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ABSTRACT 

In this work, the Micropolar fluid flow and heat and mass transfer past a horizontal nonlinear stretching sheet through 
porous medium is studied including the Soret-Dufour effect in the presence of suction. A uniform magnetic field is ap- 
plied transversely to the direction of the flow. The governing differential equations of the problem have been trans- 
formed into a system of non-dimensional differential equations which are solved numerically by Nachtsheim-Swigert 
iteration technique along with the sixth order Runge-Kutta integration scheme. The velocity, microrotation, temperature 
and concentration profiles are presented for different parameters. The present problem finds significant applications in 
hydromagnetic control of conducting polymeric sheets, magnetic materials processing, etc. 
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1. Introduction 

The natural convection processes involving the combined 
mechanism of heat and mass transfer are encountered in 
many natural and industrial transport processes such as 
hot rolling, wire drawing, spinning of filaments, metal 
extrusion, crystal growing, continuous casting, glass fiber 
production, paper production, and polymer processing, 
etc. Ostrach [1] the initiator of the study of convection 
flow, made a technical note on the similarity solution of 
transient free convection flow past a semi infinite vertical 
plate by an integral method. Goody [2] considered a neu- 
tral fluid. Sakiadis [3] analyzed the boundary layer flow 
over a solid surface moving with a constant velocity. 
This boundary layer flow situation is quite different from 
the classical Blasiuss problem of boundary flow over a 
semi-infinite flat plate due to entrainment of ambient 
fluid. 

Micropolar fluids, distinctly non-Newtonian in nature, 
are referred to those that contain micro-constituents be- 
longing to a class of complex fluids with nonsymmetrical 
stress tensor. These fluids respond to micro-rotational 
motions and spin inertia, and therefore can support cou- 
ple stress and distributed body torque which are not achi- 
evable with the classical Navier-Stokes equations or the 

viscoelastic flow models. The Micropolar fluid models 
are developed to make an analysis of the flow character- 
istics of physiological fluids (blood containing corpus- 
cles), colloidal suspensions, paints, liquid crystal suspen- 
sions, concentrated silica particle suspensions, oils con- 
taining very fine suspensions, industrial contaminants 
containing toxic chemicals, lubricants, organic/inorganic 
hybrid nano-composites and clay which are fabricated by 
melt intercalation etc. Eringen [4] first designed the study 
on micropolar fluid making an analysis on the theory of 
micropolar fluids which provided a mathematical model 
for non-Newtonian behavior. 

Crane [5] noted that usually the sheet is assumed to be 
inextensible, but situations may arise in the polymer in- 
dustry in which it is necessary to deal with a stretching 
plastic sheet. For examples, materials manufactured by 
aerodynamic extrusion processes and heat-treated mate- 
rials traveling between a feed roll and a wind-up roll or 
on a conveyor belt possess the characteristics of a mov- 
ing continuous stretching surface. Moreover lots of met- 
allurgical processes occupy the system of cooling of con- 
tinuous strips or filaments by drawing them through a 
quiescent fluid and that in the process of drawing, these 
strips are sometimes stretched. 

Copyright © 2013 SciRes.                                                                                  AM 



M. A. A. MAHBUB  ET  AL. 865

An important matter is that the final product depends 
to a great extent on the rate of cooling. By drawing such 
strips in an electrically conducting fluid subjected to a 
magnetic field, the rate of cooling can be controlled and a 
final product of desired characteristics can be achieved. 
The study of heat and mass transfer is necessary for de- 
termining the quality of the final product. Sparrow [6] 
explained a parameter named Rosseland approximation 
to describe the radiation heat flux in the energy equation 
in his book. 

The boundary layer models for steady or unsteady mi-
cropolar fluids in various geometries (stationary or mov- 
ing surface, linear or nonlinear stretching surface etc.) 
with/or without heat transfer considering various flow 
conditions (no slip or slip, suction/injection at the surface) 
and thermal boundary conditions (constant/variable sur- 
face temperature or heat flux) have extensively been stud- 
ied by numerous researchers [7-16]. 

Moreover, the thermal-diffusion (Soret) effect, for in- 
stance, has been utilized for isotope separation, and in 
mixtures between gases with very light molecular weight 
(Hz, He) and of medium molecular weight (Nz, air) the 
diffusion-thermo (Dufour) effect was found to be of a 
considerable magnitude such that it cannot be ignored, 
described by Eckert and Drake [17] in their book. Re- 
cently plenty of investigators [18-21] are getting interest 
work on Soret-Dufour effects. 

From the above referenced work and the numerous 
possible industrial applications of the problem, it is of 
paramount interest in this study in order to clarify the 
parametric behavior of magneto-hydrodynamic flow of 
free convection of a micropolar fluid over a nonlinear 
stretching sheet in the presence of dynamic effects of 
suction, thermal-diffusion and diffusion-thermo. 

2. Mathematical Model 

We consider the isothermal, steady, laminar, hydromag- 
netic free convection flow of an incompressible micro- 
polar fluid flowing past a nonlinear stretching sheet coin- 
ciding with the plane , the flow being confined in 
the region . The flow under consideration is also 
subjected to a strong transverse magnetic field  with 
a constant intensity along the y-axis. 

0y 
0y 

0B

Two equal and opposite forces are introduced along 
the x-axis so that the surface is stretched keeping the ori- 
gin fixed. The flow configurations and the coordinate sys- 
tem are shown in Figure 1. We assume that the velocity of 
a point on a sheet is proportional to its distance from the 
slit. We assume that all the fluid properties are isotropic 
and constant. Under the usual boundary layer and Bous- 
sinesq approximations, the governing equations for the 
problem under consideration can be written as follows: 

 

Figure 1. Flow configuration and coordinate system. 
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In Equation (2) the Darcian porous drag force term is  

defined by the term, 
p

S u

k



 

  
 

, which is linear in  

terms of the translational velocity, u. With 0S  , the 
micropolar effects disappears and this term reduces to the  

conventional Newtonian Darcy drag force i.e. 
p

u

k
 .  

The micro-rotation component, N, is coupled to the linear 
momentum Equation (2) via the angular velocity gradient  

term, 
S N

y



. Very strong coupling exists between the  

translational velocity components, u and v, in Equation  

(3) via the convective acceleration terms, 
N

u
x




 and 
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N
v

y




. Furthermore, there is a second coupling term link-  

ing the angular velocity with the x-direction velocity gra- 

dient, in Equation (3), 2
S

N
u

j y
 

   


 . The microrota- 

tion viscosity (or spin-gradient viscosity) S  is defined  

by 
2S

S
j    

 
 (Rahman [15]). We note that in the 

viscous shear diffusion term, 
2

2

S u

y



  

   
, the Newto- 

nian kinematic viscosity is now supplemented by the 
Eringen micropolar vortex viscosity, S. In the present 
work, we assume that the micro-inertia per unit mass j is 
a constant. Also, positive or negative n indicate the ac- 
celeration and deceleration of the sheet from the extruded 
slit respectively. Here  ,u v  are the fluid velocity com- 
ponents in the x-, y-directions respectively, N is the mi- 
crorotation, T is the temperature,    the kinematic vis- 
cosity, 

is
  is he fluid density,  t   is the electric con- 

ductivity, g is the acceleration due to gravity,   the 
volumetric coefficient of thermal expansion, 0B  the 
uniform magnetic field strength, pk  is the Darcy per- 
meability of porous medium, j is the Microinertia per 
unit mass,   the thermal conductivity of the fluid, cp 
the specific heat at constant pressure, mD  is the chemi- 
cal molecular diffusivity, T

is 
is 

is 

K  is  Thermophoretic 
constant, mT  is the Mean fluid temperature and cs is the 
Concentration susceptibility.  

the

The appropriate boundary conditions suggested by the 
physical conditions are: 

1) on the plate surface at 0y  :  
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2) matching with the quiescent free stream as : y 

, 0, ,u U N T T C C             (7) 

where the subscripts w and   refer to the wall and 
boundary layer edge, respectively. The relationship be- 
tween the microrotation function N and the surface shear  

u

y




 is chosen for investigating the effect of different  

surface conditions for the microrotation of the micropolar 
fluid elements. The conditions are generally of impor- 
tance in micropolar boundary layer analysis. When mi- 
crorotation parameter , we obtain  which 
represents no-spin condition i.e. the microelements in a 
concentrated particle flow-close to the wall are not able 
to rotate (Rahman [15]). Finally  and 

0S  0N 

,A D   are the 
constants. 

2.1. Similarity Solutions 

The partial differential Equations (1) to (5) are trans- 
formed into non-dimensional form by mean of following 
dimensionless variables 

   

     

 

1
12

2

1
12

2

1
3 12

2

1
, ,

2

1 1
,

2 1

1
, ,

2

n
n

n

n

w

w

B n
y x u Bx f

n n
v B x f f

n

B n T T
N B x h

T T

C C

C C

 


 

  


 















       


                  


  

      


   

    (8) 

Implementing Equation (8) into Equations (1) to (5) 
produces the following ordinary differential equations: 
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where the primes denote differentiation with respect to    

(non-dimensional y-coordinate) and 
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is the Darcy number, wjU

x

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  is the micro-inertia 

density parameter, Pr pc
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is the suction parameter. 

2.2. Skin Friction, Rate of Heat and Mass  
Transfer 

The parameters of engineering interest for the present 
problem are the skin friction coefficient  fc

Nu
, plate 

couple stress , local Nusselt number   and 
Sherwood number  which indicate physically the 
wall shear stress, couple stress, the rate of heat transfer 
and the local surface mass flux respectively. The dimen- 
sionless skin-friction coefficient, Couple stress, Nusselt 
number and Sherwood number for impulsively started 
plate are given by 
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where  is the Reynolds number. And hence the values 
proportional to the skin-friction coefficient, couple stress, 
Nusselt number and Sherwood number are  

 and 

Re

0 ,f h     0 , 0   0  respectively. 

3. Numerical Computation 

The numerical solutions of the non-linear differential 
Equations (9) to (12) under the boundary conditions (13) 
have been performed by applying a shooting method  

namely Nachtsheim and Swigert [22] iteration technique 
(guessing the missing values) along with sixth order 
Runge-Kutta iteration scheme. We have chosen a step 
size 0.01   to satisfy the convergence criterion of 
10−6 in all cases. The value of   has been found to 
each iteration loop by      . The maximum 
value of 


  to each group of parameters  , , , ,n M Gr

, , Pr, , , , , ,Da Ec S Sc Du Sr   and wf  has been deter- 
mined when the values of the unknown boundary condi- 
tions at 0   not change to successful loop with error 
less than 10−6. In order to verify the effects of the step 
size  , we have run the code for our model with three 
different step sizes as Δη = 0.01, Δη = 0.005 and Δη = 
0.001, and in each case we have found excellent agree- 
ment among them shown in Figures 2-5. 
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Figure 2. Distribution of velocity profiles for Δη. 
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Figure 3. Distribution of microrotation profiles for Δη. 
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Figure 4. Distribution of temperature profiles for Δη. 
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Figure 5. Distribution of concentration profiles for Δη. 

4. Results and Discussions 

For the purpose of discussing the results of the flow field 
represented in the Figure 1, the numerical calculations 
are presented in the form of non-dimensional velocity, 
microrotation, temperature and concentration profiles. The 
values of buoyancy parameter Gr is taken to be both 
positive to represent cooling of the plate. The parameters 
are chosen arbitrarily where Pr = 0.71 corresponds physi- 
cally to air at 20˚C, Pr = 1.0 corresponds to the electro- 
lyte solution such as salt water and Pr = 7.0 corresponds 
to water, and  and 1.0 corresponds to hy- 
drogen, water vapor and methanol respectively at 25˚C 
and 1 atmosphere. The values of Dufour and Soret num- 
bers are chosen in such a way their production is constant 
provided that the meat temperature  is kept constant 
as well. 

 0.22,0.6Sc 

mT

Due to free convection problem positive large values 
of 10Gr   is chosen. The value of  0.5, 1.0,M Da 

0.5, Pr 0.71Sc    and 0.5  . However, numerical 
computations have been carried out for different values 
of the vortex viscosity parameter , surface nonlin- 
earity parameter 

 
 n , Eckert number  Ec , constant 

parameter   , Dufour number  Du , Soret number 
 Sr  and suction parameter w f . The numerical re- 
sults for the velocity, microrotation, temperature and 
concentration profiles are displayed in Figures 6-33. 

Figure 6 shows the effect of vortex viscosity parame- 
ter   ( 0.2, 0.5, 1, 1.5   are chosen) on the velocity 
profiles. From here we see that velocity profiles decrease 
with the increase of  . Figure 7 demonstrates the effect 
of   on the microrotation profiles. From this figure it is 
seen that microrotation increases very evidently with the 
increase of the vortex viscosity parameter . It is also 
understood that as the vortex viscosity increases the rota- 
tion of the micropolar constituents gets induced in most 
part of the boundary layer where kinematic viscosity 
dominates the flow. From Figure 8 it is found that the 
temperature profiles increase for the increase of 



 . The 
effect of vortex viscosity parameter  on the concen- 
tration profile is not so noteworthy displayed in Figure 
9. 



The effects of the surface nonlinearity constant n are 
characterized in the Figures 10-13. At the beginning the 
velocity profiles decrease with the increase of the value 
of  1, 2, 3, 4n n   but far away from the plate they 
increase after 1.76   displayed in Figure 10. Figure 
11 expresses that the microrotation profiles at the begin- 
ning increase extensively but at a distance from the plate 
they overlap and start to decrease very slowly. Figures 
12 and 13 enlighten the temperature and the concentra- 
tion profiles for the increasing influence of the parame- 
ter respectively. n

Figures 14-17 exhibit the velocity, microrotation, tem- 
perature and concentration profiles for the different val- 
ues of the Eckert number Ec (0.03, 0.1, 0.5 and 1.0). 
Figure 14 demonstrates that the effect of the Ec on ve- 
locity profiles very significant. We observe that velocity 
increases rapidly with increasing the value of Ec. From 
the Figure 15 we notice that microrotation profiles de- 
creases with the increase of the value of Ec. Figure 16 
presents the increasing effect of Ec on the temperature 
profiles. The concentration profiles decrease with the in- 
crease of the value of Ec illustrated in Figure 17.  

Figures 18-21 represent the influence of the constant 
parameter  for the values 0,1, 2, 5  . All the profiles 
except microrotation profiles decrease with the increase 
of . The effects of  are very significant smooth on the 
distributions. The microrotation profiles increase with the 
increase of the value of . 

It is observed from the Figure 22 that with the increase  
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Figure 6. Distribution of velocity profiles for . 
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Figure 7. Distribution of microrotation profiles for . 
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Figure 8. Distribution of temperature profiles for . 
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Figure 9. Distribution of concentration profiles for . 
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Figure 10. Distribution of velocity profiles for n. 
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Figure 11. Distribution of microrotation profiles for n. 
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Figure 12. Distribution of temperature profiles for n. 
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Figure 13. Distribution of concentration profiles for n. 
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Figure 14. Distribution of velocity profiles for Ec. 
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Figure 15. Distribution of microrotation profiles for Ec. 
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Figure 16. Distribution of temperature profiles for Ec. 
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Figure 17. Distribution of concentration profiles for Ec. 
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Figure 18. Distribution of velocity profiles for . 
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Figure 19. Distribution of microrotation profiles for . 
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Figure 20. Distribution of temperature profiles for . 
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Figure 21. Distribution of concentration profiles for . 
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Figure 22. Distribution of velocity profiles for Du. 
 

of the value of Du the velocity profiles occur higher. The 
effect of Du on the microrotation profiles is insignificant 
illustrated in Figure 23. From Figure 24, it is noticed 
that Du has remarkable effect on temperature profiles; 
quantitatively when  1.0   Du increases from 0.5 to 1 
and there is 23.08% increase in the temperature value, 
whereas the corresponding increase is 19.05%, when Du 
increases from 2 to 3. The Dufour number has a falling 
effect on the concentration field shown in Figure 25. 
Quantitatively when  1.0   and Du increases from 0.5 
to 1, there is 15.56% decrease in the concentration value, 
whereas the corresponding decrease is 6.67% when Du 
increases from 2 to 3. 

Figures 26-29 display the effects of the Soret number 
Sr on the velocity, microrotation, temperature and con- 
centration profiles respectively. It is observed that Sr has 
very negligible effect on the velocity, microrotation and 
temperature profiles. Figure 29 reveals that the Soret  
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Figure 23. Distribution of microrotation profiles for Du. 
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Figure 24. Distribution of temperature profiles for Du. 
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Figure 25. Distribution of concentration profiles for Du. 
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Figure 26. Distribution of velocity profiles for Sr. 
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Figure 27. Distribution of microrotation profiles for Sr. 
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Figure 28. Distribution of temperature profiles for Sr. 
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number Sr influences the concentration profiles to a great 
extent. Quantitatively when  1.0   and Du increases 
from 0.5 to 1, there is 23.08% decrease in the concentra- 
tion value, whereas the corresponding decrease is 23.07% 
when Du increases from 2 to 3. 

Figure 30 displays that the suction parameter fw has 
strong effect on the velocity profiles. With the increase 
of the value of fw the velocity profiles decrease. Elabo- 
rately when  1.0   and Du decreases from 0 to 0.5, 
there is 176.79% decrease in the concentration value, 
whereas the corresponding decrease is 21.47% when Du 
increases from 1 to 3. It is observed that, when suction fw 
increases, the microrotation increase monotonically seen 
in Figure 31. These Figures 32 and 33 indicate that tem- 
perature as well as concentration profiles decrease with 
the increase of suction velocity or mass transfer parame- 
ter frequently. 
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Figure 29. Distribution of concentration profiles for Sr. 
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Figure 30. Distribution of velocity profiles for fw. 
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Figure 31. Distribution of microrotation profiles for fw. 
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Figure 32. Distribution of temperature profiles for fw. 
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Figure 33. Distribution of concentration profiles for fw. 

Copyright © 2013 SciRes.                                                                                  AM 



M. A. A. MAHBUB  ET  AL. 874 

Finally, Finally, the effects of various parameters on 
the skin friction Cf, couple stress Mw, local Nusselt num- 
ber Nu and local Sherwood number Sh are shown in the 
Tables 1-2. 

5. Conclusions 

In the present paper, Soret Dufour effect on the boundary 
layer flow and heat transfer of microrotation fluid over a 
nonlinear stretching plate in the presence of suction has 
been studied. The governing momentum and energy 
equations were transformed to a set of non linear ordi- 
nary differential equations by employing the appropriate 
similarity transformations and solve numerically for vari- 
ous combinations of problem parameters. The effects of 
the vortex viscosity parameter , surface nonlinearity 
parameter , Eckert number 

 
 n Ec , constant parame- 

ter   , Dufour number  Du , Soret number  Sr  
and suction parameter  fw  are investigated through 
the use of graphs. 

 
Table 1. Cf, Mw, Nu and Sh for different values of the pa- 
rameters  and n. 

Parameters Cf Mw Nu Sh 

 = 0.2 −0.7660054 −0.6785573 0.9187514 1.4347764

0.5 −0.9431672 −0.7418682 0.8969659 1.4211495

1.0 −1.1402750 −0.8065383 0.8652346 1.4042243

1.5 −1.2705812 −0.8432893 0.8377928 1.3924873

n = 2.0 0.6510607 0.6598670 1.0016252 1.4025156

3.0 0.2393268 0.2751800 0.8948076 1.2650374

4.0 −0.0287619 0.0197969 0.8257597 1.1776228

 
Table 2. Cf, Mw, Nu and Sh for different values of the pa- 
rameter Ec, , Du, Sr and fw. 

Parameters Cf Mw Nu Sh 

Ec = 0.10 1.3717933 1.2810219 1.2871015 1.0869111

0.50 1.8711019 1.7189631 0.7748798 1.2717607

1.00 3.4607307 3.2494880 −1.5177258 1.9183527

 = 0.0 1.8501324 1.7020239 0.7579262 0.6120285

1.0 1.5247058 1.4135722 1.0978664 0.8674080

5.0 0.9011038 0.8872078 1.8941767 1.4905104

Du = 1 1.5078442 1.3967581 1.1508341 1.1396871

2 1.9322204 1.7744343 0.6155264 1.3127209

3 2.4036488 2.2140699 −0.2279146 1.5484008

Sr = 1 1.2721836 1.1945495 1.4130040 0.8184983

2 1.1943642 1.1250180 1.5801953 0.2060201

3 1.0959358 1.0378509 1.8467657 −0.7052097

fw = 0 1.4328645 1.1173236 1.2121609 0.9927766

1 1.1166248 1.2559658 1.5013565 1.1358380

3 −0.2894534 −0.2193329 2.2488293 1.5064022

From the present study the following conclusions are 
made: 

1) The effect of vortex viscosity  parameter on 
velocity and microrotation is prominent; 

 

2) Nonlinearity of the stretching surface  is effec- 
tive on the boundary layer flow; 

 n

3) Effect of Eckert number  Ec  is uniform; 
4) Boundary layer growth can be controlled by using 

constant parameter   ; 
5) The Dufour  Du  effect is significant; 
6) The Soret number  Sr  plays a role on concentra- 

tion; 
7) The effect of suction parameter  fw  is dominat- 

ing on the velocity, microrotation, temperature and con- 
centration profiles. So, using suction boundary layer 
growth can be stabilized. 
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