 of T2, and space-time 
plots of the associated best response games. 

Figure 10. A Diagram of partition 7 of T2, and space-time 
plots of the associated best response games. 


