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ABSTRACT 

We solve two Markowitz optimization problems for the one-step financial model with a finite number of assets. In our 
results, the classical (inefficient) constraints are replaced by coherent measures of risk that are continuous from below. 
The methodology of proof requires optimization techniques based on functional analysis methods. We solve explicitly 
both problems in the important case of Tail Value at Risk. 
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1. Introduction 

We consider optimal investment for the one-step finan- 
cial model with a finite number of assets. The classical 
Markowitz optimization problems are looking for port- 
folios that either maximize the expected return for a 
given variance threshold, or minimize the variance for a 
given expected return. However, using variance as a 
measure of risk has a serious drawback: high profits are 
penalized in the same way as high losses. Instead, in 
what follows we shall use coherent measures of risk (cf. 
[1]), that provide a much better quantification of risk. 

In our set-up, the space of financial positions is a 
vector space with vector ordering . Besides 
the origin 0 in E, we distinguish a (strictly positive) 
reference cash stream denoted by 1. In the space of linear 
price systems , i.e., the algebraic dual of , we fix a 
total subspace  (i.e., if  for all 
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then ) and consider the weak*-topology on 0x    
associated to the dual pair .  ,E E

A coherent measure of risk (see [2]) is a real valued 
mapping   defined on  which is subadditive:  E

     x y x     y  for ,x y E , positive homo- 

geneous:  for , monotonic:    tx t x 
0x 

, 0x E t 
  0x   if , and translation invariant:  

   1x t x     t  for x E  and any real t . 
The following property will be needed in our results. 

A coherent measure of risk   is called continuous from 
below (cf. [1,3]) if   1nx 


 for any sequence  

  1n n
x


 in  satisfying . Note that, if   E 0 x 1n  E

has a strong order unit, continuity from below is equi- 
valent to the more familiar condition:    nx x   
provided 0 nx x   (see [3,4]). 

2. Main Results 

Our first result formulates and solves in our set-up the 
first Markowitz problem, i.e., the so-called “agent- 
independent optimization problem”: find portfolios that 
maximize the expected return for a given (measure of) 
risk. Particular cases have been considered in [5-8]. 

Theorem 1. Let  be an ordered locally convex 
vector space, and 

E
E  a total Banach subspace of E . 

Let 1 n, , ,x x E 0c   and g E  be fixed; if   is a 
coherent measure of risk continuous from below, then the 
following optimization problem:  
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admits optimal solutions. 
Proof. According to the structure theorem for coherent 

measures of risk (see e.g. [3], Theorem 2.1),   admits 
the following representation  

  sup
f

x f x


 


             (2) 

for some weak*-closed convex set , in which all E
f   are positive (i.e.,  for  f x  0 0 x E  ) and 

normalized (i.e.,  1f 1 ). Note that continuity from 
below of   implies continuity in the order convergence 
topology of all f   in formula (2), see [3]. 

Let us define 

     1: , , ,nG f x f x f     ,  

where the bar denotes closure. By the continuity from 
below of   and the Krein-Šmulian theorem (see e.g. 
[9]), the set  is weak*-compact, hence G  is com- 
pact. Therefore, using (2), the definition of , conti- 
nuity from below of 


G

  and James’ theorem (see [9]), 
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we obtain for any : 1, , nt t  
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In particular the sup in (2) is achieved, and for any 
 one has 1, , nt t 
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where the threshold  is given in formula (1). 
As 1 1  for 1 , from (2) 

it follows that, for some 0 , one has  
 for 1 nt t . Take  

1 2  in the latter and, using linearity, 
obtain , i.e., 

t x 

1 n nx t x 
1, nt t  

 0 1f x

, , nt t 

 0 1f t
 

, ,
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0 int

0 1 . Similarly obtain 

0 2 0 . This means , hence 
the following is well defined: 

f x
  0nf x 
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   inf , , .n10 : g x g x G        (4) 

Then the max value in (1) equals c   and is achi- 
eved at every    1, , 0n

nt t    satisfying:  
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Indeed, if     1 , , ng x g x   G  for some  
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Condition (3) and definition (4) imply that  

   1 1max n nt g x t g x c       and the max is 

achieved at every    1, , 0n
nt t    satisfying con-  

dition (5). □ 
Problem (1) is for investing a sum of money in se- 

curities; it is possible that the investor already possesses 
a capital with terminal value , in which case mini- 
mizing the risk leads to the second Markowitz optimi- 
zation problem, or “single-agent optimization problem”. 
Alternatively, one can seek the minimum price which 
allows us to sell a payment order, and then compile a 
hedging portfolio of assets such that the risk of the entire 
operation will be negative or zero. Our second result 
formulates and solves the second Markowitz problem in 
our set-up. 

y

Theorem 2. Let  be an ordered locally convex vec- 
tor space, and  a total Banach subspace of 

E
E E . Let 

1  be fixed; if , , , ny x x  E   is a coherent measure of 
risk continuous from below, then the following optimi- 
zation problem  
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admits optimal solutions. 
Proof. Let us denote 

       1: , , , ,nG f x f x f y f       .  

Using a similar argument as in the proof of Theorem 1, 
we obtain for any 1, , nt t   :  
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In particular, for all  and any 0u  1, , nt t    one 
has  
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As  1 1 0n nt x t x     for 1 , using a 
similar argument as in the proof of Theorem 1, we obtain 
that the following is well defined  

, , nt t  

  : inf 0 : 0, ,0, .u u u     G  

Then the min value in (6) is given by u  and is 
achieved at every  1, , n

nt t    satisfying: 
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Indeed, take 1, , nt t 
s u

  satisfying  

1 1 1n n nt s t s     for some  1 1, , ,n ns s s G   .  
Condition (7) and definition (8) imply that  

 1 1min n ny t x t x u      and the min is achieved  

at every  1, , nt t  n  satisfying condition (9). □ 

3. Applications 

Examples. 1) We can solve explicitly problems (1) and 
(6) in the important case of Tail VaR (short for Tail 
Value at Risk). More precisely, consider  
0 1, g E     and define the Tail VaR of order   
as the coherent measure of risk with the representation (2) 
in which  :A f E f g   , cf. [1,3,10]. One can 
easily check that Tail VaR is continuous from below. 
More, Tail VaR is one of the best coherent risk measures, 
because is the smallest law invariant coherent risk 
measure that dominates the Value of Risk (cf. [3,11]). In 
the context of Theorem 1, we have that  
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and subject to 0 Tail Var ,
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  (6) 

has the optimal solution equal to c . Indeed, one can 
easily check that 1    and any positive constant 
multiple of  ,11,1,  is an optimal solution of (1). In 
the context of Theorem 2, we have that  
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has the optimal solution equal to Tail VaR  y . Indeed, 
one can check that  Tail VaRu   y  because  

 is an optimal solution of (6). This situation 
occurs in problems (1) and (6) for complete models, such 
as Black-Scholes and Cox-Ross-Rubinstein. 

0,0, ,0 

2) Recall that a coherent measure of risk identifies un- 
acceptable positions, i.e. with strictly positive risk  x . 
A good measure of the latter are the so-called relevant 
measures of risk: given g E , a coherent measure of 
risk   is called g-relevant (cf. [1,3,10]) if  and 

 imply . 
0x 

   0g x  x 
E L

0
 , ,F Let us consider ; we have  

, the Banach space of bounded 
finitely additive measures on F and absolutely con- 
tinuous with respect to P. In this case, all functionals 

P
, ,F PE E ba   

f A  (given by formula (2) above) describing a cohe- 
rent measure of risk continuous from below and g -rele- 
vant are genuine (i.e.,  -additive) probability measures 
equivalent to g . The particular case g P , i.e., g re- 
presents integration with respect to , has been treated 
in [2], Theorem 3.4, and the associated optimization 
problems (1) and (6) have been completely solved in 
[8,12] (see also [4]). 
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