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ABSTRACT 

We developed a computational framework to identify common gene association sub-network. This framework com- 
bines graphical lasso model, graph product and a replicator equation based clique solver. We applied this method to find 
common stress responsive sub-networks from two related Deinococcus-Thermus bacterial species. 
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Gene Association Network 

1. Introduction 

Gene and gene products interact with each other due to 
biochemical interactions and regulatory activities [1]. Many 
methods have been developed to analyze these networks. 
Popular methods include weighted correlation network 
analysis (WGCNA) [2], Bayesian networks [3], auto- 
regressive models [4], state-space models [5] and graphi-
cal Gaussian models [6]. Few studies however, have been 
devoted to analyze networks from multiple species si- 
multaneously. In this study, we focus on the identifica- 
tion of common gene association sub-networks from mul- 
tiple species. First we need to derive gene network from 
individual species. We chose Graphical Lasso model [6] 
for this task because it can handle large covariance/cor- 
relation matrices of mathematically deficient rank which 
is often the case for genomic data. 

Identification of common gene association sub-net- 
works is related to the subgraph isomorphism problem. 
The subgraph isomorphism problem can be reduced to 
finding maximal clique from merged graph [7] which can 
be constructed following graph product rules. There are a 
number of heuristics for finding maximal cliques. Local 
search may be the simplest greedy strategy that starts 
with some initial solution and moves from neighbor to 
neighbor as long as possible while increasing the clique 
number. The main problem with this strategy is its in- 
ability to escape local maxima where the search cannot 
find any further neighborhood solution. Battiti and Pro- 
tasi [8] proposed reactive local search that allows the  

search to explore solutions that do not decrease the clique 
number by dynamically changing some of the parameters 
[8]. Another widely used heuristic is replicator equation 
[7]. This method is based on a continuous formulation of 
the maximal clique problem as quadratic programming 
[9]. 

The paper is organized as follows. In Section 2, we 
will describe graphical Lasso method to construct gene 
association networks. We will also describe graph merg- 
ing and how to find maximal cliques using replicator 
equations. The experiments and results will be discussed 
in Sections 3 & 4. We offer a conclusion in Section 5. 

2. Methods 

To find common gene association sub-networks from 
two species, we need to perform ortholog mapping from 
two species. Orthologs are genes in different species that 
originated by vertical descent from a single gene of the 
last common ancestor. We will then construct gene asso- 
ciation network of the orthologous genes for the two spe- 
cies respectively. This is followed by graph merging and 
maximal clique searching of the merged graph. Finally 
the common sub-networks are recovered for each species. 
Figure 1 shows the overview of the approach. 

2.1. Construction of Gene Association Network 

The inverse covariance matrix  is used to construct 
individual gene association network. Gene i and j are 
considered conditionally independent given other genes  

1
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Figure 1. Clique-based approach to identification of common gene association sub-network from two species. 
 

if  [6]. Meinshausen and Muhlmann [10] esti- 
mated a sparse graph by fitting a lasso model to each 
variable using others as predictors. Friedman et al. made 
this method faster by solving a 1000-node problem 
(≈500,000 parameters) in less than 1 minute [6]. Con- 
sider a multidimensional normal distribution of dimen- 
sion p, with mean μ and covariance matrix . Let S be the 
empirical covariance matrix, the estimation of −1 is the 
solution to the following optimization problem: 

1 0ij
 

 1 1 1

1
arg min log det tr S          1      (1) 

where tr denotes trace and 1

1

  the L1 norm, and  

  is the user-defined penalty. Banerjee et al. [11] show 
the problem is convex and considered estimating   
rather than its inverse. Let W be the estimate of  , the 
problem is solved by optimizing over each row and cor- 
responding column of W in a block coordinate descent 
fashion. Partition W and S as: 

,A b A b
T T

b c b c

W W S S
W S

W W S S

  
   
  





1



       (2) 

where  is a  matrix, and is a  AW   1P P   bW

vector of length , and cW  is a scalar. The di- 
mensions are the same for the corresponding partitions in 
S. The solution satisfies 

 1P 

 1arg min :T
b y A bw y W y y s 


        (3) 

This is a box-constrained quadratic program and can 
be solved using an interior-point procedure [12]. By 
permuting the rows and columns so the target column is 
always the last, they solve a similar problem like (3) for 
each column, updating their estimate of W after each 
stage [11]. This is repeated until convergence. If this 
procedure is initialized with a positive definite matrix, 
they showed that the iterates from this procedure remains  

positive definite and invertible even if  which is 
normally the case for gene expression data. That is also 
one of the reasons that we choose this method to con- 
struct gene association network. Using convex duality, 
Banerjee et al. showed that solving (3) is equivalent to 
solving the following minimization problem which re- 
sembles a  regularized least squares problem. 

p N

1L

21 2 1 2

1

1ˆ arg min
2 bA A sW W     

 
    (4) 

The solution for problem (3) is ˆ
b Aw W 

W
. Algorithm 

1 describes the procedure to compute , the estimate 
of  . In algorithm 1, ̂  is solved using coordinate 
descent described by Friedman et al. [13] and Wu and 
Lange [14]. The threshold T is typically defined as 

diagt ave S  , where  are the off-diagonal elements 
of the empirical covariance matrix , and t  is typi- 
cally set to a small number such as 0.001. The computing 
efficiency can be further improved via active set conver- 
gence [13]. 

diagS 

S

 
Algorithm 1: Graphical Lasso Algorithm 
W IS    
While W  is less than a user defined threshold T 
For i = 1 to p 
     Construct  by removing ith row and ith column 
from matrix W 

AW

     Construct bs  by removing ith element from  iS
     Solve ̂  using coordinate descent 
     ˆ

b Aw W   
     Form vector A by inserting  into iiW
     ith position of   b

     Update the ith row of W with A 
w

     Update the ith column of W with AT 
End For 
End While 
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2.2. Identification of Conserved Gene  
Association Sub-Networks 

Detecting common sub-network is a challenging task. 
However, we are approaching this problem from a graph 
product point of view. We will merge the two graphs by 
mapping corresponding orthologous genes and create the 
edges for merged graph  based on the 
following graph product rule. 

 ,mG V E m

      1 2, , , ,,m V i j i j EE i j i j E         (5) 

In other words, an edge in m  indicates both 1  
and 2  contain the edge or neither of them contain the 
edge. Finding common sub-networks in 1  and 2  
can be reduced to finding maximal cliques in m . A 
subset of vertices C is called a clique if all its vertices are 
mutually adjacent. A clique is said to be maximal if it is 
not contained in any larger clique. Pelillo has established 
equivalence between the graph isomorphism problem 
and the maximal clique problem [7]. The Motzkin-Straus 
theorem [9] has established a connection between the 
maximal cliques and the local maximizers of the follow- 
ing quadratic function: 

E E

G
E

G
G

  T

1 1

subject

maximize

to

i j

p p

ij
i j

f x ax x A x x

x

 






     (6) 

where  1
: 0 and 1px x x      is the standard  

simplex of p
1, if

, and A is the adjacency matrix for   mG

with . Specifically, it states that a  
 ,

0,Otherwise
m

ij

i j E
A


 


Csubset of vertices  of a graph is a maximum clique if 
and only if its characteristic vector cX is a global maxi- 
mizer of f  on  . A similar relationship holds be- 
tween local maximizers and maximal cliques [15]. The 
Motzkin-Straus theorem has served as the basis of many 
clique-finding procedures [16-18]. Pardalos and Phillips 
[17] observed that there existed spurious solutions to the 
original Motzkin-Straus formula, and Pelillo and Jagota 
[15] confirmed this finding later in 1996. Bomze pro- 
vided a straight-forward solution to this problem [19]. 
Consider the following regularized version of function  

f :   2

1 1 1

1

2
ˆ

p p p

ij i j i
i j i

f x a x x
  

   x , which is obtained  

from (6) by substituting the adjacency matrix A  with  
1

2 pW A I  , where pI  is the  identity matrix.  p p

We can avoid spurious solutions by substituting A  with 
. W

The optimization problem   T ,f x x Wx x   may 
have many local maxima. Each large local maximum 
correspond to a true common gene association sub-net-  

work, while small local maxima usually result from 
noises and outliers. Given an initialization  1x , the cor- 
responding local solution x  can be efficiently obtained 
by replicator equation, which arises in evolutionary game 
theory. The discrete time version of first-order replica- 
tion equation has the following form: 

   
  

   T
1i i

Wx t
it x t

x x tt
x

W
            (7) 

The simplex   is invariant under these dynamics, 
which means that every trajectory starting in   will 
remain in  . It has been proven that when  is sym- 
metric and non-negative, the objective function 

W

  Tf x xx W  is strictly increasing along any non-con- 
stant trajectory and its asymptotically stable points are in 
one-to-one correspondence to strict local solution of (6). 

To find all large local maximizers  x , we will start 
with different initializations that will lead to different 
local maxima. The procedure for finding all large local 
maxima is described in Algorithm 2. 

 
Algorithm 2: Finding all large local maxima 

0.5W A I   
For  = 1 to p v
    ( )  set of vertices adjacent to vertex N v v  
     C vN v   
     For i = 1 to p 
  If i C  
     1X i C  
  Else 
     0X i   
     End For 
     //find local maximal using replicator equation 
     Set ChangeFlag to true 
     While ChangeFlag stays true 
  wx W X 

T
 (wx is a length p vector) 

  fx XX W  
  For i = 1 to p 
        Y i X i wx i fx  
  End For 
  If Y X  
   Change Flag   False 
  Else 
   X Y   
     End While 

     
[ ].
[ ].

solution v X X
solution v s fcore x




 

End For 
Output all local maximizers 

 
For a local maximizer X , we need to recover the 

corresponding common gene association sub-network 
between the two species. The non-zero elements in local 
maximizer X  correspond to the genes that share the  
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same association network between the two species. It is 
possible to have some genes in the shared network that 
are independent. We need to remove these isolated genes 
from the conserved association network. Algorithm 3 de- 
scribes how to recover the common association network. 

 
Algorithm 3: Recover Conserved Gene Association
Network 
Input: Local maximizer X and adjacency matrix M for 
one species 
L   
For i = 1 to p 
    If   0X i   
        For j = 1 to p 
   if  0ijM 

L L    and break i
        End For 
    End If 
End For 
Output conserved association network (subset of M con-
sisting of genes in L) 

3. Experimental Data 

3.1. Graph Benchmark Data 

We used the DIMACS benchmark data set [20] to vali- 
date the effectiveness of the replicator equations to find 
maximal cliques. 

3.2. Gene Expression Data 

We applied the method to find common stress responsive 
gene association networks for two related bacteria Dei- 
nococcus radiodurans and Thermus thermophilus. We 
downloaded the gene expression data sets GSE 29516 for 
D. radiodurans from gene expression omnibus [21]. 
GSE29516 consists of microarray data from transcription 
profiling of D. radiodurans treated with 0.3 M NaCl or 2 
M salt. We downloaded the gene expression series 
GSE21289 for T. thermophilus. GSE21289 contains the 
gene expression data of T. thermophilus HB8 wild-type 
strain in response to high salt stress. 

3.3. Ortholog Mapping 

Ortholog mapping is done via multi-genome homology 
comparison tools available from the Comprehensive Mi- 
crobial Resource web site [22]. In the case of multiple 
genes in a cluster, we used the one with the highest score, 
resulting in 744 one-to-one ortholog pairs. Gene expres- 
sion data and ortholog mapping table is stored in an in- 
house relational database for easy retrieval and cross- 
referencing across the two species Gene expression data 
for orthologous genes are retrieved through database que- 
ries. 

4. Results and Discussions 

4.1. Benchmark Results on DIMACS Challenge 
Sets 

We recorded running time and clique found using our 
replicator equations. Table 1 shows the results on some 
DIMACS challenge instances. 

In general, our implementation is able to find maximal 
cliques in reasonable time. And we were able to find 
cliques that are close to their corresponding maximum 
clique numbers for each benchmark data set. 

4.2. Identification Common Gene Association 
Sub-Networks 

Two common gene association sub-networked were iden- 
tified using the described procedure (Figure 2). 

Annotations of the genes in Figure 2 are given in Ta- 
ble 2. 

 
Table 1. The performance of clique finding algorithm on 
some DIMACS challenge instances. 

Benchmark Time(sec) iteration cliqueFound MaxClique

c-fat200-1 0.01 50 12 12 

c-fat200-2 0.02 50 24 24 

c-fat500-1 0.03 50 14 14 

c-fat500-2 0.05 50 26 26 

brock200_1 0.55 1000 20 21 

brock200_2 0.32 1000 11 12 

brock200_3 0.39 1000 14 15 

brock200_4 0.44 1000 16 17 

brock400-2 6.67 5000 25 29 

brock400-4 6.66 5000 25 33 

brock800-1 14.28 5000 20 23 

brock800-2 14.72 5000 20 24 

brock800-4 14.35 5000 20 26 

hamming6-2 0.01 50 32 32 

hamming6-4 0 50 4 4 

johnson8-2-4 0 25 4 4 

johnson8-4-4 0 25 14 14 

keller4 0.02 50 11 11 

keller5 2.28 500 27 27 

keller6 76.75 1000 53 59 

p_hat300-1 0.05 100 8 8 

p_hat300-2 0.09 100 25 25 

p_hat300-3 0.12 100 33 36 

p_hat500-1 0.08 100 9 9 

p_hat700-1 0.12 100 9 11 

p_hat700-2 0.22 100 43 44 

p_hat700-3 0.41 100 60 62 

p_hat1500-1 0.3 100 10 12 

p_hat1500-2 1.03 100 64 65 

p_hat1500-3 1.74 100 88 94 
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Figure 2. Common gene association sub-networks identified 
for D. radiodurans and T. thermophilus. 

 
Among these genes, ABC transporter ATP-binding 

protein has been previously reported to be osmo-regu- 
lated [23]. Two of the genes are not fully annotated (hy-
pothetical protein in Table 2), we think they are worthy  

Table 2. Annotation of genes in the identified common sub-
net-networks. 

Gene ID Definition 

DR_1075/TTHA1108 Hypothetical protein 

DR_0318/TTHA1685 Heat shock protein 83-1 

DR_0320/TTHA1683 30 S ribosomal protein S17 

DR_0315/TTHA1688 30 S ribosomal protein S19 

DR_0321/TTHA1682 50 S ribosomal protein L14 

DR_0697/TTHA1276 v-type ATP sythase subunit E 

DR_1012/TTHA1888 ABC transporter ATP-binding protein 

DR_1542/TTHA1557 Propionyl-CoA carboxylase subunit beta

DR_1368/TTHA0563 Hypothetical protein 

DR_2493/TTHA1698 carboxypeptidase G2 

 
of further investigation because they seem to be related 
to osmosis stress response based on our study on two 
different species. A ribosomal protein has been found by 
Schmalisch et al. to be general stress protein in Bacillus 
subtilis [24]. We found three ribosomal proteins that are 
related to the stress response in both D. radiodurans and 
T. thermophilus. This is consistent with the finding from 
Schmalisch et al. [24]. 

5. Conclusions 

In this study, we developed an efficient computational 
framework that combines graphical lasso model, graph 
product and replicator equation based clique solver to 
identify common gene association sub-network from mul- 
tiple species. Our method provides an approach to iden- 
tifying conserved pathway components. 

We applied our method and identified common gene 
association sub-networks for two related bacterial species 
D. radiodurans and T. thermophilus subjected to similar 
environmental stress. We confirmed some stress respon- 
sive genes with previous studies. Our method also dem- 
onstrated how these genes interact with other genes and 
these interactions potentially are conserved because they 
are discovered via simultaneous study of two related spe- 
cies.  

Our method is not limited to finding common gene 
association sub-network across multiple species. It can 
also be adapted to identify core interaction network for 
the same species subjected to different environmental 
stresses. It can also be employed to identify common 
gene/protein sub-networks for related diseases such as 
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