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ABSTRACT 

A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and 
analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of 
radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further 
they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence 
theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of find- 
ing the optimal solutions are proved. 
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1. Introduction 

In many practical applications at the optimal design of 
various types of radio and acoustic radiating systems the 
requirements are only to the energy characteristics of the 
directivity of the radiated field (amplitude directivity pat- 
tern (DP) or DP by the power). Therefore there is a need 
to approximate real finite functions by modules of one- 
dimensional or two-dimensional and discrete Fourier 
transform dependent on the real physical parameters. At 
the same time the absence of requirements to phase cha- 
racteristics of field is used to improve the quality of ap- 
proximation of synthesized DP to given. 

Later on the variational formulations of different types 
of inverse problems in mean-square approach, which in 
further are reduced to investigation and numerical solu- 
tion of one-dimensional or two-dimensional nonlinear 
integral equations of the Hammerstein type with separate 
module and argument of desired complex-valued func- 
tion, are considered. Nonuniqueness and branching (or 
bifurcation) of solutions dependent on the change of the 
physical parameters characterizing the radiating system 
are characteristic features of such equations. Problems on 
finding the set of branching points (bifurcation) are not 
investigated nonlinear one-parameter or two-parameter 
spectral problems. 

The existence of connected components of the spec- 
trum, which in the case of real parameters are of spectral 
lines, is essential difference between the two-dimensional  

and one-dimensional spectral problems. The problem on 
finding the spectral lines is reduced to numerical solution 
of the Cauchy problem for an ordinary differential equa- 
tion of the first order. 

The degenerate of kernels in linear operators of the 
Hammerstein type equations is feature of the synthesis 
problems of antenna arrays. It allows to reduce nonlinear 
two-parameter spectral problems on finding the set of 
branching points of solutions to the corresponding sys- 
tems of linear algebraic equations with nonlinear occur- 
rence of the spectral parameters in the coefficients of sys- 
tem. 

In the basis of construction of numerical algorithms 
for finding the optimal solutions are taken such prince- 
ples: localization of existing solutions dependent on the 
value of the physical parameters of the problem by means 
the use of numerical methods of solving the non-linear 
one-parameter and two-parametric spectral problems, 
and methods of the branching theory of solutions—con- 
struction and justification of the convergence of iterative 
processes for numerical finding the various types of ex- 
isting solutions of basic equations (equations of Ham- 
merstein type)—analysis of the effectiveness of found 
solutions. 

2. Formulation of Problems. Basic Equations 
of Synthesis 

In general case, the analysis problems (direct problems) 
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of radio (or acoustic) radiating systems are reduced to so- 
lution the corresponding boundary problems of electro- 
dynamics (acoustic) at a given excitation sources of fields 
[1-4] on the basis of Maxwell’s equations (wave equa- 
tion). The directivity pattern f  is one of the basic cha- 
racteristics of the emitted field on large distances from 
the radiating system. It describes the properties of the 
field in space dependent on the angular coordinates of a 
spherical coordinate system. In general case, the DP f  
is a vector of complex-valued function which has the 
form [5,6] 

f f A A          f i i Ui Ui .     (1) 

Here  ,A A A  is linear operator acting from 
some functional Hilbert space UH  (the space of square 
integrable functions in the domain V , describing the 
distribution of extraneous fields (currents) U  in vol- 
ume V ) into the space of complex-valued continuous 
functions  C  defined in some domain 2   (or 

1  ) [7]. The form and properties of operators A , 
A  are defined by type and geometry of the radiating 

system. The set (domain) of values of the operator 
 ,A A A  is called [8,9] set or class of realized di- 

rectivity patterns. This means that for any DP f  from 
this class there exists such function of distribution of the 
currents (fields) UHU  that realizes this DP, i.e. 

.AU f  
In the simplest form the inverse problem (the synthesis 

problem) according to the prescribed amplitude DP can 
be formulated as the problem on finding the solutions of 
nonlinear operator equation of the first kind 

FAU ,               (2) 

where F  is a given amplitude DP. In staged thus the 
synthesis problem all three correct conditions of prob- 
lems by Hadamard [10-12]: existence of the solution, 
uniqueness of the solution, continuous dependence of the 
solution of the input data, can be violated simultaneously. 
Violation of condition (1) in the first place is connected 
with the fact that the given DP F  can not belong to the 
class realized, that is to the domain of values of the op- 
erator A . In other words, such DP can not be obtained 
at any distribution of field in the aperture of the radiating 
system belonging to the space UH . Trying to recreate 
the DP F  just leads to effect of superdirectivity [5]. 
The system becomes resonance and critical to change of 
parameters. 

Condition (2) is violated due to the nonlinearity of the 
problem. 

Therefore, the variational formulations of problems, 
which in addition to the requirements of the basic char- 
acteristics of DP also contain requirements to the distri- 
bution function of the currents (fields) in the aperture of 
the radiating system, are considered. At that is required 

not complete coincidence obtained DP f  with given 
F , but only the best (in the sense of the selected crite- 
rion) approximation to it. 

An important feature of the variational formulation of 
synthesis problems is the fact that in the optimization cri- 
terion can introduce functionals describing certain other 
requirements to amplitude-phase distribution (APD) of 
outside excitation sources. Their mean-square deviation, 
as a rule, will be used as the criterion of proximity of 
amplitudes of the given and synthesized DP. 

2.1. The Case of Linear Polarization of 
Extraneous Field 

First we consider the scalar case of problems when ex- 
traneous fields (currents) in the radiating system is line- 
arly polarized [7,13], and created by their DP (1) has 
only one component. Let the operator A acts from some 
Hilbert functional space  2UH L V  into the complex 
space of continuous and square integrable functions in 
domain 2   (or 1  )  

 2C  . 
In space UH  we introduce the scalar product and 

norm 

     1 2 1 2, d
UH V

U U U P U P V  , 

  1 22
d

UH V
U U P V  ,            (3) 

where  , ,P x y z  is a point of integration. 
Along with the Chebyshev norm 

   sup
C

Q
f f Q




 ,                (4) 

in the space we introduce scalar product and the gen- 
erated by it norm and metric  

 2C   as follows: 

 
 
     2, d

C
f g f Q g Q Q

 

  , 
 
   

 
 2 2

1 2
,

C C
f f f

 

 , 

 
   

 
 22 1 2 1 2,

CC
f f f f



  .            (5) 

Note, space  
 2C   is a Banach space relatively uni- 

form norm (4) and it is incomplete space concerning 
norm defined according to (5) [14]. 

We consider also that the operator A  has the izomet- 
ric property or it is completely continuous. Let the given 
amplitude DP F  is real positive (nonnegative) con- 
tinuous function which different from nonzero in some 
limited closed domain G    and identically equal 
zero on complement G . Let A  is isometric opera- 
tor, that is for any UU H  and ff AU H   equality 
is satisfied 

 
   

 
   22

2 2
, ,

U UC HC H
f AU AU U U U


   .   (6) 

In [15-17] the synthesis problem of given amplitude 
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DP F  is formulated (is investigated) as a minimization 
problem in the Hilbert space  2UH L V  of the func- 
tional 

 
 
 2

2

F C
U F AU



            (7) 

characterizing the value of mean-square deviation of mo- 
dules of given and synthesized DP in domain  . For 
the formulated problem occurs [18,19] 

Theorem 2.1. Let the linear operator  
   

 2
2:A L V C   is isometric relatively mean-square 

metric and it is continuous operator from  2L V  into  

 
 2

G
C  concerning uniform metric of the space  

 2C  , and  

the given amplitude DP  F s  is a real positive (non- 
negative) continuous function in the domain G . 

Then at least one point of absolute minimum of the 
functional (7) exists in the space  i arge AUU A F   
and a subsequence which converges weakly to one of 
points of absolute minimum can be selected from any 
minimizing sequence. 

On the base of the necessary condition for an extre- 
mum of the functional (zero equality of its Hato differen- 
tial [20])     , 0F FD U w U w    , we obtain the 
equation with respect to the optimal distribution of exci- 
tation sources 

 i arge AUU A F  ,           (8) 

where A  is the conjugate with A  operator. 
Let the set of zeros  N A  of the operator A consists 

of only one zero element 0 . Then acting on both parts 
of (8) by operator A , we obtain the equivalent to (8) 
equation in space  C G : 

 i arge ff AA F  .          (9) 

By solutions f  of this equation the optimal distribu- 
tion of excitation sources in radiating system are defined 
by the formula 

 i arge fU A F 
   .          (10) 

From Theorem 2.1 and the properties of functional 
 F U  follows 

Corollary 2.1. Since functional  F U  is differen- 
tiable in UH  by Hato, it is growing [21] and according 
to Theorem 2.1 has at least one point of absolute mini-
mum, then (8) in the space UH  and (9) in the space 
 C G  have at least one solution. 
Lemma 2.1. Between solutions of (8) and (9) there ex- 

ists bijection, that is if U  is the solution of (8), then 
f AU   is the solution of (9). On the contrary, if f  

is the solution of (9), then the corresponding solution of 
(8) is defined by (10). 

The possibility of investigation of solutions of synthe- 
sis problems, using (8) or (9) follows from Lemma. Note, 

Equation (9) is simpler as (8), since the latter contains the 
operator exponent. 

Note, solutions of synthesis problems according to the 
prescribed amplitude DP are determined with precision 
to value ie   (   is arbitrary constant), since  

ieU U  . So if there exists the solution of Equations 
(8) (or (9)), then there is also generated by its family of 
solutions in which one solution different from another by 
phase constant. For the uniqueness of desired solutions 
additional conditions impose on the functions argU  or 
arg f . 

In the case completely continuous operator describing 
DP of radiating system the smoothing Tikhonov type 
functional [11] 

 
 
 

 
 

2

2

2 2

2 2

U
G

U
G

F HC

HC

I F f U

F AU U


 



  

  
       (11) 

which includes requirements as to the mean-square de- 
viation of DP, so to norm of current, is used [18,22] for 
the synthesis of various types of antennas. The parameter 
α can be viewed as regularization parameter [11,23] or as 
a weighing coefficient, by means of which can control 
ratio between the first and second summand of func- 
tional. 

Theorem 2.2. Let the linear operator A  acts from 
the complex Hilbert space  2UH L V  into the com-  

plex space of continuous functions  
 2

G
C  and it is com- 

pletely continuous, and given DP is real positive (non- 
negative) and continuous function in 1G  (or in 

2G ). 
Then at least one point of absolute minimum of func- 

tional  F U


  exists in  2UH L V  and a subse- 

quence which converges weakly to one of the points of 
absolute minimum can be selected from any minimizing 
sequence. 

Differentiating functional  F U


  by Hato and per- 

forming appropriate transformations, we obtain the equa- 
tion [22,24] 

   exp iargU A AU A F AU       (12) 

in the space UH . 
Equation with respect to synthesized DP based on 

equality f AU  and (12) has the form  

  exp iargf AA f AA F f     .    (13) 

Lemma similar to Lemma 2.1 is valid for (12) and 
(13). 

From Theorem 2.2 and properties of functional  
 F U


  follows [7,18] 
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Corollary 2.2. Since differentiable in UH  by Hato 
functional  F U


  is growing and according to Theo- 

rem 2.2 has at least one point of absolute minimum, then 
(12) in space UH  and (13) in the space  C G  have at 
least one by one solution. 

2.2. The Case of Arbitrary Polarization of 
Excitation Fields 

Consider the more general case when the excitation fields 
(or currents) in the radiating system and generated by it 
DP have vector character [5,6]. In this case, we set that 
the operator A  is completely continuous and it acts 
from      2 2 2UH L V L V L V    complex space of 
square integrable in the domain V  vector-valued func- 
tions, into the complex space of continuous functions on 
the compact 2G    vector-valued functions  

 
 

 
 

 
 2 2 2

G G G
C C C  equipped by scalar product. We in- 

troduce the scalar product and generated by it norm in 

UH : 

                
               

       

1 2 1 2 1 2
1 2

1 2 1 2

1 2

, , , ,

, , , , , , , ,

, , , , d d d ,

x x y y z z

x x y y
V

z z

U U U U U U

U x y z U x y z U x y z U x y z

U x y z U x y z x y z

  


 




 




U U

 

(14) 

 

      

1 2

1 2

,

, , ,

UH

x x y y z zU U U U U U



  

U U U
.  (15) 

We define module of vector U  as following:  

 1 2

x x y y z zU U U U U U     U . 

In the space  
 

 
 

 
 2 2 2

G G G
C C C  along with the Che-  

byshev norm 

   
 

,
max ,

G G 
 




C
f f ,       (16) 

where  

          1 2

, , , , ,f f f f               f , 

we introduce the scalar product and generated by it the 
mean-square norm and metric 

 
 
 

    
 
 

    
 
 

                
2 2 2

1 2 1 2
1 2

1 2 1 2

, , ,

, , , ,

sin d d ,

G G G
C C

G

f f f f

f f f f

   

          

  

 

   





C
f f

 

(17) 

 
   

 
 2 2

1 2
,

G G


C C

f f f .         (18) 

If DP of radiating system has two components f , 
f , i.e. it is described by (1), then as the optimization 

criterions are used the following functionals [7]: 

 
 
 

 
 

2

2

2 2

2 2
,

UG

UG

F HC

HC

F

F A


 



  

  

U f U

U U
             (19) 

 
 
 

 
 

 
 

 
 

2 2

2 2

22 2

22 2

UG G

UG G

F HC C

HC C

F f F f

F A F A

    

   

 



    

    

 U U

U U U
. 

(20) 
In the functional (20), F , F  are the given ampli- 

tude of components of required DP. At that  

 1 22 2F F F   ,   1
C G

F   and functions F , F   

can be given with account of existing requirements to 
polarization characteristics of emitted field. 

If in the synthesis problem functional (19) is used as 
the optimization criterion, the problem on finding the 
minimum points is reduced to finding the solutions of the 
equation  

 1 1 F     *U A AU A AU AU    (21) 

in the space IH . Equivalent to (21) equation with re- 
spect to vector DP f  in space  

 2

G
C  has the form  

 1 1 F      f AA f AA f f .   (22) 

In this case the following theorem is valid [7]. 
Theorem 2.3. Let linear completely continuous op- 

erator A  acts from the complex Hilbert space 
     2 2 2UH L V L V L V    into the complex space  

of continuous functions  
 

 
 

 
 2 2 2

G G G
C C C  equipped by  

the scalar product, and given DP is a real positive con-
tinuous function on the compact G . 

Then in UH  there exists at least one point of absolute 
minimum of functional  F

 U  and a subsequence 
which converges weakly to one of the points of absolute 
minimum can select from any minimizing sequence. 

For the functional (20) is true 
Theorem 2.4. At conditions of Theorem 2.3 functional 
 F

 U  in the space UH  has at least one point of ab- 
solute minimum and subsequence which converges 
weakly to one of points of absolute minimum can be se- 
lected from any minimizing sequence. 

For minimizing of the functional  F
 U  in the 

space UH  we obtain equation [7] 

    i argiarg1 e , e
AAF A F A 

        UUU A U U . 

(23) 
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Equivalent to (23) equation with respect to synthesized 
DP f  in the space  

 2

G
C  has the form 

    i argiarg1
e , e

ffF f F f 
   

  f AA .  (24) 

The existence of solutions of (23) in space UH  and 
(24) in the space  

 2

G
C , respectively, follows from nec- 

essary condition of functional minimum  F
 U . 

If necessary the weight function [15,17] can introduce 
in the functionals F  and F

  by means entering ap- 
propriate scalar products and affect on quality of the ap- 
proximation of synthesized and given DP in a certain 
range of angles. 

2.3. Simultaneous Optimization of the Geometry 
of Aperture and Excitation Fields 

The synthesis problems with optimization of geometry of 
radiating system are more complicated class of problems. 
These problems need to find a configuration of the radi- 
ating system and amplitude-phase distribution of excita- 
tion fields (currents) in it [25,26]. Moreover, the operator 
A  depends on two functions: function   describing 

the geometry of the system, and amplitude-phase distri- 
bution function of excitation sources ,U  i.e. 

  f A U .              (25) 

In addition, the function U  has, as rule, vector char- 
acter, and the operator A  is a nonlinear concerning the 
function  . Later on we shall consider the synthesis 
problem of a flat aperture, in which in addition to ampli- 
tude-phase distribution (APD) desired is too the function 
that describes the boundary of aperture. The basis of the 
formulation of such problems can be put the functionals 
(7), (11) and (20), expanding their by corresponding re- 
quirements to geometry of radiating system. 

2.4. Synthesis Problem of Discrete Radiating 
Systems―Antenna Arrays 

In many radio engineering systems antenna arrays (AR) 
have gained widespread use. Antenna array is [4,6,27] 
antenna, which consists of N  identical (or different- 
type) radiators placing corresponding way in space and 
they collate by common system of power and control. In 
[28-37] investigations of nonlinear synthesis problems 
and planar antenna arrays according to the prescribed 
amplitude DP are presented. 

To describe the electromagnetic characteristics of an- 
tenna arrays are used different by precision mathematical 
models [38-42]. In the base of construction of mathe- 
matical models is imposed [40,42] that the excitation of 
each radiator is characterized by a unique complex num- 
ber nI -complex amplitude of excitation. It’s the physical 
meaning depends on the type of radiating system. On the 

base on the linearity of the Maxwell’s equations the 
complex excitation amplitudes enter linearly in the ex- 
pression for DP of array, that is 

     i sin cos sin sin cos

1

, , e n n n
N

k x y z
n n

n

I          



 f f , (26) 

where          , , ,n n
n f f         f i i  is vector  

DP n -th radiator. Vector  1 2, , , NI I II   is called 
vector excitation of array or vector of amplitude-phase 
distribution of currents in the array. 

In general, the construction of high-accuracy mathe- 
matical models of array is reduced to solving the corre- 
sponding exterior boundary problem of high-frequency 
electrodynamics for system of the Maxwell’s equations 
in multiply-connected domain [1,39-41]. In the particular 
case, where the elements of the array are ideally leading 
talamy accounting of the mutual influence is based on the 
method of induced electromotive forces (IEF) and it is 
reduced to solution the corresponding system of linear 
integral equations [42] 

I UB ,                 (27) 

where B is matrix-integral linear operator; I is complex- 
valued vector distribution function of surface currents on 
radiators; UHU  is vector-valued function describing 
the outside fields (voltage) which is necessary to create 
in the system of power of array. Allocating in the space 

IH  compact class of solutions (where (27) is correct), 
solution of (27) is written as 

1I U B .               (28) 

Here it is assumed that the corresponding regularized 
system1 I U B  exists for the system of (27). Then on 
the basis of (28) formula for DP of array takes the form 

1A f U B .               (29) 

This relation allows to formulate the synthesis problem 
of antenna array according to the prescribed amplitude 
DP with account of the mutual influence of elements as 
the problem on finding the vector U  minimizing the 
functional 

 
 
 2

2 21

U
G

F HC
F A


   U U U B    (30) 

in space UH . 
At need to take into account the component-wise ap- 

proximation of modules of given and synthesized DP’s, 

1Note: regularization methods [11,12] are the basic methods of con-

struction of the operator  B under which the stable solutions of (2.27) 
are obtained, and for equations whose kernels have a weak feature, 

self-regularization. The entity of construction of the operator  B (at 
execution of respective conditions) consists in reducing the system of 
integral equations of the first kind to the corresponding system of 
integral Fredholm equations of the second kind, that is to correct the 
problem. 
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the functional [43-45] 

 
 
 

 
 

 
 

 
 

2 2

22

22 2

2 2
1 1

2

U
G G

GG

U

F HC C

CC

H

F f F f

F A F A

    

   

 



 

    

   





 B

U U

U U

U

B  (31) 

analogously to (20) can be used as optimizing criterion. 
By the desired solutions of this problem the optimal 

vector of extraneous voltages on inputs of radiators is de- 
termined on the basis of (27). 

Thus, the basic requirements for synthesis problems of 
different types of radiating systems according to the pre- 
scribed amplitude DP are formulated. Note that recorded 
functionals is not convex [21], and therefore may have 
nonunique extreme point. In further the above statements 
of problems allow to obtain relatively simple nonlinear 
integral or matrix equations for the study and solution of 
which can be applied numerical methods of nonlinear 
analysis methods. 

Integral equations method [40,42] is used widely in 
such classes of problems. The method of synthesis of an- 
tenna arrays from cylindrical dipoles with account of mu- 
tual influence is proposed in [43-45]. Analysis of prob- 
lem of nonuniqueness solutions is studied there by means 
computational experiments. 

2.5. Nonlinear Synthesis Problem of Radiating 
Systems with Use of Energy Criterion 

In spite of the fact that from the amplitude DP f  is 
easy to obtain the DP by power 

2
N  f  and vice versa, 

in the mathematical aspect the synthesis problems of 
given amplitude DP 0F  and given energy DP 2

0 0N F  
are different tasks. For example, if f  is the optimal 
solution of some variational synthesis problem of ampli- 
tude DP, then 

2

f  will not be the optimal solution of a 
similar problem for the given DP 2

0F . On this basis, in 
[46-49] on the operator level are considered statements 
of synthesis problems with use of two types of stabilizing 
functionals, in which the vector character of the electro- 
magnetic fields takes into account. 

Consider the synthesis problem of given energy DP 
 0 ,N   . Taking into account the expression for DP 

2 22 22
N f f A A       f U U , 

in the simplest form this problem can be formulated as a 
problem on finding the solutions of nonlinear operator 
equation of the first kind 

222

0A A N   AU U U ,       (32) 

where 0N  is a real positive continuous function in  

2G  (at that 
 

 0
,

max , 1
G

N
 

 


 ) which can not be- 

long to the domain of values of the operator 
2

AU . It is 
known [11] that (32) is severely ill-posed problem. In 
this connection, we consider the problem on best mean- 
square approximation of the real positive continuous (in 
the domain G ) function  0 ,N    by function  

  2
, f  

(    , A R A   f I ,  , ,x y z UU U U H U ). 

Formulate it as minimizing problem of functional [49] 

 
 
 

 
 

2

2

22 2

0

22 2

0

U
G

U
G

N H

H

N A

N


 



  

  

C

C

U U U

f U
    (33) 

in the space UH . In this functional the first summand 
characterizes mean-square deviation of given and syn- 
thesized DP by power. Second summand imposes restric- 
tions on norm of currents in the radiating system. Real 
parameter 0   we shall consider as a weighing multi- 
plier. The existence of at least one point of minimum 
functional  N

 U  in the space UH  states [7,49] 
Theorem 2.5. Let the linear operator A  acts from 

the space UH  into  
 2

G
C  and it is completely continuous, 

 0 ,N    is given nonnegative continuous the function  
in G , at that

 
 0

,
max , 1

G
N

 
 


 . 

Then in the space HU there exists at least one point of 
absolute minimum of the functional  N U


  and sub- 

sequence that converges weakly to one of the points of 
absolute minimum can be selected from any minimizing 
sequence. 

On the base of necessary condition of minimum func- 
tional is obtained the equation [7] 

   2

0

2 2
N

 
    U A AU A AU AU   (34) 

with respect to optimal currents in the space UH . This 
equation is a nonlinear operator equation having in the 
right part linear operator along with the Hammerstein 
type operator. If the set of zeros  N A  consists of only 
the zero element 0 , then acting on both parts of (34) by 
operator A , we obtain equation an equivalent to (34) 
with respect to synthesized DP in the space  

 2

G
C  

     2

0

2 2
.N

 
     f B f AA f AA f f  (35) 

In [49] is shown that the functional  N
 U  has 

m -property [50], that is the minimum point of the func- 
tional is interior point of some convex weakly closed set 
of the space UH . On this basis from Theorem 2.5 fol- 
lows [7] 

Corollary 2.3. Since the functional  N
 U  is dif- 
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ferentiable in UH  by Hato, has at least one minimum 
point and -m property, then (34) in the space UH  and  

(35) in the space  
 2

G
C  have at least by one solution. 

Lemma 2.2. At conditions of Theorem 2.5 and limited 
values of parameter   operator 

     2

0

2 2
N

 
    B f AA f AA f f  (36) 

is compact in the space  
 2

G
C . 

Since for elements relatively compact set of normal- 
ized space the strong and weak convergence coincide [51] 
then with Theorem 2.5 and Lemma 2.2 follows 

Corollary 2.4. If  nU  is minimizing sequence of the 
functional  N

 U  converging weakly to the minimum  

point U , then the sequence    
 2

n n G
 f AU C  con- 

verges uniformly in  
 2

G
C  to A f U . 

3. About Branching of Solutions of the Basic 
Equations of Synthesis. Partial Cases 

Here on the example of scalar synthesis problems of lin- 
ear radiator and radiating system with a flat aperture are 
presented the results of investigation of nonuniqueness 
problem of solutions corresponding to these tasks non- 
linear integral equations of Hammerstein type depending 
on the change of the physical parameters. 

3.1. The Case of a Linear Radiator 

We put that the linear antenna is linear electric conductor 
of length 2a , sizes of cross-section of which are much 
less than the wavelength. Due to these limitations the 
excitation currents in the antenna shall have only direct- 
axis current [5]. Introduce the Cartesian and connected 
with spherical coordinate systems such that the origin of 
coordinates coincides with the middle of the antenna. We 
direct the axis OZ  along the antenna. Then the current 
vector in a Cartesian coordinate system will have only 
z-component  U z . We shall introduce the dimension- 
less coordinates 0sin sins   , z z a  , and para- 
meter 

0sinc ka  ,                (37) 

connecting the electric size of antenna with angle 02 , 
outside of which given amplitude DP  F s  identically 
zero. Then the formula for DP of linear antenna takes the 
form [7] 

   1 i

1
e dcz sf s AU U z z


    .     (38) 

For DP of antenna the Parseval equality [8] 

     12 2

1
d 2π df s s c U z z



 
     (39) 

is valid, that is the operator A  is isometric. 
Taking into account that F  is finite function with 

compact carrier  1,1G    and expressions for the op- 
erators A  and A , we obtain the expanded form of (8): 

        1 i
1i arg e d1

1
2π exp d

cz sU z z czs
U z c F s s


  



  .  (40) 

On the basis of (9), (38) we obtain the Hammerstein 
type equation concerning optimal DP 

       1 iarg

1
, ; e df sf s Bf F s K s s c s


       (41) 

in the space  
 2

1,1C  , where 

      , ; sin πK s s c c s s s s     .    (42) 

The existence of at least one solution of (40) in the 
space  2 1,1UH L   and (41) in the space  1,1C   
follows from Corollary 2.1. 

We shall present three important properties of (41). 
1) If  f s  is the solution of (41), then complex- 

conjugate function  f s  is the solution of (41) too. 
2) If  f s  is the solution of (41), then  ie f s  is 

the solution of (41) too, where β is an arbitrary real con- 
stant. 

3) For even functions  F s  nonlinear operator B , 
which is in the right part of (41), transfers even phase DP 

  arg f s  in even, and odd—in an odd. That is the op- 
erator B  is invariant with respect to the type of parity 
of function  arg f s . Due to this property the existence 
of fixed points of the operator B -solutions of (41) is 
possible in the classes of even and odd phase DP’s. 

In [16,52] is shown that (41) has two solutions in the 
class of real functions: 

     1

1 1
, , ; df s c F s K s s c s


    ,      (43) 

which is called the primary solution of the first type and 

       1

2 01
, , ; sgn df s c F s K s s c s s s


      (44) 

is the primary solution of the second type. Point  
 0s s c  is determined from the condition  2 , 0f s c  . 

For the even  F s  0 0s  , that is the solution (44) is a 
real odd function (the corresponding to it amplitude DP 
is even function). 

These solutions are effective only at small values of 
parameter c . With the growth of this parameter there 
exist branching points ic  at which more effective (in 
the sense value of functional F ) complex solutions 
branch-off from real solutions. 

Consider according to [7,16] results of investigation of 
branchings of primary solution of the first type of solu- 
tions of (41). Using the procedure of decomplexification 
of the space  1,1C   [14] from (41) we move to the 
equivalent system 
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     

     
   

1

1
1

1

2 2
1

, , , , d

, ; d ,

u s Q s s c u s v s s

u s
F s K s s c s

u s v s





      


  

 




 

     

     
   

1

2
1

1

2 2
1

, , , , d

, ; d .

v s Q s s c u s v s s

v s
F s K s s c s

u s v s





      


  

 




  (45) 

On the base of the branching theory of solutions [53] 
the problem on finding such values of parameter lc c  
(branching points) and all different from  1 , lf s c  solu- 
tions of system of (45) satisfying the conditions 

 
   

 
 

1
1,1

1,1

max , , 0,
at

max , 0,

l l
s

l

l
s

u s c f s c
c c

v s c

 

 

  
 




,  (46) 

are considered. Condition (46) means that it is necessary 
to find small continuous solutions 
     1, , ,lw s u s c f s c      , ,s v s c   converging 

uniformly to zero at lc c . Putting in (45) 

         1, , , 0lu s c f s c w s v s s      (47) 

and expanding the integrand 1Q , 2Q  in the vicinity of 
the point   1, , ,0l lc f s c  in the power series by w ,   
and  , and taking into account that the function 
 1 ,f s c  is its solution, we obtain system of integral 

equations of Lyapunov-Schmidt type [53] with respect to 
small solutions  w s ,  s : 

   

     
1

2 1

,

, d ,

l

p m n
mnp

m n p

w s a s c

A s s w s s s



 


   



     
  (48) 

       
 

     

1

11

1

2 1

, ; d
,

, d ,p m n
mnp

m n p

s
s F s K s s c s

f s c

B s s w s s s




 





   


  



   



 
    (49) 

where    1

1 0011
, , da s c A s s s


   . On the base of the left  

part of (49) we obtain linear homogeneous integral equa- 
tion 

         
 

1

11

, ; d
,

s
s T c F s K s s c s

f s c


 




   

  (50) 

for finding the points of possible branching of solutions. 
Equation (50) is a nonlinear one-parameter spectral 

problem concerning parameter c . It is shown in [7,16] 
that for a given even amplitude DP  F s  there exist 
branching points of two types: eigenvalues of multiplic- 

ity two correspond to the first type, eigenvalues the mul- 
tiplicity of three—to the second type. It is found in [54] 
analytical expressions for eigenfunctions of (50) and are 
obtained systems of transcendental equations for finding 
the possible branching points. 

Using for finding the solutions of branching equation 
the Newton diagram method, it is shown [53] that two 
complex-conjugate between themselves solutions, which 
in the first approximation, have the form 

    
           

    

1
1,2 1

1 2
1 1 1 020 1 1

1 2 3 2
2 1 1

,

, , ,

i ,

l

l l l

l

f s c

f s c a s c s c h

s c h O



 

  



  

 

,  (51) 

branch-off from the real solution  1f s  in the branch- 

ing points of the first type  
1

lc . Here   1, la s c ,  

    1
020 1, ls c  are even by s functions which are obtained  

by means corresponding transformations,  
     2 1 1 1, ,l ls c s f s c    is the second eigenfunction of  

(50) at the points  
1

lc . 
In [7] it is shown also that the branching-off solutions 

branch-off too. Analogous investigations are performed 
in branching points of the second type  

2
lc . 

To estimate the effectiveness of different types of so- 
lutions we consider value of the functional F  depend- 
ing on the parameter c , which it takes on these solutions. 
For example, in Figure 1 are shown the values of the 
functional for   1F s  . The most effective solution 
images envelope which: on the segments I corresponds to 
the primary solution 1f , on II-branching-off solutions 

 1
1,2f  at the point  1

1c  with odd phase DP, on III-solu- 

tions  1
1,2f  and branching-off solutions  1

1,2f  from these, 

on IV-solutions  1
1,2f  and branching-off solutions  2

1,2f  
at the point  1

2c  with even phase, на V-branching-off at 
the point  2

1c  solutions of the type  1
1,2f , on VI-solu- 

tions  2
1,2f . 

Thus, the analytical investigations [7,16,52,54] and the 
results of numerical experiments enable to describe the 
general structure of the solutions of the problem de- 
pendeing on change of the value of the parameter c . 

Because the values of the functional on some types of 
solutions in a given interval of change of the parameter 
c  may be equal, the curves shown in Figure 1, does not 
map the full structure of the existing solutions. For 
greater clarity this structure can be represented sche- 
matically as a “tree” of solutions. In Figure 2 it is shown 
for the case of even DP. The primary solution  1 ,f s c  
is central. The solution    1 ,f s c  with odd phase DP  

    1arg ,f s c  branches first. At the point  1
1c  solution  
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Figure 1. The value of the functional σF on the first primary 
and branching-off solutions for F(s) = 1. 
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Figure 2. “Tree” of solutions. 
 

   1 ,f s c  branches from branching solution    1 ,f s c , 
and solution    1 ,f s c  enter in a real solution in a 
neighborhood of the point  1

2c  at c , tending to  1
2c . At  

the same point  1
2c  solution with even phase DP  

   2 ,f s c  branches from primary solution. The solution 
of the type    1 ,f s c  with an odd phase DP branches at  

the point  2
1c , which is located directly behind  1

2c . The  

solutions of the type    1 ,f s c  and the type    2 ,f s c  
form basic branches of “tree”. The possible branching 
points of branching-off solutions are shown on these 
branches. 

3.2. Radiating System with a Flat Aperture 

3.2.1. Basic Equations and Relations 
Consider according with [55-58] the synthesis problems 
of a flat aperture assuming that form of aperture S  is 
known and a field has elliptical polarization. Let the 
plane in which aperture is located, coincides with the 
plane XOY  of the Cartesian coordinate system. Then 
the radiated field in the far zone can be represented by 

the formula [6]: 

   
ie

, , ,
4π

kRk
R

R
   



 E D , 

where 

   , r r         D i n i f , 

     i sin cos sin sin, , e d dk x y

S

x y x y      f U , (52) 

ri  is radial ort of spherical coordinate system, z n i , 
 , f  is a vector DP of flat aperture S . Since 

z n i , function  ,x yU  describes the tangential 
component of the electric vector E  or vector of current 
flowing through the aperture S : 

     , , ,x x y yx y U x y U x y U i i .   (53) 

Introducing in a far zone special coordinate system [6] 

1g , 2g , 3g  connected with orts of spherical coordinate 
system by formulas  

1 cos sin   g i i , 2 sin cos   g i i , 

3 rg i               (54) 

enables the vector synthesis problem to reduce to two 
independent scalar synthesis problems. 

Obviously, the system 1g , 2g , 3g  is orthonormal, 
and transformation (54) is rotation of spherical coordi- 
nate system on an angle   around the vector ri . At 
that vector  , D  in the coordinate system (54) has 
the form [6]  

  1 21 cos x yf f      D g g ,      (55) 

where 

 
   

, , ,

i sin cos sin sin
,

,

, e d d

x y x y x y

k x y
x y

S

f A U

U x y x y   

 




 
. (56) 

For mappings (56) the Parseval equality [59]: 
2 2

, , ,
f U

x y x y x yH H
A U U         (57) 

are valid, that is operators xA , yA  are isometric. 
Consider the synthesis problem of a flat aperture, in 

which component-wise deviation of modules given and 
synthesized diagrams is taken into account. As optimiza- 
tion criterion we choose the functional type  

 

   

   

    

2

1 1

2

2 2

1 2
2

1 2 1 2

1 2 1 2 1 2

2 2

1 2 1 2 1 2

, ,

, , d d

, , d d

F

g g
G

g g

g g

G

F s s f s s

F s s f s s s s

f s s f s s s s



   
     

 






U



  (58) 
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where 
1gF , 

2gF  are modulus of components of the  

given amplitude DP  1 2

1 22 2
g gF F F   in closed domain  

2G . This criterion provides not only proximity of 
modules of given F  and synthesized f  DP’s, but it 
allows certain to influence on the polarization character- 
istics of the radiated field [5]. On the base of the neces- 
sary minimum condition of the functional (58) and the 
corresponding transformation we obtain system equa- 
tions (these equations is not connected between them- 
selves) concerning components of synthesized DP: 

   
     

 

1 22

2

1 2

iarg ,

1 2 1 2 1 2 1 2

,
2π

, , , , ; e d d

1, 2

j j

g j

j

g j g

f s s

g
G

kf s s B f

F s s K s s s s k s s

j

 

 

     



  (59) 

where 

 
 

    

1 2
2

1 1 1 2 2 2

, ,
2π

exp i d d
G

c c
K Q Q

c x s s c y s s x y

 

      

c

  

(60) 

is a kernel. In the case of rectangular aperture the kernel 
 1 2 1 2 1 2, , , ; ,K s s s s c c   takes the form 

   
 

 
 

1 1 1 2 2 2
1 2 1 2 1 2

1 1 1 2 2 2

sin sin
, , , ; ,

c s s c s s
K s s s s c c

c s s c s s

  
   

  
, 

(61) 
where 

1 1 1 2 2 2sin , sin ,c ka c ka        (62) 

are real numeric parameters characterizing the sizes of 
aperture 1a , 2a  in wavelengths, 2πk   is wave 
number, 1 , 2  are angles that characterize the domain 
G  (solid angle), in which different from the identity 
components of amplitude DP  1 2,

jgF s s   are given. 
Later on we omit index in (59) and shall investigate 

the solutions of one equation 

       i arg, , e df Q

G

f Q Bf F Q K Q Q Q     c ,  (63) 

where for reduction of records we introduce the follow- 
ing notations 

 1 2,Q s s , 1 2d d dQ s s   ,  1 2,c cc . 

Thus, the synthesis problem of flat radiating system 
with arbitrary polarization of irradiation according to the 
prescribed amplitude DP is reduced to two independent 
and simpler synthesis problems with linearly polarized 
fields in the aperture. 

Equation (63) is a nonlinear two-dimensional integral 

equation of the Hammerstein type and it has nonunique 
solutions. Their quality and properties depend on the 
form of aperture S , the values of parameters 1 2,c c  and 
properties of given amplitude DP F . 

On the base of decomplexification [14] we shall con- 
sider the complex space  GC  as a direct sum of two 
real spaces of continuous functions 

     G C G C G C  in the domain G . The elements  

of this space are written as:    ,f u v G C


, 

   Reu f C G  ,    Imv f C G  . Norms in these 
spaces have the form: 

       

      
max , max ,

max , .

C G C GQ G Q G

C G C G C G

u u Q v v Q

f u v

 
 


 (64) 

Equation (63) in the decomplexified space  GC  is 
reduced to equivalent to it system of equations 

         
   

1 2 2
, , , d

G

u Q
u Q B u v F Q K Q Q Q

u Q v Q


   

 
 c , 

         
   

2 2 2
, , , d

G

v Q
v Q B u v F Q K Q Q Q

u Q v Q


   

 
 c . 

(65) 
Denote the closed convex set of continuous functions 

as  MS G C  setting that 

  ,      :
u v u uM M M M M C G

S S S S u S u M     , 

  :
v vM M C G

S v S v M   , 

   max , , d
Q G

G

M F Q K Q Q Q


   c . 

Consider one of the properties of the function  
  exp iarg f Q  that included in (62) at   0f Q  . 

Obviously, 

    
 
   
    1 22 2

exp i arg

i

f Q
f Q

f Q

u Q v Q

u Q v Q


 



 


 

    (66) 

is a continuous function if    Reu Q f Q   and  
   Imv Q f Q   are continuous functions, at that  

  exp i arg 1f Q   for any  f Q . If   0u Q    

and   0v Q   simultaneously, then   0f Q   is a 
complex zero with undefined argument by definition [60, 
p. 20]. On this basis at   0u Q   and   0v Q   we 
redefine   exp iarg f Q  as function, module of which 
is equal to one and argument is undefined. 
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Theorem 3.1. The operator  T

1 2,B BB  deter- 
mined by the formulas (65) maps a closed convex set 

MS  of the Banach space  GC  in itself and it is com- 
pletely continuous. 

As the corollary from the Theorem 3.1 follows satis- 
faction of conditions of the Schauder principle [14, p.  

411] according to which the operator  T

1 2,B BB  has  

a fixed point  T
,f u v    belonging to the set MS . 

This point is a solution of a system of (65) and (63), re- 
spectively. 

Easily to be convinced that function 

     0 , , , d
G

f Q F Q K Q Q Q   c c       (67) 

is one of solutions of (63) in the case of symmetric do- 
main G . 

In [56,58] it is shown that the operator 

   , , d
G

Df K Q Q f Q Q    c  

is positive on the cone of nonnegative functions   of 
the space ( )C G  [61]. According to this the operator D  
leaves invariant cone  , that is D   . Since 
F  , the primary solution 0f DF  is also nonnega- 
tive function in the domain G . 

To find the branching lines and complex solutions of 
(63) that branch-off from the real (primary) solution 

 0 ,f Q c , we shall consider the problem on finding such  

a set of parameter values       0 0 0
1 2,c cc  and all differ-  

ent from  0 ,f Q c  solutions of (65) that at  
 0 0 c c  satisfy the conditions  

    
 

0max , , 0,

max , 0.

Q

Q

u Q f Q

v Q





 



c c

c
     (68) 

These conditions indicate the need to find such small 
continuous in G  solutions, 

      
   

0
0, , , ,

, ,

w Q u Q f Q

Q v Q

 



c c c

c c
      (69) 

which converge uniformly to zero as  0c c . At that it 
should take into account also the direction of movement 
of vector c  to vector  0c . 

Set  0
1 1c c   ,  0

2 2c c   , and desired solutions 
we find in the form 

      
   

0
0, , , , ,

, , , .

u Q f Q w Q

v Q Q

 

  

  




c c

c
   (70) 

We write the system of nonlinear integral equations of 
Lyapunov-Schmidt with respect to small solutions w , 
  as 

       
      

0 0
10 01

0

2

, ,

, , d ,p q m n
mnpq

m n p q G

u Q a Q a Q

A Q Q w Q Q Q

 

  
   

 

     

c c

c
 

(71) 

        
  

      

0

0
0

0

2

, , d
,

, , d .

G

p q m n
mnpq

m n p q G

Q
Q F Q K Q Q Q

f Q

B Q Q w Q Q Q




  
   


 



   



 

c
c

c

 

(72) 

Here   0, ,mnpqA Q Q c ,   0, ,mnpqB Q Q c  are coeffi-  
cients of expansion of integrand functions of (65) in uni- 
form convergent power series. 

The problem on finding the set of possible branching 
points of solutions of (71) and (72) is reduced [56,58] to 
find the eigenvalues of two-dimensional linear homoge- 
neous integral equation 

   
 

     

1 2

1 2
0 1 2

,

, , , d
, ,

Q T c c

F Q
K Q Q c c Q Q

f Q c c

 







  


 (73) 

at condition  0 , 0f Q c . Eigenfunctions of (73) are 
used [58] at the construction of branching-off solutions 
of (71) and (72). 

3.2.2. Nonlinear Two-Parameter Spectral Problem 
Note that (73) in the general case is a nonlinear two-pa- 
rameter spectral problem. For the numerical finding the 
approximate solutions it is necessary to construct its dig- 
itization and consider the corresponding problem in fi- 
nite-dimensional spaces. It should be noted that in the 
literature, in particular in [62,63], more attention is given 
to the construction of numerical methods for solving the 
nonlinear one-parameter problems. 

In [64-67] a general method for finding the approxi- 
mate solutions of (73), which may be applicable to a 
wide range of nonlinear two-parameter spectral problems 
is proposed. 

Denote the spectral parameters as  1 2, λ . Let E 
and V are complex Banach spaces, and the vector pa- 
rameter  1 2, λ  belongs to domain (open connected 
set) 1 2    of the complex space 2     , 
where i i    ,  :i i i i r       1,2i  , 
r  is some real constant. Consider the operator-function 
   , : ,E V  A L , where to every  1 2,  λ   is  

put in correspondence operator    1 2, ,E V  A L .  

Here the space of linear bounded operators [14] is 
marked as  ,E VL . 

We shall consider the nonlinear two-parameter spec- 
tral problem of the form 

 1 2, 0x  A ,             (74) 
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where necessary to find the eigenvalues  
    0 0

1 2,  λ   and corresponding eigenvectors  

 0x E    0 0x   such that       0 0 0
1 2, 0x  A .  

Let the Banach spaces E  and nE , 1,2, ,n    be 
given and also a system  n n

p



P  of linear bounded 

operators :n np E E  such that 

 
n

n EE
p x x n x E    .    (75) 

Operators np  are called connecting [14,68]. Note, by 
the principle of uniform boundedness [14] with (73) fol- 
lows inequality constnp  . Let in every space nE  
the element nx  be selected. Writing these elements in 
order to increase the numbers we shall form a sequence 
 nx . 

Let element nx  is selected in each space nE . Writ- 
ing these elements in ascending numerical order, we 
form sequence  nx . 

Definition 3.1 [68]. The sequence  n n
x 

 from 

n nx E  P–converges (discrete converges) to x E  if 
0

n
n n E

x p x   n  ; we denote nx xP   
 n  . 

Definition of different types of convergence of opera- 
tors nA  to A is given in [68]. Later on only required in 
further definition of stable convergence2 nA  to A is 
presented. 

Discretization of initial problem (74), the choice of the 
space nE  and definition of operators :n np E E  can 
be differentially. In particular, one of the approaches to 
the digitization of (74) if the operator-function  1 2, A   

is described by formula     1 2 1 2, ,T I    A ,  

where  1 2,T    is a linear continous operator and I  
is unique operator in the separable (infinite-dimensional) 
Hilbert space E , consists in following. Take an arbi- 
trary complete orthonormal system of functions   1k k

x



 

in E . Each element x E  is represented as a series  

1 k kk
x c x




 , where  ,k kc x x  is Fourier coefficient  

of element x . Since  1 2,T    is linear continuous 
operator acting in separable Hilbert space, it admits the 
matrix representation [69]: 

    1 2 1 2 , 1
, ,M jk j k

T t   



 ,      (76) 

where     1 2 1 2, , ,jk k jt T x x    . At that sequence 
of the Fourier coefficients of element  1 2,y T x   is 
obtained from the sequence of Fourier coefficients of 
element x by means transformation matrix  1 2,MT   . 

Using the matrix representation of the operator  
 1 2,MT    in particular case (concerning Equation (73)) 

the spectral problem (74) is formulated as 

    1 2 1 2, , 0M M Mx T I x     A ,   (77) 

where MI  is identity matrix in the space of sequences 

2l . Thus, the operators  T λ  and  MT λ  are equiva- 
lent in the sense that they put in correspondence one and 
the same element y E , but we obtain the Fourier co- 
efficients of element  y T x λ  as a result of operation 
of operator  MT λ  on element x . Obviously, that the 
spectrums of these operators coincide, that is the spectral 
problem (77) and the problem 

    1 2 1 2, , 0x T I x     A  

are equivalent. 
According to [14,68] applying to the problem (74) 

other discretization methods, including the following: 
quadrature (cubature) processes in the case of homoge- 
neous integral equations and changing the derivatives by 
difference analogues in differential equations, we obtain 
the approximation problems for approximate finding the 
eigenvalues and eigenfunctions in finite-dimensional 
spaces 

 1 2, 0, .n nx n   A         (78) 

At that the problem on finding the eigenvalues is re- 
duced to finding the roots of the n -th order determinant, 
i.e. the roots of the equation 

       1 2 , 1 2
, 1

, det , 0 .
nn

n i j
i j

a n   


     (79) 

Consider the necessary in further auxiliary one-para- 
meter spectral problem as a particular case of (74). Set 
that variable 2  in the operator-function  1 2, A  is 
expressed by some unique differentiable function  

 2 1z   mapping domain 1, 1    in some sub- 
domain 2, 2   . In the simplest case we put  

2 1  , where   is a real parameter. Introduce into 
consideration at 1 1,   operator function  

    1 1 1, z   A A  (narrowing of operator-function 
 1 2, A ). One-parameter nonlinear spectral problem 

 1 0x  A                (80) 

is connected with it. Here to each value  
  1 1, z  λ   operator     1 1, ,z E V   A L  is 

put in correspondence. 
Analogously to (78) we consider approximating se- 

quence of discretizing problems (80) at n  

  , 1 1, 0,n nz x n    A .      (81) 

The spectrum of operator-function  1 A  is denoted 
as  s A . Suppose that   1,s   A . For spectral 
 s A  of (74) holds [56,67]. 

2Definition 3.2 [68]. The sequance  n n
A


 of operators 

 ,n n nA L E V  converges stably to  ,A L E V , if Q
nA AP  

 n  and the following condition (stability condition) is valid: 

 1 ,n n nA L V E   exists at all n, at that 1 constnA    0n n . 
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Theorem 3.2. Let the following conditions be satis- 
fied: 

1) operator-function    , : ,E V  A L  is holo- 
morphic, and  s  A ; 

2) operator-functions    , : ,n E V  A L  are holo- 
morphic and for any closed bounded set 0    the 
following inequality  

   
0

1 2max , constn c 


 
λ


A   n  is valid; 

3) operators    1 2, ,E V  A L , 

   1 2, ,n n nE V  A L   n  are the Fredholm ope- 

rators with zero index for any  1 2,  λ  ; 

4) spectrum   1,s   A  and a sequence of func- 
tions  1 2,n    are differentiable in the domain  ; 

5)    n λ λA A  is stable for any  
   r s λ A \ A . 

Then the following statements are true: 
1) every point of spectrum    0

1 s   A  is isolated, it  

is eigenvalue of the operator     1 1 1, z   A A , the  

finite-dimensional eigensubspace    0
1N A  and the 

finite-dimensional root subspace correspond to it; 
2) for each    0

1 s   A  there exists a sequence  
  0

1,n  from    0
1, ,n ns   A   0n n , such that  

 0 0
1, 1n  ; 

3) each point        0 0 0
1 1, z  λ   is a spectrum  

point of the operator-function  1 2, A ; 
4) if in some small 0 -neighborhood of the point  
       0 0 0

1 1, z  λ   at all n larger any number 0N   

(corresponding 0 , according to definition of limit of 
sequence p. 2)) the sequence of partial derivates  

  0 0
1, 1,

2

,n
n nz 


 
  

 is nonzero, then in an arbitrarily  

small  -neighborhood of point      0 0
1 1, z    

there exists a continuous differentiable function 
 2, 1N N  

 
 , which is solution of (89), at that 

    0 0
2, 1,NN N  

 
  and at the point  

          0 0 0 0
1, 2, 1, 1,, , NN N N N    

   
  however little differs  

from point of a spectrum of auxiliary one-parameter 
problem (91)    0 0

11,N  
   ; that is in some bicylin- 

drical domain  
      0 0

0 1 2 0 1 1 1 2 2 2, : ,               there 
exists a connected component of spectrum of the opera- 
tor-function  1 2,N  

A  ( 1 , 2  are small real con- 
stants). 

Proof. The proof of the theorem is given in [56] and is 
based on Theorems 1 and 2 with [68, pp. 68-69] and the 
Theorem about existence of implicit function (see, for 
example, [70]). 

If the points     0 0
1, 2,,     are the eigenvalues of  

(78) and derivatives 1n   , 2n    in these 
points are nonzero, to find connected components of the 
spectrum of this problem on the base of (79) Cauchy 
problem [56,57,65] we solve the in a neighborhood of  

each point     0 0
1, 2,,     

 
 

1 2 12

1 1 2 2

,d

d ,
n

n

  
   

 
 

 
,      (82) 

    0 0
2 1, 2,    .               (83) 

3.2.3. Numerical Algorithms for Finding the Possible 
Branching Lines of Solutions 

Return to finding the solutions of (73), in which 1c , 2c  
are spectral parameters. Let  1 2, cc c  , 

1 2c c c   , where  : 0
i ic i c i cc c r     . By  

direct check we set that for arbitrary values of the pa- 
rameters  1 2, cc c   the function 

       0 0, , , d ,Q F Q K Q Q Q f Q


   c c c  (84) 

is one of the eigenfunctions, that is there exists a con- 
nected set of the spectrum, coinciding with the domain 

c . As a result of this, the condition   cs  A  is not 
satisfied. To find another connected components of spec- 
trum we exclude eigenfunction (73) from the kernel of 
integral equation, namely, consider the equation 

       , , , dQ T K Q Q Q Q  


    c c c  ,  (85) 

where 

   
   

   
0

0 0

0 0

, , , ,
,

,
.

F Q
K Q Q K Q Q

f Q

Q Q 
 


 






 c c
c

c
     (86) 

Here  0 Q  is adjoint with (73) eigenfunction of 
equation of From Lemma Schmidt [53, p. 132] follows 
that from spectrum of operator  T c  is excluded co- 
herent component coinciding with the domain c  and 
the corresponding to the function  0 ,Q c . 

Using to (73) certain convergent cubature process with 
coefficients jna   and nodes jnQ    n  and 
rejecting in it remainder, we obtain homogeneous system 
of linear algebraic equations (SLAE)  

 

   
1 2

1 21

,

, , , 1

nin M

n

jn in jn jnj

u T c c

a Q Q c c u i n




  

u

 K

,  (87) 

where  in inu u Q . 
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The presence of such values of parameters 1c , 2c , 
which are the solutions of the equation 

    1 2 1 2, det , 0
nn M nc c T c c I    ,   (88) 

is necessary condition of the existence different from 
zero solutions of (87). We consider (88) as the problem 
on finding the implicitly given function  2 1c c , re- 
ducing it to the Cauchy problem (82) and (83). Putting 

2 1c c  in (85), we shall consider the auxiliary one- 
parameter spectral problem 

       1 1, , dQ T c K Q Q c Q Q  


       , 

solutions of which we use as initial conditions in the 
Cauchy problem (83). Corresponding this equation 
SLAE has the form 

 

   
1

11
, , 1, ,

nin M n

n

jn in jn jnj

u T c u

a Q Q c u i n




 



 K

,  (89) 

and the problem on finding the eigenvalues of this sys- 
tem is reduced to finding the roots of the equation  

    1 1det 0
nn M nc T c I     . For the numerical solu- 

tion of the Cauchy problem (82) and (83) are used the 
Runge-Kutta and Adams methods. 

We shall present numerical examples of finding the 
solutions of (73) for two given amplitude DP’s. In Fig- 
ures 3 and 4 are shown spectral lines of (73), corre- 
sponding the given DP  1 2, 1F s s   and given DP 
which is defined by the formula: 

 
      

 

2 2 2 2 2 2
1 2 1 2 1 2

1 2
2 2
1 2

2 1- ,  1,
,  

0, 1.

s s s s s s
F s s

s s

      
  

 

(90) 

Note that to each point of the spectral lines given in 
these figures correspond the eigenfunctions of (73) with 
the characteristic properties for each line. For example, 
below are shown the eigenfunctions that correspond to 
points of intersection of the spectral lines 1 and 2 (Fig- 
ures 3 and 4) with the beam 2 10.8c c . 

3.2.4. Variational Approach to Solution of the 
Nonlinear Spectral Problems 

In [71,72] along with the implicit functions method a 
variational approach to solution of the nonlinear one- 
parameter and two-parameter spectral problems on find- 
ing the eigenvalues   2

1 2, c      and eigen- 
elements  2u U L    of equation 

 T u u               (91) 

in the real Hilbert space  2L   for the case when 
     2 2:T L L    is a linear positive definite  

 

Figure 3. The possible branching lines of solutions of system 
of (65) for  F s s1 2, 1 . 

 
c2                          c2 = c1 

1

2

3

4

5

6

1 3 5
c1

c2=0.8c1

1
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Figure 4. The possible branching lines of solutions of system 
of (65) for  F s s1 2, , which is defined by (90). 

 
self-adjoint operator nonlinearly depending on the pa- 
rameters 1 2,  , is proposed. Variational problem is for- 
mulated as the problem on finding such values of pa- 
rameter * c  and such functions  2u L    on 
which functional 

   

    
2

2
,

,

L
u T u u

T u u T u u

  

  

 

 
    (92) 

becomes minimum. The equivalence of the spectral pro- 
blem (91) and put it in correspodence of variational pro- 
blem (92) is proved. Based on the method of generalized 
coordinate descent iterative process for the numerical 
finding one of the eigenvalues and the corresponding 
eigenfunction of (91) is suggested. Local convergence is 
proved. 

Example of use of a variational approach to finding the 
eigenvalues and eigenfunctions of (73) is shown in Fig- 
ure 5 for  1 2, 1F s s   and in Figure 6 for the case 
when the function  1 2,F s s  is defined by (90). Later on 
the eigenfunctions of (73), corresponding to eigenvalues 
belonging to curves 1, 3 illustrated in Figure 5(b) are 
shown. From the analysis of the figures we see that the 
eigenfunctions  1 1 2,s s  are odd by argument 1s  and 
functions  2 1 2,s s  are odd by both arguments. 
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(a) 

 
(b) 

Figure 5. Normalized eigenfunctions of (73) corresponding 
to the eigenvalues: (а) (с1 = 3.14159393, с2 = 2.51327514); (b) 
(с1 = 3.64391021, с2 = 2.91512817). 
 

 
(a) 

 
(b) 

Figure 6. Normalized eigenfunctions of (73) corresponding 
to the eigenvalues: (a) (с1 = 3.43408813, с2 = 2.74727050); (b) 
(с1 = 4.18890991, с2 = 3.351127928). 

Found by numerical method form and properties of 
eigenfunctions in the possible branching points are used 
to determine of the properties of branching-off in these 
points of solutions of nonlinear systems of (65). 

3.3. About Branching of Solutions in the Case of 
a Flat Aperture 

In [56,58,73,74] using the found branching lines and ei- 
genfunctions, the analytical investigations of branching 
of the primary solution of the first type of (65) for the 
case when the the kernel  1 2 1 2 1 2, , , ; ,K s s s s c c   has the 
form (61), and the multiplicity of eigenvalues of the lin- 
ear Equation (73) at the branching points     0 0

1 2,c c is 
two, are presented. 

The study of solutions of (65) is realized on the beam 

2 1c c  belonging to the domain c . Let  
           0 0 0 0 0

1 2 1 1, ,c c c c c  be eigenvalue of (73). We  

assign to parameter  
1

lc the small disturbance  
 0

1 1c c   ,  0
2 1c c    and consider the problem 

on finding all different from  0 1 2 1 2, , ,f s s c c  solutions 
of (65), which at 0   satisfy the conditions 

      0 0
1 2 0 1 1max , , , , 0

Q
u Q c c f Q c c


  , 

 1 2max , , 0
Q

v Q c c


 . 

The system of (65) by means of expanding the inte- 
grand functions is reduced to the corresponding system 
of Lyapunov-Schmidt equations, similar to (71) and (72). 
Desired solutions are found in the form 

        0 0
1 2 0 1 1, , , , ,u Q c c f Q c c w Q   , 

   1 2, , ,v Q c c Q  . 

As a result we obtain [74] that at the points  
         0 0 0 0
1 2 1 1, ,c c c c  from the primary solution  

    0 0
0 1 2 1 1, , ,f s s c c  branch-off two complex-conjugate  

solutions having in the first approximation the form 

   
         

      
    
      

1
1,2 1 2 1 1

0 0 0 0
0 1 2 1 1 1 2 1 1

1 0 0 2
020 1 2 1 1 1

0 0
1 1 2 1 1 1 2 3 2

10 0
1 1 2 1 1

, , ,

, , , , , ,

, , ,

, , ,
.

, , ,

f s s c c

f s s c c a s s c c

s s c c h

s s c c
i h O

s s c c



 

  

 
 

 

  
 

 

  (93) 

The imaginary part being determined by the properties  

of eigenfunctions     0 0
1 1 2 1 1, , ,s s c c  . Functions  

   1
1,2 1 2 1 1arg , , ,f s s c c , obtained on the base of (93), de- 
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termine the properties of the phase DP and APD of the 
field in aperture. The properties obtained in the first ap- 
proximation of solutions agree with numerical results. 

For example, in Figure 7 are shown the values of the 
functional F  at  1 2, 1F s s  , which it takes on the 
primary (curve 1) and branching-off (curves 2, 3, 4) so- 
lutions on the beam 2 10.8c c . Note, that on the seg- 

ment     1 5
1 1,c c  the branching-off solutions with an odd  

phase DP  1 2arg ,f s s , to which the nonsymmetric am- 
plitude-phase distribution of the field in aperture corre- 
sponds, are the most effective. On the segment   5

1 ,8c  
the most effective is the solution of 4 with properties 

       1 1
1,2 1 2 1,2 1 2arg , arg ,f s s f s s  , 
       1 1

1,2 1 2 1,2 1 2arg , arg ,f s s f s s  . The symmetric but  

complex APD of the field in aperture corresponds to it. 
From the analysis of Figure 7 follows that the same effi- 
ciency of the synthesis can be achieved on the branch- 
ing-off solutions at smaller sizes of aperture and smaller 
values of parameters 1c , 2c , than on the primary solu- 
tion. The linear size of aperture can be decreased by the 
amount 1 1c  or 2 1c  at realization of branching-off 
solution. 

Numerical examples of synthesis of given funnel- 
shaped amplitude DP defined in the domain G  by (90), 
are given in Figures 8 and 9. The branching lines of so- 
lutions of (63) for this DP are shown in Figure 4. The 
given DP and optimum synthesized DP are presented in 
Figures 8(a) and (b), respectively, at 1 9.25c  ,  

2 7.4c  . The optimum amplitude distribution of the field 
in an aperture  ,U x y , which creates given in Figure 
8(b) the synthesized DP, is shown in Figure 9. From the 
analysis of these figures we see that the symmetric am- 
plitude DP (Figure 8(b)) can be created by different dis- 
tributions of the field in aperture of radiating system, in- 
cluding real and nonsymmetric distribution (Figure 9). 
 

 

Figure 7. The values of the functional F  at 1 2( , ) 1F s s  . 

 
(a) 

 
(b) 

Figure 8. The prescribed (а) and synthesized (b) DP. 
 

 

Figure 9. Amplitude distribution of field in aperture which 
creates DP given in Figure 8(b). 
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4. Synthesis of Discrete Radiating Systems— 
Antenna Arrays (AA) 

The investigations of nonlinear synthesis problems of lin- 
ear and planar antenna arrays (AA) according to the pre- 
scribed amplitude DP are presented partially in [7,24, 
28-37]. In the basis of construction of mathematical 
models it is assumed [6,27] that the excitation of each 
radiator is characterized by a single complex number nI - 
complex amplitude of excitation, the physical meaning of 
which depends on the type of radiating system. Taking 
into account the linearity of Maxwell’s equations, the 
complex amplitudes of excitation enter linearly in the 
expression for DP of array, that is 

     i sin cos sin sin cos

1

, , e n n n
N

k x y z
n n

n

I          



f f . (94) 

Here          , , ,n n
n f f         f i i  is a vec- 

tor DP of n -th radiator. Vector  1 2, , , NI I II   is 
called the vector of excitation of array or vector of am- 
plitude-phase distribution of currents in the array. Such 
formulation of DP of array is used in the synthesis prob- 
lems with regard for mutual influence of radiators [27, 
29,30]. Thus the problem on finding the functions  

 ,n  f  is reduced to solution of the corresponding 
boundary problem of electrodynamics in multiply con- 
nected domains [2,4,39,40]. The method of integral equa- 
tions [40,42] is used widely in such classes of problems. 
The synthesis method of antenna arrays with cylindrical 
dipoles with account of mutual influence is proposed in 
[29,34]. Analysis of nonuniqueness problem of solutions 
is studied there by means of computational experiments. 

In the problems of analysis and synthesis of antenna 
arrays with many elements is used simplified mathe- 
matical model of AA [5,6]. It is assumed [6] that AA 
consists of N identical and identically oriented in space 
radiators, and vector DP of radiators are identical for all 
emitters, i.e.      , ,R

n    f f   1n N  . For- 
mula (94) for DP of flat AA takes the form 

 
     
      1 1 1 2 2

1

i

1

,

, ,

, e nm nm

R

M N n c x s c y sR
nmn M m

f

I

 

   

 




 



  

f

f

f

  (95) 

Here  1 1sin cos sin ,s      2 2sin sin sins     
are the generalized angular coordinates, 

1 1sinxc kd  , 2 2sinyc kd   

are dimensionless numerical parameters characterizing 
the distance between the radiators and the domain (solid 
angle) G, in which the required amplitude DP  1 2,F s s  
is given. Since in (95) only the second multiplier depends 
on the vector APD of excitation currents in the array: 

    1 1 1 2 2

1

i

1
, e nm nmM N n c x s c y s

nmn M m
f A I  
  

  I ,  (96) 

only the synthesis problem of factor of AA is considerd. 
Function  1 2,f s s  is 12π c -periodic by argument 1s  
and 22π c -periodic by 2s . We consider also (96) as the 
action of the operator A  from a finite-dimensional 
space N

IH   ( N  is number of radiators) into the 
finite-dimensional subspace of the space  f PH  C  
where P  is the domain corresponding to the period of 
array. Let the amplitude DP  1 2,F s s  be given in the 
domain ,PG    and on the set P G \  is identically 
equal to zero. The synthesis problem is to minimize the 
functional [35] 

 
 
 

 
 2 2

2 2
min

PI P
F

H
F A F f

 
   C CI

I I .  (97) 

The basic of synthesis equations of multiplier of AA 
have the form 

 i arge AA F II             (98) 

the equation concerning APD of currents in AA, where 
A  is conjugate with A  operator, and 

       i arg
ar , , e df Q

G
f Q f K Q Q F Q Q    B c   (99) 

is equation concerning of synthesized DP. Here  
 1 2,Q s s , 1 2d d dQ s s ,  1 2,c cc ;  ar , ,K Q Q c  is 

the kernel the form of which depends on the distribution 
of elements in AA. In particular, in the case of a rectan- 
gular array with number of elements  

   1 2 1 22 1 2 1N N M M      the kernel  ar , ,K Q Q c  
is written as 

 

 

 

 

 

ar 1 2

1 2
1 1 1 2 2 2

1 2
1 1 2 2

, , ,

sin sin
2 2

sin sin
2 2

K Q Q c c

c c
N s s N s s

c c
s s s s



        
    
        
   

.  (100) 

To find the possible branching lines of solutions of (99) 
a linear homogeneous integral equation 

   
       

1 2

ar 1 2 0 1 2

,

, , , , , d
G

Q T c c

F Q K Q Q c c f Q c c Q Q

 





     
 

(101) 

is obtained where  0 1 2, ,f Q c c  is a primary solution of 
(99). 

Note that the kernel  ar 1 2, , ,K Q Q c c  is degenerate. 
Consequently, Equation (101) is reduced to the corre- 
sponding homogeneous SLAE what in a special case of 
rectangular array has the form 

   
 

1 2

1 2 1 2

1 1 2 2

,

,

M M kl
kl nm nmm M n M

x a c c x

k M M l M M

 


     

 
.     (102) 

Coefficients of this system depend nonlinearly on the 
spectral parameters 1 2,c c  and on the given amplitude 
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DP. In [35,65] the conditions are determined and the ex- 
istence theorem of connected components of the spec- 
trum of (101) is proved. To find the spectral lines the 
implicit function method (82) and (83), is used. 

Consider the numerical results of finding the solutions 
of the branching lines in the synthesis problems of a 
plane equidistant antenna array with 11 11  radiators 
for two given in the domain   1 2 1 2, : 1, 1G s s s s     

amplitude DPs      1 2 1 2, cos π 2 sin πF s s s s  (Fig- 

ure 10) and      1 2 1 2, sin π sin πF s s s s   (Figure 
11), which are obtained by solving of (101) and (102). 

The prescribed and synthesized amplitude DPs (with 
phase DP odd by argument 2s ) at 1 1.25c  , 2 1.125c  , 
are shown in Figure 12 and 13, respectively. The ampli- 
tude and phase distributions of currents in the array of 
corresponding synthesized DP are given in Figure 14. 
From the analysis of this figure we see that nonsymmet- 
ric Y-direction distribution of currents in the array forms 
symmetrical amplitude DP. 
 

 

Figure 10. The possible branching lines of solutions of (99) 

for      F s s s s1 2 1 2, cos 2 sin   . 

 

 

Figure 11. The possible branching lines of solutions of (99) 

for      F s s s s1 2 1 2, sin sin   . 

 

Figure 12. The prescribed DP. 
 

 

Figure 13. The synthesized DP. 
 
5. Numerical Methods of Solution of the 

Basic Synthesis Equations 

The above results show that the nonlinear synthesis prob- 
lems according to the prescribed amplitude DP and given 
energy DP have nonunique solutions. Application of the 
methods of branching theory of solutions to nonlinear 
integral equations allows to determine the quantity of 
existing solutions, to find solutions in the first approxi- 
mation and to determine their quality characteristics. To 
find the complete solutions of these equations numerical 
methods [7,29,36,49,75] are applied. The defined proper- 
ties of solutions obtained by analytical investigations 
make it possible to choose the initial approximation hav- 
ing the basic properties of the desired solutions and they 
are placed in certain neighborhoods of complete solu-  
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(a) 

 
(b) 

Figure 14. The optimal amplitude (a) and phase (b) distri- 
butions of currents in the array. 
 
tions. 

Conditionally the process of numerical solution of syn- 
thesis problem can be divided into two stages. The first 
of them is described partially above and it consists in 
finding the points (lines) of branching and determination 
of types of existings solutions depending on the value of 
physical parameters. The second stage consists in solving 
the basic synthesis equations by iterative methods.  

5.1. Numerical Solution of Synthesis Equations 
Corresponding to Functional Fσ  

As an example of the scalar problem we consider itera- 
tive process of solving the equation of type (9), in the 
base of which we put the successive approximations me- 
thod [7,75] 

   1iarge 1,2,3,nf
nf AA F n   .    (103) 

Obviously, the successive approximations method (103) 
is equivalent to the following iterative process 

 
 

1iarge ,

1,2,3, .

nf
n

n n

U A F

f AU n

 


  
    (104) 

In [75] it is shown that the sequences  nU  and 
 nf  generated by iterative process (104), are relaxa- 
tional for functional F . Relaxation properties of (104) 
states 

Theorem 5.1. The sequence  nU  is generated by 
the iterative process (104), it is relaxation for functional 

 F U , and the values which it takes on  nU  form a 
convergent numerical sequence   F nU . 

Formulate also the properties of the operator B  en- 
tering in (41) that complement the properties of 1˚ - 3˚ 
solutions of (41), presented in Section 3.1. 

Theorem 5.2. Nonlinear operator B , defined by (41), 
acts in the space  1,1C  of continuous complex-  
valued functions, it is a compact and maps set  

 :M C
S f f M   it into itself, where  

 
   1

11,1
max , ; d
s

M F s K s s c s
 

        (105) 

that is  M MB S S . 
From the proved theorem follows, in particular, the 

following fact. Since the solutions of (41) are fixed 
points of the operator B, from the relation  M MB S S  
follows that all solutions of this equation belong to the 
set  M MB S S . In addition, is valid [75] 

Corollary 5.1. If the sequence  nf  which is gener- 
ated by the iterative process (104), is minimizing for the 
functional  F U , then from  nf  can be selected a  

subsequence  knf  converging uniformly to the mini- 

mum point f  of the functional  F U . 
Note that Theorem 5.2 and Corollary 5.1 are extended 

to the case of synthesis problem of a flat aperture with 
use of equation of the type (63). 

5.2. Numerical Solution of Synthesis Equations 
Corresponding to Functional F

  

In the base of construction of iterative processes of solv- 
ing the nonlinear operator equations of the type (12) and 
(13) we put implicit scheme of the successive approxi- 
mations method [7,76]. In a general case, the iterative 
process of solution of (12) has the form 

 
     

1
1

1 exp iarg 0,1,2,

n

n

E A A U

A F AU n





 


 



  
, (106) 

where E  is an identity operator acting in the space 
 2UH L V . 

The implicit scheme of iteration process for (13) with 
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respect to synthesized DP f 3 has the form similar to 
(106) 

 
     

1
1

1 exp i arg 0,1,2, .

n

n

E AA f

AA F f n





 


 



  
  (107) 

Note that the implicit schemes (106) and (107) are 
characterized by the fact that linear operator equation is 
solved on every iteration step. In addition the question of 
solvability of (106) and (107) appears, to which a posi- 
tive answer gives a theorem about the solvability of the 
functional equation of the second kind of the type 

x Wx y                 (108) 

in the Banach space X , where W  is a linear compact 
operator [69]. 

Theorem 5.3 [69]. In order that (108) have the solu- 
tion at an arbitrary y X , it is necessary and suffi- 
ciently that homogeneous equation x Wx  have a 
unique solution (obviously, that 0x  ). 

For a sequence  nU  obtained by (106), is valid 

Theorem 5.4. Let    2 2:A L V L G  be a com- 

pletely continuous operator, F  be a continuous real 
nonnegative function in G  and at 0     there  

exists the inverse operator   11E A A
  , in addition,  

the dimension of the space of zeros   0N A  . 
Then the sequence  nU  generated by the iterative 

process (106), is a minimizing for the functional 

 

  

grad

exp iarg

U

U

F n H

n n n H

U

A F AU A AU U




   
  (109) 

in the space UH . 
We denote the operator in right part of (106) as: 

   
   

11 1

exp i arg .

D U E A A

A F AU

 
  



 


    (110) 

For the operator  D U  is valid 
Lemma 5.1. Let : U fA H H  be a completely con- 

tinuous operator. Then the operator  D U  defined by 
(110), is compact and it transfers any bounded set 

 :
U

r H
U U U r   into its relatively compact part at  

1

fH
A F r     . 

Thus, it is shown that there is true 
Corollary 5.2. If  grad U  is operator continuous 

in some neighborhood UU H   of the point U , then 
from Theorem 5.2 and Lemma 5.1 follows that the sub- 
sequence  knU  converges to some solution of (12) by 
the norm of the space UH  if 0U U . 

Dependent on the choice of initial approach the suc- 
cessive approximations (106) can converge to the solu- 
tions of various types [56-58]. 

5.3. Numerical Solution of Synthesis Problems 
with Use of the Energy Criterion F  

First we shall consider the iterative process of solution 
the equation of type (34) in the Hilbertian space  

     2 2 2UH L V L V L V    under certain restrictions 
on the parameter  . This equation is written as 

 2* *
0

2 2
E A N A A A A

 
     
 

U U U ,   (111) 

where : U UE H H  is an identity operator,  

 : UA H GC  is completely continuous operator. We  

denote  UH G
A 




C
. Note that the scalar product and  

the corresponding norm 
UH

  in the space UH  are  

defined by (14) and (15), and the Chebyshev  G


C
 and  

mean-square 
 
 2

G


C

 norms in the space  
 2

G
C  are intro- 

duced by Formulas (16)-(18). 
Henceforth we shall consider completion of the space  

 
 2

G
C  relatively to the norm 

 
 2

G


C

 [14], which is the  

Banach space and coincides with the Hilbertian space 
   2 2fH L G L G  , the norm in which we shall de- 

note by symbol  2L G
 . We assume that : U fA H H   

is a completely continuous operator and in the space 

 
 2

G
C  the domain of its values  R A  is a set of con- 
tinuous functions. 

Taking into account the equality A U f  we shall 
consider the expression 0N AU  in (111) as an operator 
of multiplication by the function 0N : 

  0N N f f ,              (112) 

acting in the space fH  where 0N  is real nonnegative 
continuous function on the compact G , in addition 

 0 1
G

N 
C

. Obviously, that (112) is a linear bounded  
operator, and 1

f fH H
N . 

If *2 A A  N , then there exists the inverse operator  

  1
*2E A A





 N , the norm of which satisfies the ine- 

quality [14]. 

3Comment 5.1. Since the set of continuous functions in the 
domain G  is a dense everywhere in the space  2L G , and 

completion of space  
 2

G
C  of continuous functions as the nor-

malized space (with norm 
 
   2 ,
G

C
x x x ), coincides with the

Hilbertian space  2L G  [14], justification of the convergence 

of (107) concerning equation of the type (22) can be considered
in the Hilbertian space  2fH L G  ( 2G    or 1G   ). 
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  1
*

*

12
21

E A A
A A





 


N
N

.     (113) 

In this case, Equation (111) we shall write as 

 

   
1

2* *2 2

D

E A A A A
 





   

U U

NU U U
.  (114) 

Here we shall show that the solution of (114) can be 
obtained as a limit of successive approximations of the 
iterative process [61]: 

     1 1 0,1,2,n n nt t D n    U U U  ,  (115) 

where t  is some fixed number with the interval  0,1 . 
In addition successive approximations can converges to 
different solutions of (114) depending on the choice of 
the initial approximation. 

To determine the conditions and to justify convergence 
of (115), we shall use the Theorem 4.1 with [61, p. 68], 
according to which: if nonexpanding operator W  con- 
verts a closed convex set   of strictly convex Banach 
space X  into its compact part, then successive approxi- 
mations 

     1 1 0,1,2,n n nx tx t W x n      , 

where t  is any fixed number from the interval  0,1 , 
converges to some solution of the equation  x U x  at 
some 0x  . 

Since the Hilbertian space UH  is strictly convex Ba- 
nach space (see [61, p. 67]), then to satisfy of the condi- 
tions of this theorem concerning (114), it is sufficiently 
to show that a closed convex set 

0r
S  exists in the space 

UH , where the operator  D U  is nonexpanding and 
completely continuous. In addition there is such relation  

 0 0r rD S S . 

Satisfication of these conditions results from lemmas, 
proved in [7,49]. 

Lemma 5.2. Let : U fA H H  be a linear com- 
pletely continuous operator and the domain of its values 
 R A  is a set of continuous functions, *

02 A N A  . 
Then  D U  is a nonexpanding operator on 

 
0 2rS L V , where 

 0 0

1 2

0

0 3

: ,

1
, 2 .

3

U
r H

S r

A N A
r

A


 







 

 
  
 
 

U U

     (116) 

that is, for any 
01 2, rSU U  the inequality 

   1 2 1 2
UU HH

D D  U U U U      (117) 

is satisfied. 

Lemma 5.3. Let : U fA H H  be a linear com- 
pletely continuous operator and the domain of its values 
 R A  is a set of continuous functions, *2 A A  N . 

Then   : U UD H HU , defined by (114), is a com- 
pletely continuous operator for which the relation  

 0 0r rD S S  (
0r

S is a closed convex set, defined by  

(116)), is satisfied. 

5.4. Numerical Solution of Synthesis Problems 
with Optimization of Geometry of Radiating 
System 

In this section we shall consider the synthesis problem of 
a flat aperture according to the prescribed amplitude DP 
for the case when the form of aperture and amplitude- 
phase distribution of the field (currents) in it is optimized 
simultaneously, limiting by the case of linear polarization 
[25,26,77]. We shall consider a special case when the 
field in the aperture is linearly polarized along one of the 
coordinate axes, and DP has only one component. We 
introduce inside of aperture the polar coordinate system: 

cosx r  , siny r  . Let     be a function of the 
boundary of aperture S . Then DP  1 2,f s s  which is 
formed by amplitude-phase distribution of the field in the 
aperture  ,U r  , is given by the formula [7,16] 

   

   
 

 

1 2

1 2

2π
i cos sin

0 0

, ,

, e d d

1, ; 2, .

jg j

kr s s

f s s A U

U r r r

j x j y



 
 





 

 







   

      (118) 

Later on we omit the index in definition of f . Let the 
given amplitude DP  1 2,F s s  be different from identi- 
cal zero in some limited closed domain 2G      
and it is identically equal to zero at  1 2,s s G \ . The 
problem of simultaneous synthesis of the aperture shape 
S  and amplitude-phase distribution of the field in it is 
considered as the problem on finding the functions  
 ,U r   and     minimizing the functional 

     

 
 

2

1 2 1 2 1 2

2π
2

1 2 1 2
0 0

, , , d d

, d d d d ,

F
G

G

U F s s f s s s s

f s s s s r r
 

 

 


   

 



  



\

 (119) 

in which the first two summands describe the mean- 
square deviation of modules of given and synthesized 
DP’s in space 2 , and the third one—imposes restric- 
tions on the square of aperture S . We shall consider the 
parameter 0   as a weight coefficient. 

We introduce into consideration the following func- 
tional spaces:  2UH L S  is a space of square inte- 
grable complex functions in the domain S ,  

 2 0,2πH L   is a space of square integrable real func- 
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tions on the segment  0,2π ,  2fH L   is a space 
of square integrable complex functions in the domain  . 
Scalar products and generated by it norms we shall in- 
troduce as follows: 

     
 2π

1 2 1 2
0 0

, , , d d
UH

U U U r U r r r
 

     , 

 1 2
,

UH
U U U , 

       2π

1 2 1 20
, 1 2 d

H
        , 

 1 2
,

H
   , 

     1 2 1 1 2 2 1 2 1 2, , , d d
fH

f f f s s f s s s s


  , 

 1 2

1 2,
fH

f f f .                   (120) 

Taking into account the introduced norms, the last sum- 
mand in (119) and Parseval’s equality have the form 

 
 2π 2π

22

0 0 0

d d d
2 H

r r


            , 

 2 22
2π

f UH H
f k U . 

On this base the functional F  is presented as: 

   
 

2

2 22

, 2 ,

2π .

f

U

F H

H H

U F F f

k U


 

 

 

 


    (121) 

We shall consider the iterative process of numerical 
minimization of (121). In it base we shall put the ideas 
similar, as at minimization of functions of two variables  

by a coordinate descent method. Let  ,V U     be a  

minimum point of the functional  ,F U   and  
      0 0 0,V U   be an initial approximation chosen  

from some neighborhood of the point V  . We shall de- 
note by  0S  the initial shape of aperture, that is de- 
scribed by the function    0  . Substitute    0   in 
(121) and consider its restriction in the space UH : 

    0,U FU U    .        (122) 

From the necessary condition of the functional mini- 
mum  U U  we obtain equation of type (9). Numeri- 
cally we solve it by successive approximations method, 
given in pt. 5.1: 

         

 

2 i arg
1 2π , ; e d

0,1, 2, .

nf Q
n

G

f Q k F Q K Q Q k Q

n

  






 

(123) 

As a result, we find the function    1f Q , and obtain 

the first approximation of the solution  1U by the for- 
mula of type (10). 

We shall pass to finding the function     that de- 
scribes the boundary of aperture S . We fix the function 

 1U  extending its analytically according to (10) to the 
plane XOY  in (121), and consider the functional  

    1 ,F U      which depends only on the func- 

tion  . With the necessary minimum condition:  

     grad , , 0g g       , where 

  , 0g    is an arbitrary element of the space H , 
we obtain the equation 

 

         
22

i arg i ,

2

e e d
2π

0
2π

f Q k Q

G

B

k
F Q Q

k

   



 




     
 

   
  

  (124) 

which is a nonlinear functional equation with respect to 
the function    . 

We shall find numerically solutions of (124), using the 
Newton-Kantorovich method [69]: 

    ,n n nB B                (125) 

     
 

1

0,1, 2,

n n n

n

        

 
,      (126) 

where  nB   is the partial Frechet derivates of opera- 
tor B  by the function  . We assume that  0

0  . 
Equation (125) is a linear integral equation of the form  

    

     

  

2π

0

, , , d

n n

n n n

n

L

M

B

   

        

 



      

 

  (127) 

which    0nL     can be reduced to the Fredholm 
equation of the second kind at    0nL    . Solving 
(127) we find the first approximation for the function 

 1  that describes a boundary of aperture of the radiat- 
ing system. 

Continuing finding in turn the approximations of func- 
tions  nU and  n , we obtain the sequence  

    ,n nU   that is relaxational for (119). In more detail 
the problem of choice of initial approximations and justi- 
fication of relaxation for functional  ,F U   is given 
in [7,56,57]. 

First we shall consider the numerical results of synthe- 
sis of flat aperture with optimization of its geometry. In 
Figures 15 and 16 the examples of synthesis of ampli- 
tude DPs, which in cross section have quasi-square and 
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Figure 15. Synthesis DP with square contour: (a) Synthe- 
sized DP with square contour; (b) The optimal shape of ap- 
erture. 
 
quasi-triangular shapes, are given. The optimal shapes of 
apertures are given there too. 

Note that the problems of such class arise, in particular, 
at the synthesis of contour DPs of fixed and variable forms 
for satellite antenna systems needed for uniform irradia- 
tion of a given territorial zone from the board of artificial 
satellite, where multi-beam antennas are used often [77- 
82]. 

If multibeam antenna (MBA) has a radiating aperture 
of circular shape, and partial beams in the cross section 
have the shape of a circle and nonuniform distribution of 
radiated energy inside of the section, then on the junction 
of three neighboring rays with a circular cross section the 
so-called critical zones (Figure 17) with low level of ra- 
diated energy occur. One of the possible ways of solution 
of this problem is passage to alternative forms of aper- 
tures that on the base of the optimal APD will form rays 
that have rectangular, triangular or hexagonal shapes and 
close to constant (inside of contour) coefficient of di-
rected action in rectangular cross section. 

Obviously that on the base of such partial beams it is 
easy to synthesize given summary DP without critical  

 

Figure 16. Synthesis of DP with triangular contour: (а) 
Synthesized DP with quasi-triangular contour; (b) Optimal 
shape of aperture. 
 

 

Critical zone 
 

Figure 17. Critical zones with low level of radiated energy. 
 
zones. Below the results of synthesis of triangle-beam 
contour DP with partial beams with circular (Figure 
18(a)) and quasi-rectangular (Figure 18(b)) contours are 
presented. 

From the analysis of the figures we see that in the 
summary DP which is obtained on the base of quasi- 
square of contours, critical zones are absent, and varia- 
tion of radiated energy inside of the contour does not ex- 
ceed 2 dB. 
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Figure 18. Synthesis of contour DP. 
 
6. Conclusions 

Note the main features and problems arising at investiga- 
tions of othe class of problems reviewed in the article: 
 The investigation of nonuniqueness and branching of 

existing solutions, which depend on the physical pa- 
rameters of the problem is the main difficulty at solv- 
ing this class of problems. As follows from the re- 
searches presented, in particular, for a special case in 
[7,13,16], when      1 2 1 1 2 2,F s s F s F s  , the qual- 
ity of existing solutions increases significantly with 
growth of parameters 1 2,c c . However, to obtain the 
best approximation to the given amplitude DP  
 1 2,F s s  at relatively small values of the parameters 

1 2,c c  describing the sizes of aperture, allowing to 
confine by investigations of the first few branching 
points (lines), is essential in the synthesis problems of 
radiating systems. 

 At finding the solutions of (45) by the successive ap- 
proximations method in the case of the even by both 
arguments (or one argument) functions  1 2,F s s  to 
obtain solution of certain type it is necessary to 
choose an initial approximation, which belongs to the 
corresponding invariant set of nonlinear operators 1B  

and 2B . 
 On the base of computational experiments it is re- 

vealed that the branching-off complex solutions, which 
exist at small sizes of aperture, increase the efficiency 
of synthesis within 20% - 40% compared with the 
real (primary) solutions. The presence of different by 
structure but identical by efficiency solutions (in the 
sense of value of the corresponding functional), pro- 
vides for practice the possibility of choosing one of 
them that has a simpler physical realization. In addi- 
tion, the branching-off solutions at conservation of 
the same efficiency which corresponds to real solu- 
tions allow to reduce the linear size of the aperture in 
the limits of 10 to 20 percent. 

 The proposed numerical method of solution of non- 
linear two-parameter spectral problems arising at in- 
vestigation of nonlinear integral equations can be suc- 
cessfully applied, in particular, to solving the linear 
and nonlinear two-parameter spectral problems con- 
cerning matrix equations and ordinary differential 
equations of the second n -th order with nonlinear 
occurrence of the spectral parameters into coefficients 
of equations and boundary conditions. 

 A mathematical analogy between the synthesis prob- 
lems of acoustic and electromagnetic antennas and 
synthesis problems of radio allows to use developed 
methods and numerical algorithms in the above sec- 
tions of acoustics, radio physics and radio engineer- 
ing. 

 In mathematical aspect the synthesis problems of ra- 
diating systems formulated in paragraph 2, belong to 
problems of non-linear approximation of real finite 
functions by modules of one-dimensional or two-di- 
mensional, or else discrete Fourier transforms [56,57]. 
In this connection, the above results can be directly 
applicable to solving the problems of mean-square 
approximation of nonnegative finite functions. 
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