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ABSTRACT

Since lattice matrices are useful tools in various domains like automata theory, design of switching circuits, logic of
binary relations, medical diagnosis, markov chains, computer network, traffic control and so on, the study of the proper-
ties of lattice matrices is valuable. A lattice matrix A is called monotone if A is transitive or A is monotone increasing.
In this paper, the convergence of monotone matrices is studied. The results obtained here develop the corresponding
ones on lattice matrices shown in the references.
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1. Introduction

In the field of applications, lattice matrices play major
role in various areas such as automata theory, design of
switching circuits, logic of binary relations, medical di-
agnosis, markov chains, computer network, traffic con-
trol (see e.g. [1]). Since several classical lattice matrices,
for example transitive matrix, monotone increasing ma-
trix, nilpotent matrix, have special applications, many
authors have studied these types of matrices. In fact, a
transitive matrix can be used in clustering, information
retrieval, preference, and so on (see e.g. [2,3]); a nilpo-
tent matrix represents an acyclic graph that is used to
represent consistent systems and is important in the rep-
resentation of precedence relations (see e.g. [4]). Re-
cently, the transitive closure of lattice matrix has been
used to analyze the maximum road of network. In this
paper, we continue to study transitive lattice matrices and
monotone increasing matrices. The main results obtained
in this paper develop the previous results on transitive
lattice matrices [5] and monotone increasing matrices

[6].

2. Definitions and Preliminaries

At this section, we shall give some definitions and lem-
mas. Let (P,<) be a partially ordered set (simply de-
noted by poset) and x,yeP .If x<yory<x then x
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and y are called comparable. Otherwise, x and y
are called incomparable, noted by x|y . If for any
X,yeP, x and y are comparable, then P is called a
chain. An unordered poset is a poset in which x||y for
all x=y.Achain cin a poset P is a nonempty subset of
P, which, as a subposet, is a chain. An antichain C in a
poset P is a nonempty subset which, as a subposet, is
unordered. A lattice is a poset in which every two ele-
ments have a unique least upper bound and a unique
greatest lower bound. For any x and y in L, the least up-
per bound and the greatest lower bound will be denoted
by xvy and xavy, respectively. It is clear that any
chain is a lattice, which is called a linear lattice. It is ob-
vious that if (L,s) is a linear lattice (especially, the
fuzzy algebra [0,1] or the binary Boolean algebra
B, ={0,1}) thenxv y =max{x,y} and

xAy=min{x,y} forall xandy in L. Let (L,<,v,A)
be a lattice and @ = X < L. X is called a sublattice of L
if for any a,be X,avbe X and aanbe X. A lattice
(L,<,v,A) is said to be distributive if the operations
"v" and "A" are distributive with respect to each
other. A matrix is called a lattice matrix if its entries be-
long to a distributive lattice. In this paper, the lattice
(L,<,v,A) is always supposed to be a distributive lat-
tice with the least and greatest elements 0 and 1, respec-
tively. Let M, (L) be all nxn matrices over L. For
any Ain M, (L), we shall denote by a; or A; the
element of L which stands in the (i, j)th entry of A. For
convenience, we shall use the set N to denote the set
{1,2,---,n}.
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Forany A, B, Cin M, (L), we define:
AAB=C iff ¢;=a;Ab; for i,j inN;
AvB=C iff ¢;za;vb; for i, jinN;
AB=C iff ¢;=\/(a, Aby) for i,j inN;

A<B iff a;<i* for i,j in N and A>B iff
B<A;

l,=(n;), where 7, =1 if i=j and p, =0 if
i=j for i,jeN.

Forany Ain M, (L), the powers of A are defined as
follows: A’ =1, A'=A""AleZ*, where Z* denotes
the set of all positive integers. The (i, j)th entry of A'
is denoted by aj(1€Z"),and

aj :]sil,«},/h,lgn{a“l A A A aiHj}.

Let AeM, (L), Aiscalled transitive if A*<A;

A is called monotone increasing if A’>A; A is
called reflexive if 1, < A. In this paper, A lattice matrix
A is called monotone if A is transitive or A is monotone
increasing.

Forany AeM, (L), Aissaid to be almost periodic if
there exist positive integers k and d such that A* = A**?,
The least positive integers k and d are called the index
and the period of A, and denoted by k(A) and d(A),
respectively. In particular, if d(A)=1 then A is said to
converges in a finite number of steps.

3. Convergence of Monotone Lattice
Matrices

In this section, we shall discuss the convergence of Mo-
notone Lattice Matrices. In [5,6], Tan studied the con-
vergence index of transitive matrices and monotone in-
creasing matrices. In the following, we continue to study
the convergence index of these matrices which discussed
by Tan [5,6], and the convergence index of these dis-
cussed matrices is smaller than previous considered in-
dex.

Theorem 3.1. Let A=(a;)e M, (L). if a,ra; =a,
holds for all i, j,k e N, then

1) A*<A’

2) & =a;(vieN,kez");

3) Aconvergesto A“Y with k(A)<n-1,

Proof. 1) Let

n
a; :k\{laik ~ay (Vi jeN).

By the hypothesis a; na; =a; (Vi,j,keN), it fol-
lows that

n
2
aij =\ A Qg A akj.
k=1

n
- - - 3
Since \/a Ay Ady isthe sum of some term in a;

k=1
we have
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n
aﬁ = k\—/laik Ay Ay < aﬁ
Thus A’ < A%,
2)By a; ray =a;, (Vi j,keN), wehave

A AQ; A A = Qe

Then
3, <aj(vseZ")
:1sil,-YiHsna"1 A8y, N AR
< Vo, =V aag <V a =a.

- N 11 A
1<h<n 1 1<i<n 1<y <n

Therefore, a;, =a;(VseZ").
3)By A*<A’, itfollowsthat A“'<A“(Vk>3).
Hence, A" <A". In the following, we shall prove that
A > AN
By the result of 2), we only need to show that
ajt>aj for i=j. Let
a= Vv

g g <n

& Aay, A A (Vi, je N).

Since the number of indices in a; Ana; A-Ad
is n+1, there must be two indices i, and i, such that
i, =i, (u<v).Then

B Ay, A A < & Ny,

A AR A

A A
1l Il 41 I

1°

Since a; A A Al AG
1 12 U=

1l Il

LATAR isa

Th-1]

term of a" ") we have

ij

A AQ A A S Ay Al
h hip n-1J 1y hiz

AccAd < an_(v_u).

e i = &

-1y

Thus aj < ai?'(v‘“), then

A"<A"(m=n-(v-u)<n)<A™ (since A“"< A"
for vk >3).

From above, we can get A" =
the proof.

Corollary 3.1. Let A=(a;)eM,(L). if A>l,
then

1) A<A?

2) a,=ak=1 forall ieN,keZ";

3) Aconvergesto A““ with k(A)<n-L1.

Proof. It follows from Theorem 3.1.

Theorem 3.2. Let A=(a;)eM,(L). If A<A® and

a, =a’ holds for all ieN,keZ", then A converges
to A“withk (A)<n-1. o

Proof. Since A< A*we have A' < A™(VieZ").

Then

W41

A". This completes

A™ > A2 A"(m<n-1).

Let T=a; na; An---Ad be any term of

in-1]
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aj(i=]).

Since the number of indices in T is greater than n,
there must be two indices i, and i, such that i, =i,
(u<v). Then

T =q, Ay A A
Now delete the term a,;, A--Agq ; in T,
can get a new term

A AN L AA A AR

T_a Al A AQ AR

A QA -
i lu-1ly I\/'v+1 in-1”

Since T' is a term of af(m<n-1), we have

T'<aj . But by the property of the operation "A", we
have
T<T'<aj(m<n-1).
Thus aj <a;'. On the other hand, by the hypothesis
A< A?, we have

aj <aj(m<n-1).

From above, wecanget aj =agj(m<n-1)(i#j).
Since a, =aj(VieN, keZ*) e have

a; =aj(m<n-1)(Vi,jeN),
and so
A" =A"(m<n-1).

This completes the proof.

Theorem 3.3. Let A=(a;)eM,(L). If for any
ieN, a;=v{a/ or a V{akl} then

k=1 k=1

1) A2 < A3 Anfl <.

2) a, =a (v|eN kez+ :

3) Aconverges o A with k(A)<n-1.

Proof. 1) Let

n

ai?:k\_/l{ait/\aq}(Vi,je N).

If a, = k\{l{aﬂ(} , then

n n

=viara nal<a

t=1 t=1

If a; = \n/{akt}> , then

k=1

n n

aﬁ_l\/{anAaq} v {altAthatJ}<a3.

Thus aj <a;,andso A2<A3 Therefore

A<A< <A<
2)forany ieN, keZ",
k+1 "
& \Y {anl A8y, /\"'/\a|ki}

1<h -+l <n
n n n
< v {anl /\alki} SOV @ Ay VR Sy
1<l -+l <n 1<h<n 1<l <n
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Iyly 41 =LY Ty in-1"

On the other hand, by the result a‘" >a,
have a, <af™.

3) It follows from Theorem 3.2. This completes the
proof.

Corollary 3.2. Let A—(a )eM (L).
i, jeN,au_a and A< A?, then

1) a (Vk >2);

2)Aconverges to A( with k(A)<n-1.

Proof. 1) By a; =a;(Vi, jeN), we can get

in 1), we

If for any

n n
aj = \_/l{aik na )= k\_/{aik}'

Since

= Vv {alh /\ahlz /\.“/\ajsfli}
I<jpejsasn
n

SV

< dsasn

<V o oAy Voa {\/a,k}
1<j<n M 1<joq<n s 1<k<n

We have a; <aj(Vs>2). On the other hand, since
A< A’ wehave a;>aj(Vs>2). Therefore

{aih A ajsfli}

a; =a; (Vs>2).

2) It follows from Theorem 3.2. This completes the
proof.

Theorem 3.4. If A is transitive and diag(A)<B<A.
Where diag(A)= (,J),With c;=8;(VieN) and
c; =0(i# j,Vi,jeN), then

1) Bconvergesto B“®) with k(B)<n;
2) If A satisfies Maij <a; (Orxaji <a;) for some
je N, then B convergesto B"®

3) If B satisfies \n/bij
i=1

with k(B)Sn—l;
sb”. (or\n/bji sbjj) for some
i=1

jeN , then B convergesto B*® with k(B)<n-1.
Proof. First by diag(A)<B< A, we have

a; =bii(Vi e N).
1) Let

n

b. Ab. A--

" L<i1,i2,~-,in,1gn{ o

/\bI 11}

Now, we consider any term T of by. Since the num-
ber of indices in T is greater than n, there must be two

indices i, and i, suchthat i, =i (u <v). Then
T< bI iy biu+1iu+2 “A bIv i
And
T <by Abj, AoAb o AD AADb

Since A is transitive, we have A> A* forall k>1,
andso a; >a;(Vi, jeN). Thus
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bi:i'u“'l > biuiu A biuiLI Ao A biuiu

(since by, Aby, A--Aby, isaterm of bf* ™)
= biuiu
=a, (since a; =h;(vieN))
>a/ " (since A iis transitive)

> (since A>B)

b, A-AD
ulu+1 v-1lu
>T.
Since b, Ab, A-Ab L ADUTTAD L AceAD
) 11 12 u-1lu uly ulv+1 h-1J
isatermof b{™, we have
n-1
by
>b. Ab, AoAb AR AD —nab
T 12 u-1'u u'lu u'lv+l n-1J
>T AT =T.

Then bi™ >hf, and soB"" > B" . Therefore

B" > B . On the other hand, since

1
bi™ >b. Ab. A--Ab . AbB. AD. A-Ab
]] h hlp ly-1ly luly Iyl 1]

>T Aby, =T (sinceb, >T).

Wy —

We have bi*>bi, then B"*>B". From above, we
canget B™ =B",andso k(B)<n.
2) By the proof of 1), we have B"*>B". In the fol-
lowing we shall prove that B"* <B".
Let
n-1_ cee . )
by ‘Kil,iz,y.,in,zgn{b” by, Asab b,
Now consider any term T =b; Ab, A--Ab
b,
ij
a) If i, =i, forsome u and u(u<v),then
b’ >h

luly LTI

/\ e /\ b .
ly-1ly

Anb

A AD .
In-2]

. . AD .
1ly lyly1

b, AcoAD L AD
1 u-1'u ulu+l
=T.
And so
b, =a,, (sincea; =b, (VieN))
>a, " (since A'is transitive)
> " (since A>B)>T.

Then
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bi >y Ab, A--Ab oAb A--nb

u-1ly iy A biuiu+l In-2]
2T Ab,; =T.

b) Suppose that i, =i, forall u=v. By the hypothe-

n n
sis, -\/1a” <a; (or‘\/laji <a;)forsome jeN and
i= i=

a, =b,;  wecanget a, =b,;, =T, Thus
b-?Zb-- Ab. A-Ab  Ab. AD. A--Ab
! Th hi2 lu-1ly luly luly+1 Th-2]
>T /\biuiu =T.

From above, we have b} >bi™, and so B">B"".
Therefore B"=B"".

3) The proof of 3) is similar to that of 2). This com-
pletes the proof.

Theorem 3.4 is an improvement of Theorem 4.1 [6].

As a special of Theorem 3.4, we obtain the following
Corollary.

Corollary 33. If A=(a;)eM,(L) is transitive,
then

1) Aconvergesto A“Y with k(A)<n;

n n
2) If A satisfies \sa; <a; (or\sa;<a;) for some
i=1 i=1

jeN , then A convergesto A““ with k(A)<n-1.
Corollary 3.3 is an improvement of Corollary 4.1 [6].
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