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ABSTRACT 

Since lattice matrices are useful tools in various domains like automata theory, design of switching circuits, logic of 
binary relations, medical diagnosis, markov chains, computer network, traffic control and so on, the study of the proper- 
ties of lattice matrices is valuable. A lattice matrix A is called monotone if A is transitive or A is monotone increasing. 
In this paper, the convergence of monotone matrices is studied. The results obtained here develop the corresponding 
ones on lattice matrices shown in the references. 
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1. Introduction 

In the field of applications, lattice matrices play major 
role in various areas such as automata theory, design of 
switching circuits, logic of binary relations, medical di- 
agnosis, markov chains, computer network, traffic con- 
trol (see e.g. [1]). Since several classical lattice matrices, 
for example transitive matrix, monotone increasing ma- 
trix, nilpotent matrix, have special applications, many 
authors have studied these types of matrices. In fact, a 
transitive matrix can be used in clustering, information 
retrieval, preference, and so on (see e.g. [2,3]); a nilpo- 
tent matrix represents an acyclic graph that is used to 
represent consistent systems and is important in the rep- 
resentation of precedence relations (see e.g. [4]). Re- 
cently, the transitive closure of lattice matrix has been 
used to analyze the maximum road of network. In this 
paper, we continue to study transitive lattice matrices and 
monotone increasing matrices. The main results obtained 
in this paper develop the previous results on transitive 
lattice matrices [5] and monotone increasing matrices 
[6]. 

2. Definitions and Preliminaries 

At this section, we shall give some definitions and lem- 
mas. Let  be a partially ordered set (simply de- 
noted by poset) and 

 ,P 
,x y P . If x y or y x  then x  

and  are called comparable. Otherwise, y x  and  
are called incomparable, noted by 

y
x y . If for any 

,x y P , x  and  are comparable, then P is called a 
chain. An unordered poset is a poset in which 

y
x y  for 

all x y . A chain c in a poset P is a nonempty subset of 
P, which, as a subposet, is a chain. An antichain C in a 
poset P is a nonempty subset which, as a subposet, is 
unordered. A lattice is a poset in which every two ele- 
ments have a unique least upper bound and a unique 
greatest lower bound. For any x and y in L, the least up- 
per bound and the greatest lower bound will be denoted 
by x y  and x y , respectively. It is clear that any 
chain is a lattice, which is called a linear lattice. It is ob- 
vious that if  ,L   is a linear lattice (especially, the 
fuzzy algebra [0,1] or the binary Boolean algebra 

 1 1B  0, ) then  max ,x y x y   and  
 min ,x y x y   for all x and y in L. Let  ,, ,L     

be a lattice and X L 
, ,X a


b X

. X is called a sublattice of L 
if for any a b    and  A lattice .Xa b 
 , , ,L   
"

 is said to be distributive if the operations 
 and " " "  are distributive with respect to each 

other. A matrix is called a lattice matrix if its entries be- 
long to a distributive lattice. In this paper, the lattice 
 , , ,L     is always supposed to be a distributive lat- 
tice with the least and greatest elements 0 and 1, respec- 
tively. Let  nM L  be all  matrices over L. For 
any A in 

n n
 nM L , we shall denote by ij  or ija A  the 

element of L which stands in the  ,i j th  entry of A. For 
convenience, we shall use the set N to denote the set 
 .1, 2 n, ,  
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For any A, B, C in  nM L , we define: 
A B C   iff  for  in N; ij ij ijc a b  ,i j
A B C   iff  for in N; ij ij ijc a b  ,i j
AB C  iff  for  in N;  

1
ij ik kj

k

b



n

c a  ,i j
A B  iff  for  in N and ij ija b ,i j A B  iff 

; B A
  ,n ijI   where 1ij   if i  and j 0ij   if  

 for  i j i j, .N
For any A in   ,nM L

0 , l l
n

 the powers of A are defined as 
follows: 1 , ,A I A A  A l Z    where Z+ denotes 
the set of all positive integers. The  entry of  ,i j th lA  
is denoted by and   ,l

ija l Z 

 1 1 2 1
1 11 , ,

.
l

l
ij ii i i i j

i i n
a a a


 

   


l a  

Let   ,nA M L  A is called transitive if 2 ;A A  
A is called monotone increasing if 2 ;A A  A is 

called reflexive if .nI A  In this paper, A lattice matrix 
A is called monotone if A is transitive or A is monotone 
increasing. 

For any  nA M L , A is said to be almost periodic if 
there exist positive integers k and d such that .k k dA A   
The least positive integers k and d are called the index 
and the period of A, and denoted by  and  k A   ,d A  
respectively. In particular, if   1d A   then A is said to 
converges in a finite number of steps. 

3. Convergence of Monotone Lattice  
Matrices 

In this section, we shall discuss the convergence of Mo- 
notone Lattice Matrices. In [5,6], Tan studied the con- 
vergence index of transitive matrices and monotone in- 
creasing matrices. In the following, we continue to study 
the convergence index of these matrices which discussed 
by Tan [5,6], and the convergence index of these dis- 
cussed matrices is smaller than previous considered in- 
dex. 

Theorem 3.1. Let    .ij nA a M L 
,N

 if  ii jk jka a a 
holds for all  then , ,i j k

2 31) ;A A  
ka a 2)   , ;ii ii i N k Z  

3) A converges to  k AA  with    1.k A n 
Proof. 1) Let 

 2

1

, .
n

ij ik kj
k

a a a i j N


     

By the hypothesis  it fol- 
lows that 

 , , ,ii jk jka a a i j k N   

2

1

.
n

ij ik kk kj
k

a a a a


    

Since  is the sum of some term in  

we have 
1

n

ik kk kj
k

a a a


  3
ija

2 3

1

.
n

ij ik kk kj ij
k

a a a a a


     

Thus 2 3.A A  
2) By  , , ,ii jk jka i j k N a a   we have 

.ii ii ii iia a a a     

Then 

 
1 1 2 1

1 1

1 1
1 1 1

1 , ,

1 1 1
.

s
s

s
ii ii

ii i i i i
i i n

ii ii ii ii ii
i n i n i n

a a s Z

a a a

a a a a






 

     

  

   

    



  




a

 

Therefore,  .s
ii iia a s Z   

2 3
 

3) By A A , it follows that . 
Hence, 

 1 3k KA A k   
1 .n nA A 

.n n
 In the following, we shall prove that 

1A A   
By the result of 2), we only need to show that 

 for 1n
ij ija a  n .i j  Let 

 
1 1 2 1

1 1
,

1 , ,
, .

n
n

n
ij ii i i i j

i i n
a a a a i j


 

    


 N  

Since the number of indices in 
1 1 2 1nii i i i j

 
is 

a a a  
1n  , there must be two indices  and  such that ui vi
 u vu vi i  . Then 

1 1 2 1 1 1

1 1
.

n

u u v v n

ii i i i j ii i i

i i i i i j

a a a a a

a a a


  

2

1

    

    



 
 

Since  is a  
1 1 2 1 1 1u u v v nii i i i i i i i ja a a a a

 
      

 n v u 


term of  we have ,ija

a a

 
1 1 2 1 1 1 2

1 1 1
.

n

u u v v n

ii i i i j ii i i

n v u
i i i i i j ij

a a a

a a a a



  

 

    

     



 
 

Thus  then   ,n v un
ij ija a  

   1nn mA A m n   v u n A     (since 1k kA A   
for 3k 

1n
). 

From above, we can get .nA A  This completes 
the proof. 

Corollary 3.1. Let    .ij nA a M L   if ,nA I  
then 

1) 2;A A
ka a

 
2) 1ii ii   for all  , ;i N k Z  

3) A converges to k AA  with   k A 1.n 
Proof. It follows from Theorem 3.1. 
Theorem 3.2. Let    .ij nA a M L   If 2A A  and  

k
ii iia a  holds for all , then A converges  ,i N k Z  

to  k AA with   1.k A n 
2

 
Proof. Since A A we have  1 .i iA A i Z     
Then  

 1 1 .n n mA A A m n      

Let 
1 1 2 1nii i i i jT a a a


     be any term of  
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 .n
ija i j  
Since the number of indices in T is greater than , 

there must be two indices  and  such that 
n

u vi iui vi   
. Then  u v

T a 

T a

T
m
ijT a 

1 1 2 1v v nii i i  

Now delete the term  in T , thus we 
can get a new term  

1 1 1u u v vi i i i i i i ja a a a
 

    

1 1u u v vi i i ia a
 
 

.a  

1 1 2 1 1 1
.

u u v v nii i i i i i i i ja a a a
 

       



 

Since  is a term of  we have 
. But by the property of the operation 

  1 ,m
ija m n 

" " , we 
have 

 1 .m
ijT T a m n     

Thus ij  On the other hand, by the hypothesis .n ma aij
2 ,A A

ii

 we have 

 1 .m n
ij ija a m n    

From above, we can get   1 .m n
ij ija a m n i j   

 k Z


Since ,k
iia a i N   

 m na a m n  

 , we have  

1 ,ij ij i j N   ,  

and so 

 1 .m nA A m n    

This completes the proof. 
Theorem 3.3. Let    ij nA a M L 

n

. If for any  

i N ii,  or , then   
1

n

ik
k

a a


 
2 3

 
1

ii ki
k

a a


 
11) nA A A      ; 

 k    2) ; ,i N k Z
 k A

ii ii

3) A converges to 
a a

A  with .   1k A n 
Proof. 1) Let  

  2

1

,
n

ij it tj
k

a a a i j


    N

3 3

. 

If , then  
1

n

tka

tt
k

a 

ija

tt
k

a 

ija

ij

   2 3

1 1

.
n n

it tj it tt tj ij
t t

a a a a a a
 

        

If , then  
1

n

kta



   2 3

1 1

.
n n

it tj it tt tj ij
t t

a a a a a a
 

        

Thus , and so 2
ija a 2A A

n

. Therefore  
2 3 1 .A A A      

2) for any , , i N k Z 

 

 

1 1 2

1 1
1 1

,

, 1 1

.

k
k

k k
k k

il l l l i
l l n

n n n

il l i il l i ii
l l n l n l n

a a a a

a a a a a

 

     

   

  
      

   
  



1

1

1 ,

1 ,

n
k
ii
 




 

On the other hand, by the result  in 1), we 
have 

1k
ii iia a 

1k
ii iia a  . 

3) It follows from Theorem 3.2. This completes the 
proof. 

Corollary 3.2. Let    ij nA a M L  . If for any 
, , ij jii j N a a   and 2A A , then 

1)  2kka aii ii   ; 
2) A converges to  k AA  with .   1k A n 
Proof. 1) By  N,ij ji i j

n n

a a  , we can get 

  2

1 1

.ii ik ki ik
k k

a a a a
 

      

Since 

 

 

 

     

1 1 2 1
1 1

1 1
1 1

1 1
1 1

1 , ,

1 , ,

1 1 1

2

,

s
s

s
s

s
s

s
ii ii

n

ij j j j i
j j n

n

ij j i
j j n

ij j i ik
j n j n k n

a a s

a a a

a a

a a










 

 

     

  

   

 

  





  







a

 

We have  2 2s
ii iia a s   . On the other hand, since 

2A A , we have  2s 2s
ii iia a  . Therefore 

 2 .ii iia a s  2s  

2) It follows from Theorem 3.2. This completes the 
proof. 

Theorem 3.4. If A is transitive and  diag A B A  . 
Where    diag ijA c , with  and   i N  ii iic a

 0 , ,c i j i j N   ij , then 

1) converges to  with ; B  k BB
n

 k B n

2) If A satisfies 
1

ij jj
i

a a


  (or
1

n

ji
i

a a


 jj ) for some  

j N , then B converges to  with  k BB   1k B n  ; 

3) If B satisfies 
1

n

ij jj
i

b b


  (or
1

n

ji j
i

b b


 j ) for some  

j N , then B converges to  with  k BB   1k B n  . 
Proof. First by  diag A B A  , we have  

 ii iia b i N   . 
1) Let 

 1 1 2 1
1 2 11 , , ,

.
n

n

n
ij ii i i i j

i i i n
b b b


 

   


 b



 

Now, we consider any term T of . Since the num- 
ber of indices in T is greater than n, there must be two 
indices  and  such that . Then 

n
ijb

uui vi u vi i v 

1 1 2 1u u u u v ui i i i i iT b b b
   

     

And 

1 1 2 1 1 1
.

u u u v nii i i i i i i i jT b b b b b
  

         

Since A  is transitive, we have kA A  for all , 
and so 

1k 
 ,k

ija a i j N  ij . Thus 
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




n n




n n

 

  
 
 

1 1

1

1since  is a term of 

since 

since  is transitive

since 

.

u u u u u u u u

u u u u u u u u

u u

u u

u u

u u

u u v u

v u
i i i i i i i i

v u
i i i i i i i i

i i

i i ii ii

v u
i i

v u
i i

i i i i

b b b b

b b b b

b

a a b i N

a A

b A B

b b

T
 

 

 





   

  



   



 

  









 

Since 
1 2

 
is a term of , we have 

1 1 1 1

1

u u u u u v n

v u
ii i i i i i i i i i jb b b b b b

 

        
1n

ijb 

1 1 2 1 1 1

1

1

.
u u u u u v n

n
ij

v u
ii i i i i i i i i i j

b

b b b b b b

T T T
 



        

  

  

Then , and so . Therefore  
. On the other hand, since 

1n
ij ijb b 

1nB 

1nB B 
nB 

 
1 1 2 1 1 1

1

since .

u u u u u u n

u u u u

n
ij ii i i i i i i i i i j

i i i i

b b b b b b b

T b T b T

 

        

   


 

We have , then . From above, we 
can get , and so 

1n
ij ijb b 

1n nB B

1nB B 
  k B n

1B 
. 

2) By the proof of 1), we have . In the fol-
lowing we shall prove that . 

n B
n nB B

n

b

v

2








1 

1 1 2 1 1 2

.
u u u u u u n

u u

n
ij ii i i i i i i i i i j

i i

b b b b b b b

T b T
 

       

  

 
 

b) Suppose that u vi i  for all u . By the hypothe- v

sis, 
1

n

ij jj
i

a a


  (or
1

n

ji
i

a a


jj ) for some  and  j N

u u u ui i i ia b
n

, we can get  Thus ,
u u u ui i i ia b T 

1 1 2 1 1 2

.
u u u u u u n

u u

ij ii i i i i i i i i i j

i i

b b b b b b b

T b T
 

       

  

 
  

From above, we have , and so 1n n
ij ijb b  1n nB B  . 

Therefore 1n nB B  . 
3) The proof of 3) is similar to that of 2). This com-

pletes the proof. 
Theorem 3.4 is an improvement of Theorem 4.1 [6]. 
As a special of Theorem 3.4, we obtain the following 

Corollary. 
Corollary 3.3. If    ij nA a M L   is transitive, 

then 
1) A converges to  k AA  with ;  k A n

Let 

 1 1 2 2
1 2 2

1

1 , , ,
,

n
n

n
ij ii i i i j

i i i n
b b b






 
   


  

Now consider any term  of 
. 

1 1 2 2nii i i i jT b b b


   

 u u v

1n
ijb 

a) If  for some u  and , then ui i

1 1

1 1 1 1 1

.

u u u u v u

u u u u v u u v n

v u
i i i i i i

ii i i i i i i i i i j

b b b

b b b b b b

T

 

   

   

        





    

And so 

 

 

since 

since is transitive

since .

u u u u

u u

u u

i i i i ii ii

v u
i i

v u
i i

b a a b i N

a A

b A B T





  



  

 

Then 

2) If A satisfies 
1

ij jj
i

a a


n

  (or
1

n

ji
i

a a


 jj ) for some  

j N , then A converges to  k AA  with   1k A n  . 
Corollary 3.3 is an improvement of Corollary 4.1 [6]. 
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