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ABSTRACT 

The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical har-
monic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are de-
fined by a generalized version of the so-called “superformula” introduced by Gielis. A dedicated numerical procedure 
based on the computer algebra system Mathematica© is developed in order to validate the proposed methodology. In 
this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained. 
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1. Introduction 

Many problems of mathematical physics and electro- 
magnetics are related to the Laplacian differential opera- 
tor. Among them, it is worth mentioning those relevant to 
the Laplace and Helmholtz equations. However, most of 
the mentioned differential problems can be solved in 
explicit way only in canonical domains with special 
symmetries, such as intervals, cylinders or spheres [1]. 
The solution in more general domains can be obtained by 
using the Riemann theorem on conformal mappings and 
the relevant invariance of the Laplacian [2]. However, it 
is clear that conformal mapping techniques can not be 
used in the three-dimensional case where approaches 
based on suitable spatial discretization procedures, such 
as such as finite-difference or finite-element methods, are 
usually adopted [3]. 

Different techniques have been proposed in order to 
solve the mentioned class of differential problems both 
from a theoretical and numerical point of view (e.g., rep-
resenting the solution by means of boundary layer tech- 
niques [4], solving the corresponding boundary integral 
equation by iterative methods [5], approximating the 
relevant Green function by means of the least squares 
fitting technique [6], solving the linear system relevant to 
an elliptic partial differential equation by means of re- 
laxation methods [7]). However, none of the contribu-  

tions already available in the scientific literature deals 
with the classical Fourier projection method [8] which 
has been extended in recent papers [9-16] in order to 
address boundary-value problems (BVPs) in simply con- 
nected starlike domains whose boundaries may be re- 
garded as an anisotropically stretched unit circle or sphere 
centered at the origin. 

In this contribution, a suitable methodology, based on 
the theory of spherical harmonics [17], has been devel- 
oped in order to compute the solution of the Robin prob- 
lem for the Helmholtz equation in normal-polar shell-like 
domains. In particular, the boundaries of the considered 
domains are supposed to be defined by a generalized 
version of the so-called Gielis formula (also known as 
“superformula”) [18]. Regular functions are assumed to 
describe the boundary values, but the proposed approach 
can be easily generalized in case of weakened hypothe- 
ses. 

In order to verify and validate the developed technique, 
a suitable numerical procedure based on the computer 
algebra system Mathematica© has been adopted. By us- 
ing such procedure, a point-wise convergence of the 
spherical harmonic series representation of the solution 
has been observed in the regular points of the boundaries, 
with Gibbs-like phenomena potentially occurring in the 
quasi-cusped points. The obtained numerical results are 
in good agreement with theoretical findings by Carleson 
[19]. 

*This research has been partly carried out under the grant PRIN/2006 
Cap. 7320. 
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2. The Laplacian in Stretched Spherical  
Coordinates 

Let us introduce in the real space the usual spherical co- 
ordinate system: 

sin cos ,

sin sin ,

cos ,

x r

y r

z r

 
 



 
 

             (1) 

and the polar equations: 

 , ,r R                (2) 

relevant to the boundaries of the supershaped shell  
which is described by the following chain of inequalities: 



   ,R r R , ,               (3) 

with 0 π   and 0 2π  . In (2),  ,R    are 
assumed to be piece-wise  functions satisfying the 
condition: 

2C

   , , 0,  0 π,  0 2π.R R              (4) 

In this way, upon introducing the stretched radius   
such that: 

       , ,
,

b R a R
r

b a

        



    (5) 

with , the considered shell-like domain  
can be readily obtained by assuming 

0b a  
0 π  , 0    

 and a b2π   . 
Remark: Note that, in the stretched coordinate system 
,  ,      the original domain  is transformed into 

the spherical shell of radii a and b, respectively. Hence, 
in this system one can use classical techniques to solve 
the Helmholtz equation, including the eigenfunction 
method [1]. 



Let us consider a piece-wise  function ν (x, y, 

z)
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the Laplace operator,  , in spherical coordinates: 
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In the considered stretched coordinate system,   can 
be represented by setting: 

 
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  (7) 

In this way, by denoting  ,R    as R  for the 
sake of shortness, one can readily find: 

,
u b a U

r R R  

  
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 
               (8) 
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with    R b R a R      , and where the sub- 
scripts denote the partial differentiation with respect to 
the polar angles   and  . Substituting Equations (8)- 
(12) into Equation (6) finally yields Equation (13). 
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As it can be easily noticed, upon setting  ,R     

0a   and , the classical expression of 
the Laplacian in spherical coordinates is recovered. 

 ,R b   1



3. The Robin Problem for the Helmholtz 
Equation 

Let us consider the interior Robin problem for the 
Helmholtz equation in a starlike shell , whose bounda- 
ries  are described by the polar equations  


 
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where  denotes the propagation constant, 0k  ̂    
ˆ ,     are the outward-pointing normal unit vectors 

to the domain boundaries , respectively, and    , 
   are given regular weighting coefficients. 

Under the mentioned assumptions, one can prove the 
following theorem. 

Theorem. Let: 
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where: 
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m  being the usual Neumann’s symbol and   m
nP   the 

associated Legendre function of the first kind and orders 
n, m. Then, the boundary-value problem (14) for the 
Helmholtz equation admits a classical solution  y z, ,v x   

 2 L  such that the series expansion (20) holds true.  

In Equation (20)        1 2

1
π

2n nh z zH z   denotes the  

spherical Hankel function of kind  and order n. 
For each pair of indices 
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0,  1,  ,  m    introduce the terms reported in Equa-
tion (21), where: 
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Therefore, the coefficients , , , ,  in (20) can 
be determined by solving the infinite linear system: 

,  n m n mA B 
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with  and . 1,  2 0

Proof: Upon noting that in the stretched coordinate 
system 

,  0,  1,  ,  p q   p

,  ,      introduced in the ,  ,  x y z  space, the 
considered domain  turns into the spherical shell of 
radii a and b, one can readily adopt the usual eigenfunc- 
tion method [1] in combination with the separation of 
variables (with respect to 



,  r   and  ). As a conse- 
quence, elementary solutions of the problem can be 
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Substituting into the Helmholtz equation, one easily 
finds that the functions    ,  P    , and     must 
satisfy the ordinary differential equations: 

       
2

22 2
2

d d
2 0,

dd

P r P r
r r kr P r

rr
        (28) 

   
2

2
2

d1 d
sin 0,

sin d d sin

   
   

   
     
  

(29) 

   
2

2
2

d
0,

d


 




            (30) 

respectively. The parameters   and   are separation 
constants, whose choice is governed by the physical re- 
quirement that at any fixed point in space the scalar field 
 , ,u r    must be single-valued. So, by setting: 

,m                   (31) 

  2
01  ,n n n                 (32) 

one can easily find: 

  cos sin ,m ma m b m            (33) 

   , cos ,m
n m nc P             (34) 

where ,, ,m m n ma b c   denote arbitrary constants. In 
order to identify the radial function  P   introduced in 
(27), it is convenient to set: 

     
1

2 .P r kr r            (35) 

In this way, it is readily shown that  r  satisfies: 

       
22

22
2

d d 1
0,

d 2d

r r
r r kr n r

rr

 


        
   

(36) 

and, hence, is a cylinder function of half order that, 
without loss of generality, can be expressed as a linear 
combination of ordinary Hankel functions of first and 
second kind must, so that: 

         1 2 ,n n n nP r d h kr e h kr        (37) 

with ,n nd e  . Therefore, the general solution of the 
Robin problem (14) can be searched in the form: 

 

    

  

1
1, , 1, ,

0 0

2
2, , 2, ,

, ,

cos cos sin

cos sin .

n
m

n n n m n m
n m

n n m n m

u r

P h kr A m B

h kr A m B m

 

m  

 



 

 

  



(38) 

Enforcing the Robin boundary condition yields: 

 

     

       

,

, , , , , ,

ˆ, , , , , , ,

F

u
u R R

u R u R

 

         


,            



   

    


 



   

(39) 

where: 

     

 

, , , ,1ˆˆ, ,

, ,1
ˆ ,

sin

u r u r
u r r

r r
u r

r

   
  


 


 

 
  

 





   (40) 
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and: 

     
 2

ˆ ˆˆ , ,
ˆ , .

1 ,

r         
  

  

 




 
 


    (41) 

Hence, combining equations above and using a classi-
cal harmonic projection method, the Equations (21)-(26) 
follow after some algebraic manipulations. 

It is worth noting that the derived expressions still hold 
under the assumption that  ,R    are piecewise con-
tinuous functions, and the boundary values are described 
by square integrable, not necessarily continuous, func-
tions, so that the relevant spherical harmonic coefficients 

, ,,n m n m    in Equation (19) are finite quantities. 

4. Numerical Procedure 

In the following numerical examples, let us assume, for 
the boundaries  of the considered annulus, general 
polar equations of the type: 

 

 

01

,

1
sin cos

2 4

1 1
sin sin cos ,

2 4 2

x

y z

x x

x

y y z

y z

R

a b

d

a b a

d d




 

 

 

  




 



 




  

 







  


 (42) 

which provides an extension, to the three-dimensional 
case, of the “superformula” introduced by Gielis in [18] . 
Very different characteristic geometries, including ellip-
soids, ovaloids, and Lamé-type domains (also called 
“superellipsoids”) can be obtained by assuming suitable 
values of the parameters , , , , , , , , ,x y z x y x y z xa a a b b d d d            

0, ,y z      in (42). It is to emphasized that almost all 
three-dimensional normal- polar shell-like domains can 
be described, or closely approximated, by the considered 
formula. 

In order to assess the performance of the proposed  

methodology in terms of numerical accuracy and con- 
vergence rate, the relative boundary error has been 
evaluated according to Equation (43), where   is the 
usual  norm, and 2L  , ,N NU U     denotes the 
partial sum of order N relevant to the spherical harmonic 
expansion representing the solution of the bound-
ary-value problem for the Helmholtz equation (see Equa-
tion (44)). 

Remark: It is to be noted that, where the boundary 
values exhibit a rapidly oscillating behavior, the number 
N of terms in the spherical harmonic expansion approxi-
mating the solution of the problem should be increased 
accordingly in order to achieve the desired numerical 
accuracy. 

Example 

Upon assuming in (42)  2,  4,x y z x ya a a b b        
4 5,  1,  3,y z x y zd d       

x y z xd d d d     
nd 

       
a 0 2   , the shell   turns to feature a cuboidal 
shap   2 22 3 1, , n 2 cos3 e y zf x y z x y   

     and e. Let si
 , ,f x y z

3 3 3 e 2 3zx y z x y zx y       be the f
bing the bo ary values. Pr

unc-
ovided that the 

propagation constant is 2πk
tions descri und

 , and 2 5,  1,       
1 10,  1 2      are the weighting coefficients in 

the Robin condition, the relative boundary error Ne  as 
function of the number N of terms in the truncated ries 
expansion (44) exhibits the behavior shown in Figure 1. 
As it appears from Figure 2, the selection of the expan-
sion order 11N

 se

  leads to a very accurate representa-
tion of the solution  , ,Nv x y z , whose spherical har-
monic coefficients , ,A  , ,  1, 2n m    are plot-
ted in Figure 3. 

Remark: It h

n m  and B

as been observed that norm of the 
di nd

 

 2L  
fference between the exact solution a  the relevant 

approximation is generally negligible. Point-wise con-
vergence seems to be verified in the considered domains, 
with the only exception of a set of measure zero consist-
ing of quasi-cusped points. In the neighbourhood of these 
points, oscillations of the truncated order solution, recall- 
ing the classical Gibbs phenomenon, usually take place. 

2
2

2 2
,

N N
N N

N

U U
U F U F

e
F F

   
 

     



 
  

 
    

 







 

                  (43) 

         

     

1
1, , 1, ,

0 0

2
2, , 2, ,

, ,
, , cos cos sin

, ,
cos sin .

N n
m

N n n n m n m
n m

n n m n m

R
U P h k A m B

b a

R
h k A m B m

b a

  
     

  
 

 

  
   

  
 

   
   


 

m

        (44) 
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Figure 1. Relative boundary error eN as function of the order N of the truncated spherical harmonic expansion representing 
the solution of the considered Robin problem for the Helmholtz equation in the supershaped shell  described by the 
generalized Gielis formula with parameters 


,  ,  ,  ,  ,                          2 4 4 5 1x y z x y x y z x y 3x y za a a b b d d d d d ν ν ν  

 

zd

. 0 2ν  

       
(a)                                                          (b) 

Figure 2. Boundary behavior along   (a) and  (b) of the partial sum  , ,NU   

pershaped sh

     of order   representing 

the solution of the considered Robin lem for th lmholtz equation in the su ell 
 

5. Conclusion 

A harmonic projection meth
ord m,

obin for

expressions of the solution of the con- 
Ps can be derived by using classical  

adrature rules, so overcoming the need for cum er- 
h as finite-difference or 

finite-element methods. The proposed approach has been 
lidated by dica

puter-aided algebra tool 
Mathematica©. A point-wise convergence of the expan- 

N 11

 prob e He  . 

od, in combination with the some numerical techniques suc

adoption of a suitable stretched co inate syste  has 
been developed for solving the R  problem  the 
Helmholtz equation in supershaped shell. In this way, 

successfully va means of a de ted numerical 
procedure based on the com

analytically based 
sidered class of BV

qu b

sion series representing the solution seems to be verified 
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(a)                                                          (b) 

Figure 3. Magnitude of the coefficients  and , ,n mA  , , , 1 2n mB   relevant to the spherical harmonic expansion  , ,Nv x y z   

  11N  representing the solution dere  the Helmholtz equation in the supershape

with the only exception of a set of measure zero consist- 
ing of the quasi-cusped points along the boundary of the 
problem domain. In these p

und d 

[3] A. Bondeson, T. Rylander and P. Ingelstrom, “Computa- 
tional Electro ience, New Y
2005.  

thematics, Vo

 of the consi d Robin problem for

 

d shell  . 

oints, Gibbs-like oscillations 
may occur. The computed results are fo  to be in goo
agreement with the theoretical findings on Fourier series. 
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