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ABSTRACT 

In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi- 
order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study 
is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The 
results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legen-
dre polynomials are needed to obtain a satisfactory result. 
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1. Introduction 

Many phenomena in engineering physics, chemistry, and 
other sciences can be described very successfully by 
models that use mathematical tools of fractional calculus, 
i.e. the theory of derivatives and integrals of non-integer 
order [1-3]. For example, they have been successfully 
used in modeling frequency dependent damping behavior 
of many viscoelastic materials. There are numerous re- 
search which demonstrate the applications of fractional 
derivatives in the areas of electrochemical processes, die- 
lectric polarization, colored noise, and chaos. 

The numerical solution of differential equations of in- 
teger order has been a hot topic in numerical and compu- 
tational mathematics for a long time. The solution of 
fractional differential equations has been recently studied 
by numerous authors. However, the state of the art is far 
less advanced for general fractional order differential 
equations. Moreover, to the best of the authors know- 
ledge, very few algorithms for the numerical solution of 
Multi-order Fractional Differential Equations (M-FDEs) 
have been suggested [4-6], particularly algorithms for 
analytical solutions and approximate solutions of non- 
linear M-FDEs. 

As we know, the fractional derivatives are global de- 
pendence problems (they are definite by the integral in [0, 
t]), from this point, the global methods—spectral me- 
thods maybe are more suit to solve the FDEs. As we 
know the standard spectral methods possess infinite order 
of accuracy for the equations with well regularity solu- 
tions, while fail to many complicated problems with  

singular solutions. So, it is attracted considerable interest 
that how to enlarge the adaptability of spectral methods, 
and construct certain simple approximation schemes with- 
out loss of any accuracy to even more complicated pro- 
blems. It is well known that Legendre polynomials are 
well known family of orthogonal polynomials on the 
interval [−1, 1]. They are widely used because of their 
good properties in the approximation of functions [7-9]. 
For multi-order fractional differential equation, a ope- 
rational matrix is studied [4], Chebyshev wavelets is con- 
sidered in [10], adomian decomposition is considered in 
[11], a variational iteration method is considered in [12], 
predictor-corrector method is studied in [13], operator 
splitting method is considered in [14], and Adams me- 
thod is researched in [15]. In this paper, we introduce the 
Legendre pseudo-spectral method to solve multi-order 
arbitrary differential equations, which include the linear 
and nonlinear differential equations. 

The outline of this paper is as follows. In Section 2, we 
review the basic definitions and the properties of the fra- 
ctional calculus. In Section 3, the approximation of fra- 
ctional derivative by Legendre Polynomials is obtained. 
In Section 4, we present the application of the Legendre 
pseudo-spectral method to multi-order fractional diffe- 
rential equation. Some numerical examples are provided 
in Section 5. Also a conclusion is given in Section 6. 

2. Fractional Calculus 

In this section, we first review the basic definitions and 
the operational properties of fractional integral and deri-  
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vative for the purpose of acquainting with sufficient fra- 
ctional calculus theory. Many definitions and studies of 
fractional calculus have been proposed in the past two 
centuries. These definitions include Riemann-Liouville, 
Reize, Caputo and Grnwald-Letnikov fractional opera- 
tors. The two most commonly used definitions are the 
Riemann-Liouville operator and the Caputo operator. We 
give some definitions and properties of the fractional 
calculus. 

c D  denotes Caputo fractional derivative of order   
is defined  
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where I  denotes the Riemann-Liouville fractional in- 
tegral of order order   defined as  
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As we all know, there are some different definitions of 
fractional operator except the Caputo fractional deriva- 
tive. From a theoretical point of view the most natural 
approach is the Riemann-Liouville definition defined as  
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The relationship between the Caputo definition and the 
Riemann-Liouville definition can be given by the fol- 
lowing formula  
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Similar to integer-order differentiation, Caputo’s frac- 
tional differentiation is a linear operation:  
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For the Caputo and Riemann-Liouville’s derivative we 
have: 
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Amongst a variety of definition for fractional order 
derivatives, Caputo fractional derivative has been used 
because it allows physically interpretable initial condi- 
tions. 

3. Evaluation of the Fractional Derivative 
Using Legendre Polynomials 

The well known Legendre polynomials are defined on 
the interval  1, 1  and can be determined with the aid 
of the following recurrence formula: 
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where  0 1L z   and  1L z z

. In order to use these 

polynomials on the interval 0,t L  we define the so 
called shifted Legendre polynomials by introducing the 
change of variable  2z t L L  . Let the shifted Le-  
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2t
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 be denoted by  iP t .  

Then  iP t  can be obtained as follows: 
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where  0 1P t   and    1 2 1P t t L  . The analytic 
form of the shifted Legendre polynomials  iP t  of de- 
gree  given by: i
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Note that    0 1
i

iP    and . The orthogo- 
nality condition is:  
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The function  y t , square integrable in  0, L , may 
be expressed in terms of shifted Legendre polynomials 
as: 
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where the coefficients  are given by: iy
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In practice, only the first  1m  -terms shifted Le- 
gendre polynomials are considered. Then we have: 
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In the following theorem we introduce an approximate 
formula of the fractional derivative of  y t . 

Theorem 1 Let  y t  be approximated by shifted Le- 
gendre polynomials as (10) and also suppose 0   
then: 
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where  
,i kw   is given by: 
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Proof. Since the Caputo’s fractional differentiation is a 
linear operation we have: 
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Employing Equations (3) in Equation (6) we have: 

  0, 0,1, , 1, 0.iD P t i         

Also, for , by using Equations (3) in 
Equation (6) we get: 

, ,i      m

      
   

 

    
     

2
0

1 !

! !

1 !
.

! ! 1

i k
m

k
i k

i

i k
i

k
k

k

i k
D P t D t

i k k L

i k
t

i k k k L

 



 








  

 




 


   




 

4. Solution of Multi-Order Fractional 
Differential Equations 

Consider the multi-order fractional differential equations 
of type given in (13): 

       
 

1, , , ,

0,

mD y t F t y t D y t D y t

t L

 



  ,

,n

 (13) 

with initial conditions: 
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we now collocate (16) at 1m       points pt  as: 
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For suitable collocation points tp, we use 1m       
roots of shifted Legendre polynomial  P x1m    

Also, by substituting (15) in the initial conditions (14) 
we can obtain 

. 

    equations as follows:  
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1m       equations in (17) together with     equ- 
ations of the boundary conditions (18), generate  1m   
equations which can be solved using Newton’s iterative 
method for the unknown . Consequently , 0,1, ,iy i m 
 y t  can be calculated. 

5. Numerical Examples 

In this section, we will use the Legendre collocation me- 
thod to solve nonlinear fractional (arbitrary) order diffe- 
rential equation. These examples are considered because 
closed form solutions are available for them, or they have 
also been solved using other numerical schemes. This al- 
lows one to compare the results obtained using this sche- 
me with the analytical solution or the solutions obtained 
using other schemes. 

Example 1. Consider the following initial value pro- 
blem 
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To solve the above problem, by applying the technique 
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It is clear that the approximate solution coincides with 
the analytic solution. 

Example 2. Consider the following nonlinear diffe- 
rential equation: 
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We use the Legendre pseudo-spectral method with 
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Then the approximate solution will be 

 

 
  

4

0

2 3 2

3 2 3

0.2506 0.4511 2 1

0.2508 6 6 1 0.0503 20 30 12 1

1.006 0.0042 0.001 .

i i
i

y P t

t

t t t t t

t t t t



  

     

   



 

My result is in good agreement with exact solution. 
This demonstrates the importance of my numerical scheme 
in solving nonlinear multi-order fractional differential 
equations. 

Example 3. Following Odibat and Momani [6], we 
consider fractional Riccati equation  
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subject to the initial state , which is studied by 

Odibat [6] by using the modified homotopy perturbation 
method and Li [10] by using the Chebyshev wavelet 
operational matrices method. Here we use the Legendre 
pseudo-spectral method to solve it. 
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This is a nonlinear system of algebraic equations. The 
numerical solution, for m = 8, is shown in Figure 1. The 
exact solution of this problem, when 1  , is  

  1 2 1
1 2 tanh 2 ln

2 2 1
y t t

  
        

 

and we can observe that, as t ,    1 2y t   . 
From Figure 1 we can see the numerical solution is very 
good agreement with the exact solution when 1  . 
When 0.5   and 0.75  , the numerical solution is 
very good agreement with the result in Ref. [10]. 
Therefore, we hold that the solution for 0.5   and 

0.75   is also credible. Numerical results with com- 
parison to Ref. [6] and [10] are given in Table 1 on the 
interval  0, 1 . 

The difference between our result or in Ref. [10] and 
the result in Ref. [6] is obvious. Because only the 
fourth-order term of the homotopy perturbation solution 
were used in evaluating the approximate solutions in Ref. 
[6]. We hold that our results are better for 0.5   and 

0.75  . Compared to the Chebyshev wavelet ope- 
rational matrices method in Ref. [10] with 192 degrees of 
freedom, our method reached the same accuracy used 9 
degrees of freedom only. 

6. Conclusion 

Fractional calculus has been used to model physical and 
engineering processes that are found to be best described 
by fractional differential equations. For that reason we 
need a reliable and efficient technique for the solution of 
 
 

solution

solution

solution

 

Figure 1. The behavior of the exact and approximate so- 
lution of example with m 8  of Example 3. 
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Table 1. Numerical results with comparison to Ref. [6] and [10] for Example 3. 

 0.5   0.75   1.0   

t  Ref. [6] Ref. [10] Ours Ref. [6] Ref. [10] Ours Ref. [6] Ref. [10] Ours Exact 

0.1 0.3217 0.5957 0.5550 0.2168 0.3107 0.2343 0.1102 0.1103 0.1113 0.1103 

0.2 0.6296 0.9331 0.9120 0.4288 0.5843 0.4692 0.2419 0.2419 0.2401 0.2420 

0.3 0.9409 1.1739 1.1533 0.6546 0.8221 0.7031 0.3951 0.3951 0.3928 0.3951 

0.4 0.2507 1.3466 1.3265 0.8914 1.0249 0.9289 0.5681 0.5678 0.5674 0.5678 

0.5 1.5494 1.4738 1.4575 1.1327 1.1986 1.1383 0.7575 0.7560 0.7579 0.7560 

0.6 1.8254 1.5705 1.5600 1.3702 1.3491 1.3250 0.9582 0.9535 0.9563 0.9536 

0.7 2.0665 1.6461 1.6412 1.5942 1.4814 1.4855 1.1634 1.1529 1.1547 1.1529 

0.8 2.2606 1.7068 1.7058 1.7948 1.5992 1.6194 1.3652 1.3463 1.3460 1.3464 

0.9 2.3968 1.7566 1.7571 1.9622 1.7053 1.7287 1.5549 1.5269 1.5247 1.5269 

1.0 2.4660 1.7982 1.7986 2.0873 1.8017 1.8170 1.7281 1.6894 1.6866 1.6895 

 
[4] N. H. Sweilam, M. M. Khader and R. F. AlffBar, “Nume- 

rical Studies for a Multi-Order Fractional Differential 
Equation,” Physics Letter A, Vol. 371, No. 1-2, 2007, pp. 
26-33. doi:10.1016/j.physleta.2007.06.016 

fractional differential equations. This paper deals with 
the approximate solution of a class of multi-order frac- 
tional differential equations. The fractional derivatives 
are described in the Caputo sense. Our main aim is to 
evaluation of fractional derivative using Legendre poly- 
nomials and implementing it to solve the nonlinear multi- 
order fractional differential equations. The main charac-
teristic behind the approach using this technique is that it 
reduces such problems to those of solving a system of 
algebraic equations thus greatly simplifying the prob- 
lem. Illustrative example is included to demonstrate the 
validity and applicability of the presented technique. The 
comparison certifies that our method gives good results. 

[5] V. S. Erturk, S. Momani and Z. Odibat, “Application of 
Generalized Differential Transform Method to Multi-Or- 
der Fractional Differential Equations,” Communications 
in Nonlinear Science and Numerical Simulation, Vol. 13, 
No. 8, 2008, pp. 1642-1654.  
doi:10.1016/j.cnsns.2007.02.006 

[6] Z. Odibat and S. Momani, “Modified Homotopy Pertur- 
bation Method: Application to Quadratic Riccati Differ- 
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doi:10.1016/j.chaos.2006.06.041 

[7] Y. Chen and T. Tang, “Convergence Analysis for the 
Jacobi Collocation Methods to Volterra Integral Equa- 
tions with a Weakly Singular Kernel,” Mathematics of 
Computation, Vol. 79, No. 269, 2010, pp. 147-167.  
doi:10.1090/S0025-5718-09-02269-8 
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