Applied Mathematics

Journal Editorial Board

ISSN Print: 2152-7385 ISSN Online: 2152-7393
https://www.scirp.org/journal/am

Editorial Board

Dr. Hijaz Ahmad
Prof. Ali Akgül
Prof. Omar Abu Arqub
Prof. Tamer Basar
Prof. Leva A. Beklaryan
Dr. Aziz Belmiloudi
Dr. Anjan Biswas
Prof. Zhenhua Chai
Prof. Amares Chattopadhyay
Prof. Badong Chen
Prof. Jose Alberto Cuminato
Prof. Konstantin Dyakonov
Prof. Rosa Ferrentino
Prof. Elena Guardo
Prof. Anwar H. Joarder
Prof. Palle Jorgensen
Dr. Subhas Khajanchi
Prof. Adem Kilicman
Dr. Vladimir A. Kuznetsov
Prof. Kil Hyun Kwon
Prof. Hong-Jian Lai
Dr. Goran Lesaja
Prof. Tao Luo
Prof. Hari M. Srivastava
Prof. Addolorata Marasco
Prof. Gradimir V. Milovanović
Dr. Sankar Prasad Mondal
Prof. María A. Navascués
Dr. Kolade Matthew Owolabi
Prof. Anatolij Prykarpatski
Prof. Alexander S. Rabinowitch
Prof. Mohammad Mehdi Rashidi
Prof. Yuriy V. Rogovchenko
Prof. Marianna Ruggieri
Prof. Ram Shanmugam
Dr. Epaminondas Sidiropoulos
Prof. Jacob Sturm
Prof. Mikhail Sumin
Prof. Cemil Tunç
Prof. Mustafa Turkyilmazoglu
Dr. Wei Wei
Dr. Mehmet Yavuz
Dr. Wen Zhang
Prof. Alexey Zhirabok

International Telematic University Uninettuno, Italy
Siirt University, Türkiye
Al-Balqa Applied University, Jordan
University of Illinois at Urbana-Champaign, USA
Russian Academy of Sciences, Russia
Institut National des Sciences Appliquees de Rennes, France Alabama A\&M University, USA
Huazhong University of Science and Technology, China
Indian School of Mines, India
Xi'an Jiaotong University, China
University of Sao Paulo, Spain
University of Barcelona, Spain
University of Salerno, Italy
University of Catania, Italy
University of Liberals Arts Bangladesh (ULAB), Bangladesh
University of Iowa, USA
Presidency University, India
University Putra Malaysia, Malaysia
Bioinformatics Institute, Singapore
Korea Advanced Institute of Science and Technology, South Korea
West Virginia University, USA
Georgia Southern University, USA
Georgetown University, USA
University of Victoria, Canada
University of Naples Federico II, Italy
Serbian Academy of Sciences and Arts (SASA), Serbia
Maulana Abul Kalam Azad University of Technology, India
University of Zaragoza, Spain
Federal University of Technology, Nigeria
AGH University of Science and Technology, Poland
Moscow State University, Russia
Tongji University, China
University of Agder, Norway
University of Enna "KORE", Italy
Texas State University, USA
Aristotle University of Thessaloniki, Greece
Rutgers University, USA
Nizhnii Novgorod State University, Russia
Van Yuzuncu Yil University, Türkiye
University of Hacettepe, Türkiye
Xi'an University of Technology, China
Necmettin Erbakan University, Türkiye
Icahn School of Medicine at Mount Sinai, USA
Far Eastern Federal University, Russia

Table of Contents

Volume 14 Number 11 November 2023
An Alternative Way to Mapping Cone: The Algebraic Topology of the Pinched Tensor
Y. Alkhezi 719
On the Construction and Classification of the Common Invariant Solutions for Some $P(1,4)$-Invariant Partial Differential Equations
V. M. Fedorchuk, V. I. Fedorchuk. 728
On the Spectral Properties of Graphs with Rank 4
J. X. Luo. 748
A Class of New Optimal Ternary Cyclic Codes over $\mathbb{F}_{3^{m}}$ with Minimum Distance 4 W. W. Qiu 764

Applied Mathematics (AM)
 Journal Information

SUBSCRIPTIONS

The Applied Mathematics (Online at Scientific Research Publishing, https://www.scirp.org/) is published monthly by Scientific Research Publishing, Inc., USA.

Subscription rates:

Print: $\$ 89$ per copy.
To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org
Reprints (minimum quantity 100 copies)
Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.
E-mail: sub@scirp.org

COPYRIGHT

Copyright and reuse rights for the front matter of the journal:
Copyright © 2023 by Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Copyright for individual papers of the journal:

Copyright © 2023 by author(s) and Scientific Research Publishing Inc.

Reuse rights for individual papers:

Note: At SCIRP authors can choose between CC BY and CC BY-NC. Please consult each paper for its reuse rights.

Disclaimer of liability

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:
E-mail: am@scirp.org

An Alternative Way to Mapping Cone: The Algebraic Topology of the Pinched Tensor

Yousuf Alkhezi
Public Authority for Applied Education and Training, College of Basic Education, Mathematics Department, Kuwait City, Kuwait Email: ya.alkhezi@paaet.edu.kw

How to cite this paper: Alkhezi, Y. (2023) An Alternative Way to Mapping Cone: The Algebraic Topology of the Pinched Tensor. Applied Mathematics, 14, 719-727.
https://doi.org/10.4236/am.2023.1411043

Received: October 2, 2023
Accepted: November 6, 2023
Published: November 9, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this research, we explore the properties and applications of the mapping cone and its variant, the pinched mapping cone. The mapping cone is a construction that arises naturally in algebraic topology and is used to study the homotopy type of spaces. It has several key properties, including its homotopy equivalence to the cofiber of a continuous map, and its ability to compute homotopy groups using the long exact sequence associated with the cofiber. We also provide an overview of the properties and applications of the mapping cone and the pinched mapping cone in algebraic topology. This work highlights the importance of these constructions in the study of homotopy theory and the calculation of homotopy groups. The study also points to the potential for further research in this area which includes the study of higher homotopy groups and the applications of these constructions to other areas of mathematics.

Keywords

Complex, Tensor Product, Pinched Tensor Product, Mapping Cone, Morphism

1. Introduction

The mapping cone is a construction used in algebraic topology and homological algebra to study maps between two topological spaces or algebraic objects. Let S, T, be two topological spaces and let $f: S \rightarrow T$ be a continuous map from S to T. The mapping cone associated with f is a new space that captures information about the failure of f to be a homotopy equivalence.

Intuitively, the mapping cone is constructed by taking a cylinder $S \times[0,1]$ and gluing one end to the image of S under f and the other end to a single point. The resulting space has a cone-like shape and encodes information about the
twisting or winding of the map f.
In recent years, the mapping cone is used in algebraic topology to define the cone of a chain complex, which in turn is used to define the homology groups of a space. In homological algebra, the mapping cone is used to construct long exact sequences that relate the homology groups of two spaces connected by a map. Also it has been used for some discrete problems [1] and by bearing cone to estimate gazes in geological aspect of its applications [2].

Algebraic topology was significantly advanced by the work of German mathematician Tammo tom Dieck [3]. His research had a profound impact on homotopy theory, particularly in stable homotopy theory and its applications. In [4] Dieck's contributions encompassed work on the stable homotopy groups of spheres, surgery theory, and various other topics within algebraic topology. His research has greatly influenced the field, inspiring subsequent generations of mathematicians to explore these foundational ideas further.

Geometrically, the mapping cone of f can be visualized as the space obtained by gluing the cone over S to T via f. The chain complex $C(f)$ plays a pertinent role in algebraic topology, of note is its role in the study of spectral sequences and the long exact sequence of homology groups associated to a short exact sequence of chain complexes.

The pinched mapping cone of f has several important properties. First, it is homotopy equivalent to the suspension of the mapping cone $C(f)$. This follows from the fact that the suspension of $C(f)$ is obtained by attaching two cones to its base, and the pinched mapping cone identifies the basepoints of these cones.

Second, the homotopy groups of the pinched mapping cone can be computed using the long exact sequence in homotopy associated with the mapping cone. This sequence relates the homotopy groups of S, T, and $C(f)$, and can be used to compute the homotopy groups of Z.

Third, the pinched mapping cone is used in the proof of the Freudenthal suspension theorem, which relates the stable homotopy groups of spheres to the homotopy groups of suspensions of spheres. The pinched mapping cone is used to construct a sequence of maps that are used to show that the stable homotopy groups of spheres stabilize at a certain point.

For more details you may see in [5] [6] and [7].

2. Basic Setup

It is assumed in this paper that E, F, S, and T are complexes of R-modules, with R being an associative ring. We will see most of the definitions and results of this section in [8] [9] and [10].

Definition 2.1. A chain complex S of R-modules is a sequence of R-module homomorphisms,

$$
S: \cdots \rightarrow S_{n+1} \xrightarrow{\hat{\partial}_{n+1}^{S}} S_{n} \xrightarrow{\partial_{n}^{S}} S_{n-1} \rightarrow \cdots
$$

such that $\operatorname{Im} \partial_{n+1}^{S} \subseteq \operatorname{ker} \partial_{n}^{S}$ for all n. Equivalently $\partial_{n}^{S} \partial_{n+1}^{S}=0$, for all n. The maps
∂_{n} are called the differentials of S.
Definition 2.2. Given a complex S of R-modules

$$
S: \cdots \rightarrow S_{n+1} \xrightarrow{\hat{o}_{n+1}^{S}} S_{n} \xrightarrow{\partial_{n}^{S}} S_{n-1} \rightarrow \cdots
$$

We say that it is exact at S_{n} if $\operatorname{Im} \partial_{n+1}^{S}=\operatorname{ker} \partial_{n}^{S}$. Moreover, we say S is an exact sequence if $\operatorname{Im} \partial_{n+1}^{S}=\operatorname{ker} \partial_{n}^{S}$ for all n.

Definition 2.3. A morphism, or a degree zero chain map, $f: S \rightarrow T$ between complexes S and T is a family of R-module homomorphisms f_{n}, such that each square in the diagram

commutes. In other words, for each n we have $f_{n-1} \partial_{n}^{S}=\partial_{n}^{T} f_{n}$.
Also, if $f_{n}: S_{n} \rightarrow T_{n}$ is an isomorphism for all n, then, S and T are said to be isomorphic, denoted by \cong.

Definition 2.4. Let E be a complex of R-modules. Then the Shift of $E, \Sigma E$ is complex of R-modules defined by $(\Sigma E)_{n}=E_{n-1}$, and $\partial_{n}^{\Sigma E}=-\sigma_{n-2} \partial_{n-1}^{E} \sigma_{n-1}^{-1}$ for all n. Also, the canonical map $\sigma: E \rightarrow \Sigma E$, is obtained by shifting degrees of elements, specifically, if $e \in E$. Then, $|\sigma(e)|=|e|+1$.

On the other hand, Lars Christensen and David Jorgensen unveiled in 2014 a variant of the tensor product of complexes in their paper [11] known as the pinched tensor product. We recall some essential definitions and recommendations.

Definition 2.5. Let S and T a complexes of R-modules. The tensor product $S \otimes_{R} T$ of S and T is specified by letting

$$
\left(S \otimes_{R} T\right)_{n}=\coprod_{i \in \mathbb{Z}} S_{i} \otimes_{R} T_{n-i}
$$

The differential is defined by,

$$
\partial_{n}^{S \otimes_{R} T}(s \otimes t)=\partial_{i}^{S}(s) \otimes t+(-1)^{i} s \otimes \partial_{n-i}^{T}(t)
$$

For $s \in S_{i}$ and $t \in T_{n-i}$. The sign $(-1)^{i}$ ensures that $\partial_{n}^{s \otimes_{R} T} \partial_{n+1}^{s \otimes_{R} T}=0$ for all n.
Definition 2.6. Let S and T be complexes of R-modules. We define the pinched tensor product $S \otimes_{R}^{\bowtie} T$ of S and T by:

$$
\left(S \otimes_{R}^{\triangleright \triangleleft} T\right)_{n}= \begin{cases}\left(S_{\geq 0} \otimes_{R} T_{\geq 0}\right)_{n} & \text { for } n \geq 0 \\ \left(S_{\leq-1} \otimes_{R}(\Sigma T)_{\leq 0}\right)_{n} & \text { for } n \leq-1\end{cases}
$$

With differential $\partial^{S \otimes_{R}^{\bowtie} T}$ defined by,

$$
\partial_{n}^{S \otimes_{R}^{凶} T}= \begin{cases}\partial_{n}^{S_{\geq} \otimes_{R} T_{\geq 0}} & \text { for } n \geq 1 \\ \partial_{0}^{S} \otimes_{R}\left(\sigma \partial_{0}^{T}\right) & \text { for } n=0 \\ \partial_{n}^{S_{\leq-1} \otimes_{R}(\Sigma T)_{\leq 0}} & \text { for } n \leq-1\end{cases}
$$

where σ denotes the canonical map $T \rightarrow \Sigma T$.

For more details you may see [11] [12] and [13].

3. Mapping Cone

Definition 3.1. Let A, B, S and T be complexes, and let $f: S \rightarrow T$ and $g: A \rightarrow B$ be chain maps. Then for $s \otimes a \in S_{i} \otimes A_{n-i}$ we have $(f \otimes g)(s \otimes a)=(-1)^{|s| g \mid} f_{i}(s) \otimes g_{n-i}(a)$.

Definition 3.2. If $f: S \rightarrow T$ is a chain map, then its mapping cone, cone (f), is a complex of R-modules whose term of degree n is cone $(f)_{n}=(\Sigma S)_{n} \oplus T_{n}$ and whose differentials $\partial_{n}: \operatorname{cone}(f)_{n} \rightarrow \operatorname{cone}(f)_{n-1}$ is given by

$$
\partial_{n}^{\text {cone }(f)}=\left[\begin{array}{cc}
\partial_{n}^{\Sigma S} & 0 \\
f_{n-1} \sigma_{n-1}^{-1} & \partial_{n}^{T}
\end{array}\right] .
$$

A straightforward computation shows that $\partial_{n-1}^{\text {cone }(f)} \partial_{n}^{\text {cone }(f)}=0$:

$$
\begin{aligned}
\partial_{n-1}^{\text {cone }(f)} \partial_{n}^{\text {cone }(f)} & =\left[\begin{array}{cc}
\partial_{n-1}^{\Sigma S} & 0 \\
f_{n-2} \sigma_{n-2}^{-1} & \partial_{n-1}^{T}
\end{array}\right]\left[\begin{array}{cc}
\partial_{n}^{\Sigma S} & 0 \\
f_{n-1} \sigma_{n-1}^{-1} & \partial_{n}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\partial_{n-1}^{\Sigma S} \partial_{n}^{\Sigma S} & 0 \\
f_{n-2} \sigma_{n-2}^{-1} \partial_{n}^{\Sigma S}+\partial_{n-1}^{T} f_{n-1} \sigma_{n-1}^{-1} & \partial_{n-1}^{T} \partial_{n}^{T}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Since we know that f is a morphism and $\partial_{n}^{\Sigma S}=-\sigma_{n-2} \partial_{n-1}^{S} \sigma_{n-1}^{-1}$.
Theorem 3.3. Let A be an R-complex and $f: S \rightarrow T$ be a morphism of complexes of R-modules. Then,

$$
A \otimes_{R} \operatorname{cone}(f) \cong \operatorname{cone}\left(A \otimes_{R} f\right)
$$

Proof. The proof is well-known. (Proposition 4.1.12 in [14].)

4. Main Results

In the following section, we will present the main theorem applied in the special case of the pinched mapping cone and we provide the detailed proof of it.

Theorem 4.1. Let A be an R-complex and $f: S \rightarrow T$ be a morphism of complexes of R-modules. Then, there exist a morphism from $A \otimes_{R}^{\bowtie}$ cone (f) to cone $\left(A \otimes_{R}^{\triangleright} h\right)$. Where, $h_{n}=f_{n}$ when $n \geq-1$ and $h_{n}=-f_{n}$ when $n<-1$
Proof: We consider three cases: $n=0, n \geq 1$ and $n \leq-1$.

$$
n=0:
$$

In this case the diagram is

Define $\tau_{0}(a \otimes(s, t))=\left(\sigma_{-1}^{A \otimes 凶} s\left(\partial_{0}^{A}(a) \otimes s\right),(a \otimes t)\right)$ and $\tau_{-1}\left(a \otimes \sigma_{-1}^{\text {cone }(f)}(s, t)\right)=\left(\sigma_{-2}^{A \otimes \propto \otimes}(a \otimes t),\left(a \otimes \sigma_{-1}^{T}(t)\right)\right)$. Choose an element

$$
\begin{aligned}
& (a \otimes(s, t)) \in A_{0} \otimes_{R}\left((\Sigma S)_{0} \oplus T_{0}\right) . \text { Then, } \\
& \partial_{0}^{\text {cone }\left(A \otimes_{R}^{\circledR} f\right)} \tau_{0}(a \otimes(s, t))
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\partial_{0}^{\Sigma\left(A \otimes^{\infty} S\right)}\left(\sigma_{-1}^{A \otimes \otimes_{R}^{\aleph} S}\left(\partial_{0}^{A}(a) \otimes S\right)\right)\right. \text {, } \\
& \left.\left(A_{-1} \otimes_{R}(\Sigma f)_{0}\right)\left(\sigma_{-1}^{A \otimes \otimes_{R}^{\bowtie} S}\right)^{-1} \sigma_{-1}^{A \otimes_{R}^{\bowtie} S}\left(\partial_{0}^{A}(a) \otimes(s)\right)+\partial_{0}^{A \otimes \otimes^{\bowtie} T}(a \otimes t)\right] \\
& =\left[-\sigma_{-2}^{A \otimes_{R}^{\infty} s} \partial_{-1}^{A \otimes^{\infty} S}\left(\sigma_{-1}^{A \otimes_{R}^{\bowtie} S}\right)^{-1}\left(\sigma_{-1}^{A \otimes_{R}^{\infty} S}\left(\partial_{0}^{A}(a) \otimes s\right)\right)\right. \text {, } \\
& \left.\left(A_{-1} \otimes_{R}(\Sigma f)_{0}\right)\left(\partial_{0}^{A}(a) \otimes(s)\right)+\partial_{0}^{A}(a) \otimes \sigma_{-1}^{T} \partial_{0}^{T}(t)\right] \\
& =\left[-\sigma_{-2}^{A \otimes \otimes}{ }^{\bowtie} \partial_{-1}^{A \otimes \otimes} S\left(\partial_{0}^{A}(a) \otimes s\right),\left(\partial_{0}^{A}(a) \otimes_{R}(\Sigma f)_{0}(s)\right)+\partial_{0}^{A}(a) \otimes \sigma_{-1}^{T} \partial_{0}^{T}(t)\right] \\
& =\left[-\sigma_{-2}^{A \otimes_{R}^{\triangleright} S}\left(\partial_{-1}^{A} \partial_{0}^{A}(a) \otimes s+(-1) \partial_{0}^{A}(a) \otimes \partial_{-1}^{\Sigma S}(s)\right)\right. \text {, } \\
& \left.\left(\partial_{0}^{A}(a) \otimes_{R}(\Sigma f)_{0}(s)\right)+\partial_{0}^{A}(a) \otimes \sigma_{-1}^{T} \partial_{0}^{T}(t)\right] \\
& =\left[\sigma_{-2}^{A \otimes \otimes_{R}^{\bowtie} S}\left(\partial_{0}^{A}(a) \otimes \partial_{-1}^{\Sigma S}(s)\right), \partial_{0}^{A}(a) \otimes_{R}(\Sigma f)_{0}(s)+\partial_{0}^{A}(a) \otimes \sigma_{-1}^{T} \partial_{0}^{T}(t)\right] \text {. }
\end{aligned}
$$

And

$$
\begin{aligned}
& \tau_{-1} \partial_{0}^{A \otimes \bowtie \text { ® cone }(f)}(a \otimes(s, t)) \\
& =\tau_{-1}\left[\partial_{0}^{A}(a) \otimes \partial_{0}^{\operatorname{Cone}(f)}(s, t)\right] \\
& =\tau_{-1}\left[\partial_{0}^{A}(a) \otimes\left(\partial_{-1}^{\Sigma S}(s), f_{-1}\left(\sigma_{-1}^{S}\right)^{-1}(s)+\partial_{0}^{T}(t)\right)\right] \\
& =\left[\sigma_{-2}^{A \otimes_{R}^{\bowtie} S}\left(\partial_{0}^{A}(a) \otimes \partial_{-1}^{\Sigma S}(s)\right), \partial_{0}^{A}(a) \otimes_{R} \sigma_{-1}^{T}\left(f_{-1}\left(\sigma_{-1}^{S}\right)^{-1}(s)+\partial_{0}^{T}(t)\right)\right] .
\end{aligned}
$$

Clear that $(\Sigma f)_{0}(s)=\sigma_{-1}^{T} f_{-1}\left(\sigma_{-1}^{s}\right)^{-1}(s)$ since the following diagram commutes

Therefore, $\partial_{0}^{\text {cone }\left(A \otimes_{R}^{凶} f\right)} \tau_{0}=\tau_{-1} \partial_{0}^{A \otimes_{R}^{\bowtie} \operatorname{cone}(f)}$, which is what we wanted to show. $n \geq 1$:
In this case the diagram is

Define $\tau_{n}(a \otimes(s, t))=\left(\sigma_{n-1}^{A \otimes \bowtie}\left(a \otimes \sigma_{i}^{-1}(s)\right),(a \otimes t)\right)$ ．We have two subcases $i=0$ and $i \geq 1$
$i=0$ ：
Choose an element $(a \otimes(s, t)) \in A_{n} \otimes_{R}\left((\Sigma S)_{0} \oplus T_{0}\right)$ ．Then，

$$
\begin{aligned}
& \partial_{n}^{\operatorname{cone}\left(A \otimes_{R}^{\bowtie} f\right)} \tau_{n}(a \otimes(s, t)) \\
& =\partial_{n}^{\operatorname{cone}\left(A \otimes_{R}^{\bowtie} f\right)}((a \otimes t)) \\
& =\left[\partial_{n}^{A \otimes^{\bowtie} T}(a \otimes t)\right] \\
& =\left[\partial_{n}^{A}(a) \otimes t+(-1)^{n} a \otimes \partial_{0}^{T}(t)\right] .
\end{aligned}
$$

And

$$
\begin{aligned}
& \tau_{n-1} \partial_{n}^{A \otimes \otimes_{R}^{凶} \operatorname{cone}(f)}(a \otimes(s, t)) \\
& =\tau_{n-1}\left[\partial_{n}^{A}(a) \otimes(s, t)+(-1)^{n} a \otimes \partial_{0}^{\operatorname{cone}(f)}(s, t)\right] \\
& =\tau_{n-1}\left[\partial_{n}^{A}(a) \otimes(s, t)+(-1)^{n} a \otimes\left(\partial_{0}^{\Sigma s}(s), f_{-1}\left(\sigma_{-1}^{S}\right)^{-1}(s)+\partial_{0}^{T}(t)\right)\right] \\
& =\left[\partial_{n}^{A}(a) \otimes t+(-1)^{n} a \otimes \partial_{0}^{T}(t)\right] .
\end{aligned}
$$

$i \geq 0$ ：
Choose an element $(a \otimes(s, t)) \in A_{n-i} \otimes_{R}\left((\Sigma S)_{i} \oplus T_{i}\right)$ ．Then，

$$
\begin{aligned}
& \partial_{n}^{\text {cone }\left(A \otimes_{R}^{凶} f\right)} \tau_{n}(a \otimes(s, t)) \\
& =\partial_{n}^{\operatorname{cone}\left(A \otimes_{R}^{\bowtie} f\right)}\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} S}\left(a \otimes\left(\sigma_{i}^{S}\right)^{-1}(s),(a \otimes t)\right)\right) \\
& =\left[\partial_{n}^{\Sigma(A \otimes \bowtie s)}\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} S}\left(a \otimes\left(\sigma_{i}^{S}\right)^{-1}(s)\right)\right),\right. \\
& \left.\left(A_{n-i} \otimes_{R} f_{i}\right)\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} s}\right)^{n-1} \sigma_{n-1}^{A \otimes_{R}^{\bowtie} s}\left(a \otimes\left(\sigma_{i}^{S}\right)^{-1}(s)\right)+\partial_{n}^{A \otimes^{\bowtie} T}(a \otimes t)\right] \\
& =\left[-\sigma_{n-2}^{A \otimes_{R}^{\bowtie} S} \partial_{n-1}^{A \otimes}{ }^{\bowtie} S\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} S}\right)^{-1}\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} S}\left(a \otimes\left(\sigma_{i}^{S}\right)^{-1}(s)\right)\right)\right. \text {, } \\
& \left.\left(A_{n-i} \otimes_{R} f_{i}\right)\left(a \otimes\left(\sigma_{i}^{S}\right)^{-1}(s)\right)+\partial_{n-i}^{A}(a) \otimes t+(-1)^{n-i} a \otimes \partial_{i}^{T}(t)\right] \\
& =\left[-\sigma_{n-2}^{A \otimes \bowtie S} \partial_{n-1}^{A \otimes \bowtie S}\left(a \otimes\left(\sigma_{i}^{S}\right)^{-1}(s)\right)\right. \text {, } \\
& \left.\left(a \otimes_{R} f_{i}\left(\sigma_{i}^{S}\right)^{-1}(s)\right)+\partial_{n-i}^{A}(a) \otimes t+(-1)^{n-i} a \otimes \partial_{i}^{T}(t)\right] \\
& =\left[-\sigma_{n-2}^{A \otimes \bowtie}\left(\partial_{n-i}^{A}(a) \otimes\left(\sigma_{i}^{S}\right)^{-1}(s)+(-1)^{n-i} a \otimes \partial_{i-1}^{S}\left(\sigma_{i-1}^{S}\right)^{-1}(s)\right)\right. \text {, } \\
& \left.\left(a \otimes_{R} f_{i}\left(\sigma_{i}^{S}\right)^{-1}(s)\right)+\partial_{n-i}^{A}(a) \otimes t+(-1)^{n-i} a \otimes \partial_{i}^{T}(t)\right] .
\end{aligned}
$$

And

$$
\begin{aligned}
& \tau_{n-1} \partial_{n}^{A \otimes \otimes_{R}^{\bowtie} \operatorname{cone}(f)}(a \otimes(s, t)) \\
& =\tau_{n-1}\left[\partial_{n-i}^{A}(a) \otimes(s, t)+(-1)^{n-i} a \otimes \partial_{i}^{\text {cone }(f)}(s, t)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \tau_{n-1}\left[\partial_{n-i}^{A}(a) \otimes(s, t)+(-1)^{n-i} a \otimes\left(\partial_{i}^{\Sigma S}(s), f_{i-1}\left(\sigma_{i-1}^{S}\right)^{-1}(s)+\partial_{i}^{T}(t)\right)\right] \\
= & {\left[-\sigma_{n-2}^{A \otimes \bowtie S}\left(\partial_{n-i}^{A}(a) \otimes\left(\sigma_{i}^{S}\right)^{-1}(s)+(-1)^{n-i} a \otimes\left(\sigma_{i-1}^{S}\right)^{-1} \partial_{i}^{\Sigma S}(s)\right)\right.} \\
& \left.a \otimes f_{i-1}\left(\sigma_{i-1}^{S}\right)^{-1}(s)+\partial_{n-i}^{A}(a) \otimes t+(-1)^{n-i} a \otimes \partial_{i}^{T}(t)\right] .
\end{aligned}
$$

Therefore, $\partial_{n}^{\operatorname{cone}\left(A \otimes_{R}^{\bowtie} f\right)} \tau_{n}=\tau_{n-1} \partial_{n}^{A \otimes_{R}^{\bowtie} \operatorname{cone}(f)}$, which is what we wanted to show. $n \leq-1$:
In this case the diagram is

Define $\tau_{n}\left(a \otimes \sigma_{n}^{\text {cone }(f)}(s, t)\right)=\left(\sigma_{n-1}^{A \otimes \bowtie S}\left(a \otimes \sigma_{i}^{-1}(s)\right),\left(a \otimes \sigma_{i}^{T}(t)\right)\right)$ and choose an element $(a \otimes(s, t)) \in A_{i} \otimes_{R}\left((\Sigma S)_{n-i-1} \oplus T_{n-i-1}\right)$. Then,

$$
\begin{aligned}
& \partial_{n}^{\text {cone }\left(A \otimes_{R}^{\bowtie} f\right)} \tau_{n}\left(a \otimes \sigma_{n}^{\text {cone }(f)}(s, t)\right) \\
& =\partial_{n}^{\text {cone }\left(A \otimes_{R}^{\Perp} f\right)}\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} S}\left(a \otimes \sigma_{i}^{-1}(s)\right),\left(a \otimes \sigma_{i}^{T}(t)\right)\right) \\
& =\left[\partial_{n}^{\Sigma(A \otimes \bowtie s)}\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} s}(a \otimes s)\right),\left(A_{i} \otimes_{R}(\Sigma f)_{n-1-i}\right)\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} s}\right)^{n-1} \sigma_{n-1}^{A \otimes \bowtie} s(a \otimes s)\right. \\
& \left.+\partial_{n}^{A \otimes \otimes^{\bowtie} T}\left(a \otimes \sigma_{i}^{T}(t)\right)\right] \\
& =\left[-\sigma_{n-2}^{A \otimes_{R}^{\bowtie} S} \partial_{n-1}^{A \otimes} s\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} s}\right)^{n-1}\left(\sigma_{n-1}^{A \otimes_{R}^{\bowtie} S}(a \otimes s)\right),\left(A_{i} \otimes_{R}(\Sigma f)_{n-1-i}\right)(a \otimes s)\right. \\
& \left.+\partial_{i}^{A}(a) \otimes \sigma_{i}^{T}(t)+(-1)^{i} a \otimes \partial_{n-i}^{\Sigma T} \sigma_{i}^{T}(t)\right] \\
& =\left[-\sigma_{n-2}^{A \otimes \otimes_{R}^{\bowtie} s} \partial_{n-1}^{A \otimes \bowtie}(a \otimes s),\left(a \otimes_{R}(\Sigma f)_{n-1-i}(s)\right)\right. \\
& \left.+\partial_{i}^{A}(a) \otimes \sigma_{i}^{T}(t)+(-1)^{i} a \otimes \partial_{n-i}^{\Sigma S} \sigma_{i}^{T}(t)\right] \\
& =\left[-\sigma_{n-2}^{A \otimes \otimes_{R}^{\bowtie} S}\left(\partial_{i}^{A}(a) \otimes s+(-1)^{i} a \otimes \partial_{n-i-1}^{\Sigma S}(s)\right),\left(a \otimes_{R}(\Sigma f)_{n-1-i}(s)\right)\right. \\
& \left.+\partial_{i}^{A}(a) \otimes \sigma_{i}^{T}(t)+(-1)^{i} a \otimes \partial_{n-i}^{\Sigma T} \sigma_{i}^{T}(t)\right] .
\end{aligned}
$$

And

$$
\begin{aligned}
& \tau_{n-1} \partial_{n}^{A \otimes_{R}^{\bowtie} \text { cone }(f)}(a \otimes(s, t)) \\
& =\tau_{n-1}\left[\partial_{i}^{A}(a) \otimes(s, t)+(-1)^{i} a \otimes \partial_{n-i}^{\operatorname{cone}(f)}(s, t)\right] \\
& =\tau_{n-1}\left[\partial_{i}^{A}(a) \otimes(s, t)+(-1)^{i} a \otimes\left(\partial_{n-i}^{\Sigma S}(s),(\Sigma f)_{n-i-1}\left(\sigma_{n-i-1}^{S}\right)^{-1}(s)+\partial_{n-i}^{T}(t)\right)\right] \\
& =\left[-\sigma_{n-2}^{A \otimes \curvearrowright} S\left(\partial_{i}^{A}(a) \otimes s+(-1)^{i} a \otimes \partial_{n-i}^{\Sigma S}(s)\right),(-1)^{i} a \otimes(\Sigma f)_{n-i}\left(\sigma_{n-i}^{S}\right)^{-1}(s)\right. \\
& \left.\quad+\partial_{i}^{A}(a) \otimes \sigma_{i}^{T}(t)+\sigma_{n-i-1}^{T} \partial_{n-i}^{T}(t)\right] .
\end{aligned}
$$

Therefore, $\partial_{n}^{\operatorname{cone}\left(A \otimes_{R}^{凶} f\right)} \tau_{n}=\tau_{n-1} \partial_{n}^{A \otimes_{R}^{凶} \operatorname{cone}(f)}$, which is what we wanted to show.
Remark 4.2. In Theorem 4.1 we note that we will not have an isomorphism between $A \otimes_{R}^{\bowtie}$ cone (f) and cone $\left(A \otimes_{R}^{\bowtie} f\right)$ because $\left(C \otimes_{R}^{\bowtie} \operatorname{cone}(f)\right)_{n}$ has one more term than $\left(\operatorname{cone}\left(A \otimes_{R}^{\triangleright} f\right)\right)_{n}$ for $n>0$ and vice versa for $n<0$.

Theorem 4.3. Let A be an R-complex and $f: S \rightarrow T$ be a morphism of complexes of R-modules. Then there exist a morphism from $\operatorname{cone}\left(A \otimes_{R}^{\infty} f\right)$ to $A \otimes_{R}^{\bowtie}$ cone (f).

Proof. The proof is similar to that of Theorem 4.1.

5. Conclusion

To conclude, the mapping cone stands as a potent instrument within algebraic topology, boasting myriad vital applications. Its inherent properties facilitate the establishment of intriguing connections among homotopy groups of spaces, playing a pivotal role in substantiating numerous key theorems. The mapping cone's versatility extends its utility across a wide array of subjects, spanning from homotopy groups to fiber bundles. For algebraic topologists, it remains an indispensable tool, frequently employed to tackle the challenging computation of homotopy groups. Notably, the pinched mapping cone serves as a testament to the robustness and value of algebraic topology in the realm of mathematics. As referenced in the central theorem, we substantiate the existence of morphisms from one cone to another, contributing significantly to the expansion of homotopy group properties. Future research avenues may delve even deeper into the intricacies of the mapping cone, providing more extensive exploration of its applications and investigating its pertinence in other mathematical domains.

Acknowledgements

It is our pleasure to acknowledge profitable discussions with Professor Dr. David A. Jorgensen. We would also like to appreciate the referees for their helpful comments and improvements. Also, we wish to acknowledge the generous financial support from the Public Authority for Applied Education and Training for supporting this research, project No. BE-21-05.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Lotfi, V. (2021) A Cone-Dominance Approach for Discrete Alternative Multiple Criteria Problems with Indifference Regions. Open Access Library Journal, 8, 1-20. https://doi.org/10.4236/oalib.1108093
[2] Baziw, E. and Verbeek, G. (2021) Cone Bearing Estimation Utilizing a Hybrid HMM and IFM Smoother Filter Formulation. International Journal of Geosciences, 12, 1040-1054. https://doi.org/10.4236/ijg.2021.1211055
[3] Tom Dieck, T. (1988) Algebraic Topology and Transformation Groups. Proceed-
ings of a Conference Held in Göttingen, FRG, Vol. 1361, 23-29 August 1987. https://doi.org/10.1007/BFb0083029
[4] Tom Dieck, T. (2008) Algebraic Topology. Vol. 8, European Mathematical Society. University of Göttingen, Göttingen. https://doi.org/10.4171/048
[5] Fiorenza, D. and Manetti, M. (2007) L Ltructures on Mapping Cones. Algebra \& Number Theory, 1, 301-330. https://doi.org/10.2140/ant.2007.1.301
[6] Elsner, A.E., Burns, S.A. and Webb, R.H. (1993) Mapping Cone Photopigment Optical Density. JOSA A, 10, 52-58. https://doi.org/10.1364/JOSAA.10.000052
[7] Tsunoda, K., et al. (2004) Mapping Cone- and Rod-Induced Retinal Responsiveness in Macaque Retina by Optical Imaging. Investigative Ophthalmology \& Visual Science, 45, 3820-3826. https://doi.org/10.1167/iovs.04-0394
[8] Alkhezi, Y. (2019) General Properties of a Morphism on the Pinched Tensor Product over Rings. Far East Journal of Mathematical Sciences, 119, 183-194. https://doi.org/10.17654/MS119020183
[9] Alkhezi, Y. (2020) Shift and Morphism of the Pinched Tensor Product over Special Rings. Far East Journal of Mathematical Sciences, 122, 47-57. https://doi.org/10.17654/MS122010047
[10] Alkhezi, Y. (2020) Tensors and the Clifford Algebra Special Case Pinched Tensor Product. Far East Journal of Mathematical Sciences, 124, 127-140. https://doi.org/10.17654/MS124020127
[11] Christensen, L.W. and Jorgensen, D.A. (2014) Tate (Co)Homology via Pinched Complexes. Transactions of the American Mathematical Society, 366, 667-689. https://doi.org/10.1090/S0002-9947-2013-05746-7
[12] Alkhezi, Y. (2021) On the Geometric Algebra and Homotopy. Journal of Mathematics Research, 13, 1-52. https://doi.org/10.5539/jmr.v13n2p52
[13] Alkhezi, Y. and Jorgensen, D. (2019) On Tensor Products of Complete Resolutions. Communications in Algebra, 47, 2172-2184.
[14] Christensen, L.W., Foxby, H.B. and Holm, H. (2012) Derived Category Methods in Commutative Algebra. https://www.math.ttu.edu/~lchriste/download/dcmca.pdf

On the Construction and Classification of the Common Invariant Solutions for Some $P(1,4)$-Invariant Partial Differential Equations

Vasyl M. Fedorchuk, Volodymyr I. Fedorchuk
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine
Email: vasfed@gmail.com

How to cite this paper: Fedorchuk, V.M. and Fedorchuk, V.I. (2023) On the Construction and Classification of the Common Invariant Solutions for Some $P(1,4)$ Invariant Partial Differential Equations. Applied Mathematics, 14, 728-747.
https://doi.org/10.4236/am.2023.1411044

Received: October 10, 2023
Accepted: November 6, 2023
Published: November 9, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

We consider the following $(1+3)$-dimensional $P(1,4)$-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-BornInfeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the $(1+3)$-dimensional $P(1,4)$-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the $(1+3)$-dimensional Eikonal equation, obtained on the base of low-dimensional ($\operatorname{dimL} \leq 3$) nonconjugate subalgebras of the Lie algebra of the Poincaré group $P(1,4)$, satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.

Keywords

Symmetry Reduction, Classification of Invariant Solutions, Common Invariant Solutions, The Eikonal Equations, The Euler-Lagrange-Born-Infeld Equations, The Monge-Ampère Equations, Classification of Lie Algebras, Nonconjugate Subalgebras, Poincaré Group $P(1,4)$

1. Introduction

A solution of many problems of the geometric optics, theories of anisotropic media, theory of minimal surfaces, nonlinear electrodynamics, theories of gravi-
ty, geometry, unified field theory, string theories, black holes, cosmology, etc. is reduced to the investigation of the Eikonal equations [1] [2] [3] [4] [5], the Eu-ler-Lagrange equations [6]-[12], the Born-Infeld equations [13]-[22], the MongeAmpère equations [23]-[40] in the spaces of different dimensions and different types (see also the references therein).

Nowadays, there exist a lot of methods for the construction exact solutions of linear and nonlinear partial differential equations (PDEs). More details on this theme can be found in [41]-[46] (see also the references therein).

We consider the following $(1+3)$-dimensional $P(1,4)$-invariant PDEs:

- the Eikonal equation,
- the Euler-Lagrange-Born-Infeld equation,
- the homogeneous Monge-Ampère equation,
- the inhomogeneous Monge-Ampère equation.

From the results obtained by Fushchich W.I., Shtelen W.M. and Serov N.I. [40], it follows, in particular, that the common symmetry group of those equations is the generalized Poincare group $P(1,4)$. Therefore, in the natural way arises the following question: what is the relationship between invariant solutions of the equations under study? In particular, whether those equations have common invariant solutions?

The purpose of this paper is to try to construct and classify the common invariant solutions for the equations under consideration. It is known that the $(1+$ 3)-dimensional $P(1,4)$-invariant Eikonal equation is the simplest one among the equations under study. Therefore, we can use this fact for constructing the common invariant solutions. At the present time, we have constructed invariant solutions for the $(1+3)$-dimensional $P(1,4)$-invariant Eikonal equation obtained on the base of low-dimensional ($\operatorname{dimL} \leq 3$) nonconjugate subalgebras of the Lie algebra of the Poincaré group $P(1,4)$, by using classical Lie-Ovsiannikov approach [41] [42] [43] [44]. This method, in particular, allows us to perform the symmetry reduction of the many-dimensional PDEs with non-trivial symmetry groups to differential equations with a fewer number of independent variables as well as to construct solutions, invariant with respect to nonconjugate subgroups of the symmetry groups, of the equations under study. According to this method, reduced equations (invariant solutions) should be classified with respect to the ranks of the corresponding nonconjugate subalgebras of the Lie algebras of the symmetry groups of the equations under study.

Our contribution in classical Lie-Ovsiannikov method consists in the suggestion to use, for the classification of symmetry reductions (invariant solutions) of PDEs with non-trivial symmetry groups, not only ranks of nonconjugate subalgebras, but also their structural property. Some details on this theme can be found in [47] [48].

In our paper, we have performed the suggestion for the classification of the common invariant solutions of some $P(1,4)$-invariant PDEs by using the structural property of the low-dimensional ($\operatorname{dimL} \leq 3$) nonconjugate subalgebras of
the Lie algebra of the Poincaré group $P(1,4)$.
The direct checks allowed us to conclude that the majority of invariant solutions of the $(1+3)$-dimensional Eikonal equation, obtained on the base of lowdimensional ($\operatorname{dimL} \leq 3$) nonconjugate subalgebras of the Lie algebra of the Poincaré group $P(1,4)$, satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.

To present the results obtained, we give some information about the Lie algebra of the Poincaré group $P(1,4)$ and its nonconjugate subalgebras.

2. The Lie Algebra of the Poincaré Group $P(1,4)$ and Its Nonconjugate Subalgebras

The group $P(1,4)$ is a group of rotations and translations of the five-dimensional Minkowski space $M(1,4)$. It is the smallest group, which contains, as subgroups, the extended Galilei group $\tilde{G}(1,3)$ [49] (the symmetry group of classical physics) and the Poincaré group $P(1,3)$ (the symmetry group of relativistic physics).

The Lie algebra of the group $P(1,4)$ is generated by 15 bases elements $M_{\mu \nu}=-M_{v \mu}(\mu, v=0,1,2,3,4)$ and $P_{\mu}(\mu=0,1,2,3,4)$, which satisfy the commutation relations

$$
\begin{align*}
{\left[P_{\mu}, P_{v}\right] } & =0, \quad\left[M_{\mu \nu}, P_{\sigma}\right]=g_{v \sigma} P_{\mu}-g_{\mu \sigma} P_{v} \tag{1}\\
{\left[M_{\mu \nu}, M_{\rho \sigma}\right] } & =g_{\mu \sigma} M_{v \rho}+g_{v \rho} M_{\mu \sigma}-g_{\mu \rho} M_{v \sigma}-g_{v \sigma} M_{\mu \rho} \tag{2}
\end{align*}
$$

where $g_{00}=-g_{11}=-g_{22}=-g_{33}=-g_{44}=1, g_{\mu \nu}=0$, if $\mu \neq v$.
In this paper, we consider the following representation [40] of the Lie algebra of the group $P(1,4)$:

$$
\begin{gather*}
P_{0}=\frac{\partial}{\partial x_{0}}, \quad P_{1}=-\frac{\partial}{\partial x_{1}}, \quad P_{2}=-\frac{\partial}{\partial x_{2}}, \quad P_{3}=-\frac{\partial}{\partial x_{3}} \tag{3}\\
P_{4}=-\frac{\partial}{\partial u}, \quad M_{\mu \nu}=x_{\mu} P_{v}-x_{v} P_{\mu}, \quad x_{4} \equiv u \tag{4}
\end{gather*}
$$

In the following, we will use the next bases elements:

$$
\begin{gather*}
G=M_{04}, \quad L_{1}=M_{23}, \quad L_{2}=-M_{13}, \quad L_{3}=M_{12}, \tag{5}\\
P_{a}=M_{a 4}-M_{0 a}, \quad C_{a}=M_{a 4}+M_{0 a}, \quad(a=1,2,3), \tag{6}\\
X_{0}=\frac{1}{2}\left(P_{0}-P_{4}\right), \quad X_{k}=P_{k}(k=1,2,3), \quad X_{4}=\frac{1}{2}\left(P_{0}+P_{4}\right) . \tag{7}
\end{gather*}
$$

The Lie algebra of the extended Galilei group $\tilde{G}(1,3)$ is generated by the following bases elements:

$$
\begin{equation*}
L_{1}, \quad L_{2}, \quad L_{3}, \quad P_{1}, \quad P_{2}, \quad P_{3}, \quad X_{0}, \quad X_{1}, \quad X_{2}, \quad X_{3}, \quad X_{4} \tag{8}
\end{equation*}
$$

The classification of all nonconjugate subalgebras of the Lie algebra of the group $P(1,4)$ of dimensions ≤ 3 was performed in [50].

3. On the Construction and Classification of the Common Invariant Solutions for Some (1 + 3)-Dimensional $P(1,4)$-Invariant PDEs

In this Section, We Consider the Following PDEs

- the Eikonal equation

$$
u_{0}^{2}-u_{1}^{2}-u_{2}^{2}-u_{3}^{2}=1
$$

- the Euler-Lagrange-Born-Infeld equation

$$
\square u\left(1-u_{\nu} u^{v}\right)+u^{\mu} u^{v} u_{\mu \nu}=0
$$

- the homogeneous Monge-Ampère equation

$$
\operatorname{det}\left(u_{\mu \nu}\right)=0 ;
$$

- the inhomogeneous Monge-Ampère equation

$$
\operatorname{det}\left(u_{\mu \nu}\right)=\lambda\left(1-u_{v} u^{\nu}\right)^{3}, \quad \lambda \neq 0
$$

where $u=u(x), \quad x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in M(1,3), \quad u_{\mu} \equiv \frac{\partial u}{\partial x^{\mu}}, \quad u_{\mu \nu} \equiv \frac{\partial^{2} u}{\partial x^{\mu} \partial x^{v}}$, $u^{\mu}=g^{\mu v} u_{\nu}, \quad g_{\mu \nu}=(1,-1,-1,-1) \delta_{\mu \nu}, \mu, v=0,1,2,3, \square$ is the d'Alembert operator.

Here, and in what follows, $M(1,3)$ is a four-dimensional Minkowski space, $R(u)$ is a real number axis of the depended variable u.

From the results obtained by Fushchich W.I., Shtelen W.M. and Serov N.I. [40] it follows, in particule, that the common symmetry group of those equations is the generalised Poincaré group $P(1,4)$.

In this section we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions. To obtain those results, we used the nonconjugate subalgebras of the Lie algebra of the group $P(1,4)$, structural properties of its low-dimensional ($\operatorname{dimL} \leq 3$) nonconjugate subalgebras as well as the results of the classification of symmetry reductions of the eikonal equation. More details on this theme can be found in [47] [48].

Bellow we present the results obtained.

3.1. Classification of the Common Invariant Solutions for the Equations under Study Using One-Dimensional Nonconjugate Subalgebras of the Lie Algebra of the Group $P(1,4)$

1) $\langle G\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-u^{2}\right)^{1 / 2}=-\left(1-c_{2}^{2}-c_{3}^{2}\right)^{1 / 2} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{1}
$$

where c_{1}, c_{2} and c_{3} are arbitrary real constants.
2) $\left\langle G+\alpha X_{1}, \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \alpha \ln \left(\frac{2 \alpha\left(\sqrt{\left(c_{1}^{2}+c_{2}^{2}+1\right)\left(x_{0}^{2}-u^{2}\right)+\alpha^{2}}+\alpha\right)}{x_{0}-u}\right) \\
& -\sqrt{\left(c_{1}^{2}+c_{2}^{2}+1\right)\left(x_{0}^{2}-u^{2}\right)+\alpha^{2}}-x_{1}+c_{1} x_{2}+c_{2} x_{3}+c_{3}
\end{aligned}
$$

where c_{1}, c_{2} and c_{3} are arbitrary real constants.
3) $\left\langle L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
u=\left(c_{2}^{2}+c_{3}^{2}+1\right)^{1 / 2} x_{0}+c_{2} x_{3}+c_{3}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c_{1}
$$

where c_{1}, c_{2} and c_{3} are arbitrary real constants.
4) $\left\langle L_{3}+\alpha\left(X_{0}+X_{4}\right), \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
u= & i \alpha c_{2} \operatorname{arctanh} \frac{c_{2} \alpha}{\left(\left(c_{1}^{2}-c_{2}^{2}+1\right)\left(x_{1}^{2}+x_{2}^{2}\right)+c_{2}^{2} \alpha^{2}\right)^{1 / 2}} \\
& -i\left(\left(c_{1}^{2}-c_{2}^{2}+1\right)\left(x_{1}^{2}+x_{2}^{2}\right)+c_{2}^{2} \alpha^{2}\right)^{1 / 2}+c_{2}\left(x_{0}-\alpha \arctan \frac{x_{1}}{x_{2}}\right)+c_{1} x_{3}+c_{3} .
\end{aligned}
$$

5) $\left\langle L_{3}+\alpha X_{3}, \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
u= & \sqrt{\left(c_{1}^{2}-c_{2}^{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\alpha^{2} c_{2}^{2}}+c_{2} \alpha \arctan \frac{x_{1}}{x_{2}} \\
& -c_{2} \alpha \arctan \left(\frac{\sqrt{\left(c_{1}^{2}-c_{2}^{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\alpha^{2} c_{2}^{2}}}{c_{2} \alpha}\right)+c_{2} x_{3}+c_{1} x_{0}+c_{3}
\end{aligned}
$$

6) $\left\langle L_{3}+2 X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{0}-u+2 \arctan \frac{x_{2}}{x_{1}} \\
& =i \sqrt{\left(c_{2}^{2}+4 c_{1}\right)\left(x_{1}^{2}+x_{2}^{2}\right)+4}-2 \operatorname{iarctanh}\left(\frac{2}{\sqrt{\left(c_{2}^{2}+4 c_{1}\right)\left(x_{1}^{2}+x_{2}^{2}\right)+4}}\right) \\
& \quad+c_{1}\left(x_{0}+u\right)+c_{2} x_{3}+c_{3} .
\end{aligned}
$$

7) $\left\langle P_{3}-2 X_{0}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \frac{1}{6}\left(x_{0}+u\right)^{3}+x_{3}\left(x_{0}+u\right)+x_{0}-u \\
& =-\frac{1}{6}\left(\left(x_{0}+u\right)^{2}+4 x_{3}-c_{1}^{2}-c_{2}^{2}\right)^{3 / 2}+c_{1} x_{1}+c_{2} x_{2}+c_{3}
\end{aligned}
$$

where c_{1}, c_{2} and c_{3} are arbitrary real constants.
8) $\left\langle X_{0}+X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
u=i\left(c_{2}^{2}+c_{3}^{2}+1\right)^{1 / 2} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{1},
$$

where c_{1}, c_{2} and c_{3} are arbitrary real constants.
9) $\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{3}=-i\left(c_{2}^{2}+1\right)^{1 / 2} x_{1}+c_{2} x_{2}+c_{1}+f\left(x_{0}+u\right)
$$

where: c_{1}, c_{2} are arbitrary real constants, f is an arbitrary smooth function.

3.2. Classification of the Common Invariant Solutions for the Equations under Study Using Two-Dimensional Nonconjugate Subalgebras of the Lie Algebra of the Group $P(1,4)$

3.2.1. Lie Algebras of the Type $2 A_{1}$

1) $\langle G\rangle \oplus\left\langle L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-u^{2}\right)^{1 / 2}=\left(1-c_{2}^{2}\right)^{1 / 2} x_{3}+c_{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c_{1}
$$

where c_{1}, c_{2} are arbitrary real constants.
2) $\left\langle G+\alpha X_{3}, \alpha>0\right\rangle \oplus\left\langle L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{3}-\alpha \ln \left(x_{0}+u\right) \\
& =-\sqrt{\left(c_{1}^{2}+1\right)\left(x_{0}^{2}-u^{2}\right)+\alpha^{2}}+\alpha \ln \left(\frac{2 \alpha\left(\sqrt{\left(c_{1}^{2}+1\right)\left(x_{0}^{2}-u^{2}\right)+\alpha^{2}}+\alpha\right)}{x_{0}^{2}-u^{2}}\right) \\
& \\
& +c_{1} \sqrt{x_{1}^{2}+x_{2}^{2}}+c_{2}
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary real constants.
3) $\langle G\rangle \oplus\left\langle L_{3}+\alpha X_{3}, \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{3}+\alpha \arctan \frac{x_{1}}{x_{2}} \\
& =\alpha \arctan \frac{\alpha}{\sqrt{\left(c_{2}^{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\alpha^{2}}}+c_{2}\left(x_{0}^{2}-u^{2}\right)^{1 / 2} \\
& \\
& +\sqrt{\left(c_{2}^{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\alpha^{2}}+c_{1},
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary real constants.
4) $\langle G\rangle \oplus\left\langle X_{1}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-u^{2}\right)^{1 / 2}=\varepsilon\left(1-c_{2}^{2}\right)^{1 / 2} x_{2}+c_{2} x_{3}+c_{1}, \varepsilon= \pm 1
$$

where c_{1}, c_{2} are arbitrary constants.
5) $\left\langle G+\alpha X_{2}, \alpha>0\right\rangle \oplus\left\langle X_{1}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{3}+\sqrt{\left(c_{2}^{2}+1\right)\left(x_{0}^{2}-u^{2}\right)+\alpha^{2} c_{2}^{2}} \\
& =\alpha c_{2} \operatorname{arctanh} \frac{\alpha c_{2}}{\sqrt{\left(c_{2}^{2}+1\right)\left(x_{0}^{2}-u^{2}\right)+\alpha^{2} c_{2}^{2}}}+\frac{\alpha c_{2}}{2} \ln \frac{x_{0}-u}{x_{0}+u}+c_{2} x_{2}+c_{1},
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.
6) $\left\langle L_{3}\right\rangle \oplus\left\langle P_{3}+C_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(u^{2}+x_{3}^{2}\right)^{1 / 2}=\left(c_{2}^{2}+1\right)^{1 / 2} x_{0}+c_{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c_{1},
$$

where c_{1}, c_{2} are arbitrary constants.
7) $\left\langle L_{3}+\alpha\left(X_{0}+X_{4}\right), \alpha>0\right\rangle \oplus\left\langle P_{3}+C_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{0}-\alpha \arctan \frac{x_{1}}{x_{2}} \\
& =\alpha \arctan \frac{\alpha}{\sqrt{\left(1-c_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\alpha^{2}}}+c_{2} \sqrt{u^{2}+x_{3}^{2}} \\
& \quad+\sqrt{\left(1-c_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\alpha^{2}}+c_{1},
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.
8) $\left\langle L_{3}\right\rangle \oplus\left\langle X_{0}+X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
u=i \varepsilon\left(c_{2}^{2}+1\right)^{1 / 2}\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c_{2} x_{3}+c_{1}, \varepsilon= \pm 1
$$

where c_{1}, c_{2} are arbitrary constants.
9) $\left\langle L_{3}+\alpha\left(X_{0}+X_{4}\right), \alpha>0\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
u= & \alpha \arctan \frac{x_{1}}{x_{2}}+i \sqrt{c_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\alpha^{2}} \\
& -i \alpha \operatorname{arctanh} \frac{\alpha}{\sqrt{c_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\alpha^{2}}}-x_{0}+c_{1} x_{3}+c_{2},
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.
10) $\left\langle L_{3}+\alpha X_{3}, \alpha>0\right\rangle \oplus\left\langle X_{0}+X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
u= & \frac{\alpha}{c_{1}} \arctan \left(\frac{x_{1} \sqrt{\left(c_{1}^{2}+1\right)\left(x_{1}^{2}+x_{2}^{2}\right)+\alpha^{2}}-i \alpha x_{2}}{x_{2} \sqrt{\left(c_{1}^{2}+1\right)\left(x_{1}^{2}+x_{2}^{2}\right)+\alpha^{2}}+i \alpha x_{1}}\right) \\
& +\frac{i}{c_{1}} \sqrt{\left(c_{1}^{2}+1\right)\left(x_{1}^{2}+x_{2}^{2}\right)+\alpha^{2}}+\frac{x_{3}}{c_{1}}+c_{2}, c_{1} \neq 0 .
\end{aligned}
$$

11) $\left\langle L_{3}+2 X_{4}\right\rangle \oplus\left\langle X_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}-u+2 \arctan \frac{x_{2}}{x_{1}}
$$

$$
=2 \operatorname{iarctanh} \frac{1}{\sqrt{c_{1}\left(x_{1}^{2}+x_{2}^{2}\right)+1}}-2 i \sqrt{c_{1}\left(x_{1}^{2}+x_{2}^{2}\right)+1}+c_{1}\left(x_{0}+u\right)+c_{2},
$$

where c_{1}, c_{2} are arbitrary constants.
12) $\left\langle L_{3}-P_{3}+2 \alpha X_{0}, \alpha \neq 0\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{0}+u-2 \alpha \arctan \frac{x_{1}}{x_{2}} \\
& =2 i \alpha \varepsilon \sqrt{4 c_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+1}-2 i \alpha \varepsilon \operatorname{arctanh} \frac{1}{\sqrt{4 c_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+1}} \\
& \quad+c_{2}\left(\left(x_{0}+u\right)^{2}+4 \alpha x_{3}\right)+c_{1}, \varepsilon= \pm 1,
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.
13) $\left\langle L_{3}\right\rangle \oplus\left\langle P_{3}-2 X_{0}\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{1}{6}\left(x_{0}+u\right)^{3}+x_{3}\left(x_{0}+u\right)+x_{0}-u=c_{1} \sqrt{x_{1}^{2}+x_{2}^{2}}-\frac{1}{6}\left(\left(x_{0}+u\right)^{2}+4 x_{3}-c_{1}^{2}\right)^{3 / 2}+c_{2}
$$

where c_{1}, c_{2} are arbitrary constants.
14) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}=0
$$

15) $\left\langle P_{1}-X_{3}\right\rangle \oplus\left\langle P_{2}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}=0
$$

16) $\left\langle P_{1}-X_{3}\right\rangle \oplus\left\langle P_{2}-\gamma X_{2}-\beta X_{3}, \beta>0, \gamma>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \frac{x_{1}\left(x_{1}-2 c_{2}\right)}{x_{0}+u}+\frac{\left(x_{2}-\beta c_{2}\right)^{2}+c_{2}^{2}}{x_{0}+u+\gamma}+\frac{\gamma c_{2}^{2}}{\left(x_{0}+u\right)\left(x_{0}+u+\gamma\right)} \\
& -\left(c_{2}^{2}+1\right)\left(x_{0}+u\right)+2 c_{2} x_{3}+2 u+c_{1}=0,
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.
17) $\left\langle P_{1}-X_{3}\right\rangle \oplus\left\langle P_{2}-\gamma X_{2}, \gamma>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{\left(x_{1}-c_{2}\right)^{2}}{x_{0}+u}+\frac{x_{2}^{2}}{x_{0}+u+\gamma}+2 u=\left(c_{2}^{2}+1\right)\left(x_{0}+u\right)-2 c_{2} x_{3}+c_{1},
$$

where c_{1}, c_{2} are arbitrary constants.
18) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}-X_{2}-\beta X_{3}, \beta>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{x_{1}^{2}}{x_{0}+u}+2 u=\left(\frac{c_{2}^{2}}{4}+1\right)\left(x_{0}+u\right)-\frac{\left(\beta c_{2}+2 x_{2}\right)^{2}}{4\left(x_{0}+u+1\right)}+c_{2} x_{3}+c_{1}
$$

where c_{1}, c_{2} are arbitrary constants.
19) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}-X_{2}\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{x_{1}^{2}}{x_{0}+u}+\frac{x_{2}^{2}}{x_{0}+u+1}+2 u=\left(\frac{c_{2}^{2}}{4}+1\right)\left(x_{0}+u\right)+c_{2} x_{3}+c_{1}
$$

where c_{1}, c_{2} are arbitrary constants.
20) $\left\langle P_{3}-2 X_{0}\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
u= \pm \sqrt{c_{2} x_{2}-4 x_{3}-i \sqrt{c_{2}^{2}+16} x_{1}+c_{1}}-x_{0}
$$

where c_{1}, c_{2} are arbitrary constants.
21) $\left\langle P_{3}-2 X_{0}\right\rangle \oplus\left\langle X_{1}\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{1}{6}\left(x_{0}+u\right)^{3}+x_{3}\left(x_{0}+u\right)+x_{0}-u=\varepsilon c_{1} x_{2}-\frac{\varepsilon}{6}\left(\left(x_{0}+u\right)^{2}+4 x_{3}-c_{1}^{2}\right)^{3 / 2}+c_{2}
$$

where c_{1}, c_{2} are arbitrary constants.
22) $\left\langle L_{3}\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}=i \varepsilon x_{3}+f\left(x_{0}+u\right), \varepsilon= \pm 1
$$

where f is an arbitrary smooth function.
23) $\left\langle L_{3}+\alpha X_{3}, \alpha>0\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{3}+\alpha \arctan \frac{x_{1}}{x_{2}} \\
& =i \varepsilon \sqrt{x_{1}^{2}+x_{2}^{2}+\alpha^{2}}-i \varepsilon \alpha \operatorname{arctanh} \frac{\alpha}{\sqrt{x_{1}^{2}+x_{2}^{2}+\alpha^{2}}}+f\left(x_{0}+u\right), \varepsilon= \pm 1,
\end{aligned}
$$

where f is an arbitrary smooth function.
24) $\left\langle P_{3}-X_{1}\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{1}-\frac{x_{3}}{x_{0}+u}=i \varepsilon x_{2} \sqrt{\frac{1}{\left(x_{0}+u\right)^{2}}+1}+f\left(x_{0}+u\right), \varepsilon= \pm 1
$$

where f is an arbitrary smooth function.
25) $\left\langle P_{3}\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{1}=i \varepsilon x_{2}+f\left(x_{0}+u\right), \varepsilon= \pm 1
$$

where f is an arbitrary smooth function.
26) $\left\langle X_{1}\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{3}=i \varepsilon x_{2}+f\left(x_{0}+u\right), \varepsilon= \pm 1
$$

where f is an arbitrary smooth function.

3.2.2. Lie Algebras of the Type A_{2}

1) $\left\langle-G, P_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-x_{3}^{2}-u^{2}\right)^{1 / 2}=\varepsilon \sqrt{1-c_{2}^{2}} x_{1}+c_{2} x_{2}+c_{1}, \varepsilon= \pm 1
$$

where c_{1}, c_{2} are arbitrary constants.
2) $\left\langle-G-\frac{1}{\lambda} L_{3}, X_{4}, \lambda>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
\ln \left(x_{0}+u\right)= & i \lambda \operatorname{arctanh} \frac{\lambda}{\sqrt{c_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\lambda^{2}}}-i \sqrt{c_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\lambda^{2}} \\
& -\lambda \arctan \frac{x_{1}}{x_{2}}+c_{1} x_{3}+c_{2}
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.
3) $\left.\left\langle-G-\alpha X_{1}, X_{4}, \alpha\right\rangle 0\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{1}-\alpha \ln \left(x_{0}+u\right)=i \varepsilon\left(c_{2}^{2}+1\right)^{1 / 2} x_{2}+c_{2} x_{3}+c_{1}, \varepsilon= \pm 1 \text {, }
$$

where c_{1}, c_{2} are arbitrary constants.
4) $\left\langle-\frac{1}{\lambda}\left(L_{3}+\lambda G+\alpha X_{3}\right), X_{4}, \alpha>0, \lambda>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
\ln \left(x_{0}+u\right)= & i \varepsilon \sqrt{c_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\left(\alpha c_{2}-\lambda\right)^{2}} \\
& -i \varepsilon\left(\alpha c_{2}-\lambda\right) \operatorname{arctanh} \frac{\alpha c_{2}-\lambda}{\sqrt{c_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\left(\alpha c_{2}-\lambda\right)^{2}}} \\
& +\left(\alpha c_{2}-\lambda\right) \arctan \frac{x_{1}}{x_{2}}+c_{2} x_{3}+c_{1}, \varepsilon= \pm 1,
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.
5) $\left\langle-G-\alpha X_{1}, P_{3}, \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
x_{1}-\alpha \ln \left(x_{0}+u\right)= & \alpha \ln \left(2 \alpha \frac{\sqrt{\left(c_{1}^{2}+1\right)\left(x_{0}^{2}-x_{3}^{2}-u^{2}\right)+\alpha^{2}}+\alpha}{x_{0}^{2}-x_{3}^{2}-u^{2}}\right) \\
& -\sqrt{\left(c_{1}^{2}+1\right)\left(x_{0}^{2}-x_{3}^{2}-u^{2}\right)+\alpha^{2}}+c_{1} x_{2}+c_{2},
\end{aligned}
$$

where c_{1}, c_{2} are arbitrary constants.

3.3. Classification of the Common Invariant Solutions for the Equations under Study Using Three-Dimensional Nonconjugate Subalgebras of the Lie Algebra of the Group $P(1,4)$

3.3.1. Lie Algebras of the Type $3 A_{1}$

1) $\left\langle P_{1}-\gamma X_{3}, \gamma>0\right\rangle \oplus\left\langle P_{2}-X_{2}-\delta X_{3}, \delta \neq 0\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}+u\right)^{4}+2\left(x_{0}+u\right)^{3}+\left(\gamma^{2}+\delta^{2}+1\right)\left(x_{0}+u\right)^{2}+2 \gamma^{2}\left(x_{0}+u\right)+\gamma^{2}=0 .
$$

2) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}-X_{2}-\delta X_{3}, \delta>0\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}+u\right)^{2}+2\left(x_{0}+u\right)+\delta^{2}+1=0
$$

3) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}\right\rangle \oplus\left\langle X_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}=c\left(x_{0}+u\right),
$$

where c is an arbitrary constant.
4) $\left\langle P_{3}\right\rangle \oplus\left\langle X_{1}\right\rangle \oplus\left\langle X_{2}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}^{2}-x_{3}^{2}-u^{2}=c\left(x_{0}+u\right),
$$

where c is an arbitrary constant.
5) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}\right\rangle \oplus\left\langle P_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-u^{2}=c\left(x_{0}+u\right)
$$

where c is an arbitrary constant.
6) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}-X_{2}\right\rangle \oplus\left\langle X_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{x_{0}^{2}-x_{1}^{2}-u^{2}}{x_{0}+u}-\frac{x_{2}^{2}}{x_{0}+u+1}=c,
$$

where c is an arbitrary constant.
7) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}-\alpha X_{2}, \alpha>0\right\rangle \oplus\left\langle P_{3}-\gamma X_{3}, \gamma \neq 0\right\rangle$:

The common invariant solution for the equations under study:

$$
2 u+\frac{x_{1}^{2}}{x_{0}+u}+\frac{x_{2}^{2}}{x_{0}+u+\alpha}+\frac{x_{3}^{2}}{x_{0}+u+\gamma}=x_{0}+u+c
$$

where c is an arbitrary constant.
8) $\left\langle P_{1}\right\rangle \oplus\left\langle P_{2}-\alpha X_{2}, \alpha>0\right\rangle \oplus\left\langle P_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
2 u+\frac{x_{1}^{2}+x_{3}^{2}}{x_{0}+u}+\frac{x_{2}^{2}}{x_{0}+u+\alpha}=x_{0}+u+c,
$$

where c is an arbitrary constant.
9) $\langle G\rangle \oplus\left\langle X_{2}\right\rangle \oplus\left\langle X_{1}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-u^{2}\right)^{1 / 2}=\varepsilon x_{3}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
10) $\langle G\rangle \oplus\left\langle L_{3}\right\rangle \oplus\left\langle X_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-u^{2}\right)^{1 / 2}=\varepsilon\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
11) $\left\langle P_{3}-2 X_{0}\right\rangle \oplus\left\langle X_{1}\right\rangle \oplus\left\langle X_{2}\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{1}{6}\left(x_{0}+u\right)^{3}+x_{3}\left(x_{0}+u\right)+x_{0}-u=\frac{\varepsilon}{6}\left(\left(x_{0}+u\right)^{2}+4 x_{3}\right)^{3 / 2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
12) $\left\langle G+\alpha X_{3}, \alpha>0\right\rangle \oplus\left\langle X_{1}\right\rangle \oplus\left\langle X_{2}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{3}-\alpha \ln \left(x_{0}+u\right) \\
& =\varepsilon\left(\alpha^{2}+x_{0}^{2}-u^{2}\right)^{1 / 2}-\frac{\alpha}{2} \ln \left(x_{0}^{2}-u^{2}\right)-\varepsilon \alpha \operatorname{arctanh} \frac{\left(\alpha^{2}+x_{0}^{2}-u^{2}\right)^{1 / 2}}{\alpha}+c, \varepsilon= \pm 1,
\end{aligned}
$$

where c is an arbitrary constant.
13) $\left\langle L_{3}\right\rangle \oplus\left\langle P_{3}+C_{3}\right\rangle \oplus\left\langle X_{0}+X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{3}^{2}+u^{2}\right)^{1 / 2}=i \varepsilon\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
14) $\left\langle L_{3}+\alpha\left(X_{0}+X_{4}\right), \alpha>0\right\rangle \oplus\left\langle X_{3}\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}+u+\alpha \arctan \frac{x_{2}}{x_{1}}=i \frac{\varepsilon \alpha}{2} \ln \left(x_{1}^{2}+x_{2}^{2}\right)+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
15) $\left\langle P_{3}-2 X_{0}\right\rangle \oplus\left\langle X_{1}\right\rangle \oplus\left\langle X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}+u\right)^{2}+4 x_{3}=4 i \varepsilon x_{2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
16) $\left\langle L_{3}\right\rangle \oplus\left\langle-P_{3}+2 X_{0}\right\rangle \oplus\left\langle 2 X_{4}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}+u\right)^{2}+4 x_{3}=4 i \varepsilon\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.

3.3.2. Lie Algebras of the Type $A_{2} \oplus A_{1}$

1) $\left\langle-G, P_{3}\right\rangle \oplus\left\langle X_{1}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-x_{3}^{2}-u^{2}\right)^{1 / 2}=\varepsilon x_{2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
2) $\left\langle-G, P_{3}\right\rangle \oplus\left\langle L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-x_{3}^{2}-u^{2}\right)^{1 / 2}=\varepsilon\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
3) $\left\langle-\left(G+\alpha X_{2}\right), P_{3}, \alpha>0\right\rangle \oplus\left\langle X_{1}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{2}-\alpha \ln \left(x_{0}+u\right) \\
& =\varepsilon\left(x_{0}^{2}-x_{3}^{2}-u^{2}+\alpha^{2}\right)^{1 / 2}-\frac{\alpha}{2} \ln \left(x_{0}^{2}-x_{3}^{2}-u^{2}\right) \\
& -\varepsilon \alpha \operatorname{arctanh} \frac{\alpha}{\left(x_{0}^{2}-x_{3}^{2}-u^{2}+\alpha^{2}\right)^{1 / 2}}+c, \varepsilon= \pm 1
\end{aligned}
$$

where c is an arbitrary constant.
4) $\left\langle-\frac{1}{\lambda} L_{3}-G, 2 X_{4}, \lambda>0\right\rangle \oplus\left\langle X_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\ln \left(x_{0}+u\right)+\lambda \arctan \frac{x_{1}}{x_{2}}=i \frac{\varepsilon \lambda}{2} \ln \left(x_{1}^{2}+x_{2}^{2}\right)+c, \varepsilon= \pm 1,
$$

where c is an arbitrary constant.
5) $\left\langle-\left(G+\alpha X_{3}\right), X_{4}, \alpha>0\right\rangle \oplus\left\langle L_{3}+\beta X_{3}, \beta>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& x_{3}-\alpha \ln \left(x_{0}+u\right)+\beta \arctan \frac{x_{1}}{x_{2}} \\
& =-i \varepsilon \beta \operatorname{arctanh} \frac{\beta}{\left(x_{1}^{2}+x_{2}^{2}+\beta^{2}\right)^{1 / 2}}+i \varepsilon\left(x_{1}^{2}+x_{2}^{2}+\beta^{2}\right)^{1 / 2}+c, \varepsilon= \pm 1
\end{aligned}
$$

where c is an arbitrary constant.
6) $\left\langle-\left(G+\alpha X_{3}\right), X_{4}, \alpha>0\right\rangle \oplus\left\langle L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{3}-\alpha \ln \left(x_{0}+u\right)=i \varepsilon\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.

3.3.3. Lie Algebras of the Type $\boldsymbol{A}_{3,1}$

1) $\left\langle 4 X_{4}, P_{1}-X_{2}-\gamma X_{3}, P_{2}+X_{1}-\mu X_{2}-\delta X_{3}, \gamma>0, \delta \neq 0, \mu>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \left(x_{0}+u\right)^{4}+2 \mu\left(x_{0}+u\right)^{3}+\left(\gamma^{2}+\mu^{2}+\delta^{2}+2\right)\left(x_{0}+u\right)^{2} \\
& +2 \mu\left(\gamma^{2}+1\right)\left(x_{0}+u\right)+(\gamma \mu-\delta)^{2}+\gamma^{2}+1=0 .
\end{aligned}
$$

2) $\left\langle 2 \mu X_{4}, P_{3}-2 X_{0}, X_{1}+\mu X_{3}, \mu>0\right\rangle$:

The common invariant solution for the equations under study:

$$
u=2\left(i \varepsilon x_{2} \sqrt{\mu^{2}+1}+\mu x_{1}-x_{3}+c\right)^{1 / 2}-x_{0}, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
3) $\left\langle 2 X_{4}, P_{3}-L_{3}-2 \alpha X_{0}, X_{3}, \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
u=2 \alpha \arctan \frac{x_{1}}{x_{2}}+i \varepsilon \alpha \ln \left(x_{1}^{2}+x_{2}^{2}\right)-x_{0}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
4) $\left\langle-2 \beta X_{4}, L_{3}+\beta X_{3}, P_{3}-2 X_{0}, \beta>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \beta \arctan \frac{x_{1}}{x_{2}}+\frac{1}{4}\left(x_{0}+u\right)^{2} \\
& =i \varepsilon \sqrt{x_{1}^{2}+x_{2}^{2}+\beta^{2}}-i \varepsilon \beta \operatorname{arctanh} \frac{\beta}{\sqrt{x_{1}^{2}+x_{2}^{2}+\beta^{2}}}-x_{3}+c, \varepsilon= \pm 1
\end{aligned}
$$

where c is an arbitrary constant.
5) $\left\langle 2 X_{4}, P_{3}, X_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{2}=i \varepsilon x_{1}+f\left(x_{0}+u\right), \varepsilon= \pm 1
$$

where f is an arbitrary smooth function.

3.3.4. Lie Algebras of the Type $\boldsymbol{A}_{3,2}$

1) $\left\langle 2 \alpha X_{4}, \lambda P_{3}, \frac{1}{\lambda} L_{3}+G+\frac{\alpha}{\lambda} X_{3}, \alpha>0, \lambda>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\ln \left(x_{0}+u\right)+\lambda \arctan \frac{x_{1}}{x_{2}}=i \varepsilon \frac{\lambda}{2} \ln \left(x_{1}^{2}+x_{2}^{2}\right)+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.

3.3.5. Lie Algebras of the Type $A_{3,3}$

1) $\left\langle P_{1}, P_{2}, G\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}\right)^{1 / 2}=\varepsilon x_{3}+c, \varepsilon= \pm 1,
$$

where c is an arbitrary constant.
2) $\left\langle P_{1}, P_{2}, G+\alpha X_{3}, \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \quad x_{3}-\alpha \ln \left(x_{0}+u\right) \\
& = \\
& =\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}+\alpha^{2}\right)^{1 / 2}-i \varepsilon \alpha \arctan \frac{\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}+\alpha^{2}\right)^{1 / 2}}{i \alpha} \\
& \\
& \quad-\frac{\alpha}{2} \ln \left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}\right)+c, \quad \varepsilon= \pm 1 . \\
& \text { 3) }\left\langle P_{3}, X_{4}, \frac{1}{\lambda} L_{3}+G, \lambda>0\right\rangle:
\end{aligned}
$$

The common invariant solution for the equations under study:

$$
\ln \left(x_{0}+u\right)+\lambda \arctan \frac{x_{1}}{x_{2}}=i \varepsilon \frac{\lambda}{2} \ln \left(x_{1}^{2}+x_{2}^{2}\right)+c, \varepsilon= \pm 1,
$$

where c is an arbitrary constant.

3.3.6. Lie Algebras of the Type $A_{3,6}$

1) $\left\langle P_{1}-X_{1}, P_{2}-X_{2},-P_{3}+L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\frac{x_{1}^{2}+x_{2}^{2}}{x_{0}+u+1}+\frac{x_{3}^{2}}{x_{0}+u}+2 u=x_{0}+u+c
$$

where c is an arbitrary constant.
2) $\left\langle P_{1},-P_{2},-\left(L_{3}+\alpha X_{3}\right), \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}=c\left(x_{0}+u\right)
$$

where c is an arbitrary constant.
3) $\left\langle P_{1}, P_{2},-P_{3}+L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-u^{2}=c\left(x_{0}+u\right)
$$

where c is an arbitrary constant.
4) $\left\langle X_{1},-X_{2}, P_{3}-L_{3}-2 \alpha X_{0}, \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}+u\right)^{3}+6 \alpha x_{3}\left(x_{0}+u\right)+6 \alpha^{2}\left(x_{0}-u\right)=\varepsilon\left(\left(x_{0}+u\right)^{2}+4 \alpha x_{3}\right)^{3 / 2}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
5) $\left\langle X_{1},-X_{2},-L_{3}-\frac{1}{2}\left(P_{3}+C_{3}\right)-\alpha\left(X_{0}+X_{4}\right), \alpha>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\alpha \arctan \frac{x_{3}}{u}-x_{0}=\varepsilon \sqrt{x_{3}^{2}+u^{2}-\alpha^{2}}+\varepsilon \alpha \arctan \frac{\alpha}{\sqrt{x_{3}^{2}+u^{2}-\alpha^{2}}}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
6) $\left\langle X_{1}, X_{2}, L_{3}+\frac{\lambda}{2}\left(P_{3}+C_{3}\right)+\alpha\left(X_{0}+X_{4}\right), \alpha>0,0<\lambda<1\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \alpha \arctan \frac{x_{3}}{u}-\lambda x_{0} \\
& =\varepsilon \sqrt{\lambda^{2}\left(x_{3}^{2}+u^{2}\right)-\alpha^{2}}+\varepsilon \alpha \arctan \frac{\alpha}{\sqrt{\lambda^{2}\left(x_{3}^{2}+u^{2}\right)-\alpha^{2}}}+c, \varepsilon= \pm 1,
\end{aligned}
$$

where c is an arbitrary constant.
7) $\left\langle X_{1}, X_{2}, L_{3}+\lambda G+\alpha X_{3}, \alpha>0, \lambda>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \lambda x_{3}-\alpha \ln \left(x_{0}+u\right) \\
& =\varepsilon \sqrt{\lambda^{2}\left(x_{0}^{2}-u^{2}\right)+\alpha^{2}}-\varepsilon \alpha \operatorname{arctanh} \frac{\alpha}{\sqrt{\lambda^{2}\left(x_{0}^{2}-u^{2}\right)+\alpha^{2}}} \\
& \quad-\frac{\alpha}{2} \ln \left(x_{0}^{2}-u^{2}\right)+c, \varepsilon= \pm 1 .
\end{aligned}
$$

where c is an arbitrary constant.
8) $\left\langle P_{1}, P_{2}, L_{3}\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
x_{3}= & c_{1} \ln \left(x_{0}+u\right)-\varepsilon\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}+c_{1}^{2}\right)^{1 / 2} \\
& +\varepsilon c_{1} \operatorname{arctanh} \frac{\sqrt{x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}+c_{1}^{2}}}{c_{1}} \\
& -\frac{c_{1}}{2} \ln \left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}\right)+c_{2}, \varepsilon= \pm 1, c_{1} \neq 0
\end{aligned}
$$

3.3.7. Lie Algebras of the Type $A_{3,7}^{a}$

1) $\left\langle P_{1}, P_{2}, L_{3}+\lambda G, \lambda>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}\right)^{1 / 2}=\varepsilon x_{3}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
2) $\left\langle P_{1}, P_{2}, L_{3}+\lambda G+\alpha X_{3}, \alpha>0, \lambda>0\right\rangle$:

The common invariant solution for the equations under study:

$$
\begin{aligned}
& \lambda x_{3}-\alpha \ln \left(x_{0}+u\right) \\
& =\varepsilon\left(\lambda^{2}\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}\right)+\alpha^{2}\right)^{1 / 2}-\varepsilon \alpha \operatorname{arctanh} \frac{\sqrt{\lambda^{2}\left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}\right)+\alpha^{2}}}{\alpha} \\
& \quad-\frac{\alpha}{2} \ln \left(x_{0}^{2}-x_{1}^{2}-x_{2}^{2}-u^{2}\right)+c, \varepsilon= \pm 1
\end{aligned}
$$

where c is an arbitrary constant.

3.3.8. Lie Algebras of the Type $A_{3,8}$

$\left\langle P_{3}, G,-C_{3}\right\rangle:$
The common invariant solution for the equations under study:

$$
\left(x_{0}^{2}-x_{3}^{2}-u^{2}\right)^{1 / 2}=\varepsilon\left(1-c_{2}^{2}\right)^{1 / 2} x_{1}+c_{2} x_{2}+c_{1}, \varepsilon= \pm 1
$$

where c_{1}, c_{2} are arbitrary constants.

3.3.9. Lie Algebras of the Type $A_{3,9}$

1) $\left\langle-\frac{1}{2}\left(L_{3}+\frac{1}{2}\left(P_{3}+C_{3}\right)\right), \frac{1}{2}\left(L_{2}+\frac{1}{2}\left(P_{2}+C_{2}\right)\right), \frac{1}{2}\left(L_{1}+\frac{1}{2}\left(P_{1}+C_{1}\right)\right)\right\rangle$:

The common invariant solution for the equations under study:

$$
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+u^{2}\right)^{1 / 2}=\varepsilon x_{0}+c, \varepsilon= \pm 1
$$

where c is an arbitrary constant.
2) $\left\langle-L_{3},-L_{2},-L_{1}\right\rangle$:

The common invariant solution for the equations under study:

$$
u=\varepsilon\left(c_{2}^{2}+1\right)^{1 / 2} x_{0}+c_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}+c_{1}, \varepsilon= \pm 1,
$$

where c_{1}, c_{2} are arbitrary constants.

4. Conclusions

In this paper, we have presented obtained common invariant solutions of the following $(1+3)$-dimensional equations: the Eikonal equations, the Euler-Lag-range-Born-Infeld equation, the homogeneous Monge-Ampère equation and the inhomogeneous Monge-Ampère equation. We have used the structural properties of the low-dimensional ($\operatorname{dimL} \leq 3$) nonconjugate subalgebras of the same ranks of the Lie algebra of the Poincare group $P(1,4)$ for classification of the obtained common invariant solutions.

Since the group $P(1,4)$ contains, as subgroups, the extended Galilei group $\tilde{G}(1,3)$ [49] (the symmetry group of classical physics) and the Poincaré group $P(1,3)$ (the symmetry group of relativistic physics), the results obtained can be useful in construction and investigation of corresponding physical models.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Rumer, Y.B. (1956) Studies in 5-Dimensional Optics. State Publishing Office for Technico-Theoretical Literature, Moscow.
[2] Lizzi, F., Marmo, G., Sparano, G. and Vinogradov, A.M. (1994) Eikonal Type Equations for Geometrical Singularities of Solutions in Field Theory. Journal of Geometry and Physics, 14, 211-235. https://doi.org/10.1016/0393-0440(94)90008-6
[3] Marciano-Melchor, M., Newman, E.T. and Silva-Ortigoza, G. (2005) 4D Conformal Metrics, the Eikonal Equation and Fourth-Order ODEs. Classical Quantum Gravity, 22, 5073-5088. https://doi.org/10.1088/0264-9381/22/23/010
[4] Borovskikh, A.V. (2014) Eikonal Equation for Anisotropic Media. Journal of Mathematical Sciences, 197, 248-289. https://doi.org/10.1007/s10958-014-1714-5
[5] Mieling, T.B. (2021) The Response of Laser Interferometric Gravitational Wave Detectors Beyond the Eikonal Equation. Classical Quantum Gravity, 38, Article ID: 175007. https://doi.org/10.1088/1361-6382/ac15db
[6] Lie, S. (1879) Beitrage zur Theorie der Minimalflächen. I. Proektivische Untersuchungen über algebraische Minimalflächen. Mathematische Annalen, 14, 331-416. https://doi.org/10.1007/BF01677141
[7] Lie, S. (1879) Beitrage zur Theorie der Minimalflächen. II. Metrische untersuchungen über algebraische Minimalflächen. Mathematische Annalen, 15, 465-506. https://doi.org/10.1007/BF02086273
[8] Shavokhina, N.S. (1990) Minimal Surfaces and Nonlinear Electrodynamics. World Scientific Publishing Co Pte Ltd., Teaneck, 504-511.
[9] Bîlă, N. (1999) Lie Groups Applications to Minimal Surfaces PDE. Differential Geometry-Dynamical Systems, 1, 1-9.
[10] Grundland, A.M. and Hariton, A. (2017) Algebraic Aspects of the Supersymmetric Minimal Surface Equation, Symmetry, 9, Article 318.
https://doi.org/10.3390/sym9120318
[11] Caffarelli, L.A. and Sire, Y. (2020) Minimal Surfaces and Free Boundaries: Recent Developments. Bulletin of the American Mathematical Society, 57, 91-106. https://doi.org/10.1090/bull/1673
[12] Li, H.Y. and Yan, W.P. (2020) Explicit Self-Similar Solutions for a Class of Zero Mean Curvature Equation and Minimal Surface Equation. Nonlinear Analysis, 197, Article ID: 111814. https://doi.org/10.1016/j.na.2020.111814
[13] Born, M. (1934) On the Quantum Theory of Electromagnetic Field. Proceedings of the Royal Society A, 143, 410-437. https://doi.org/10.1098/rspa.1934.0010
[14] Born, M. and Infeld, L. (1934) Foundations of the New Field Theory. Proceedings of the Royal Society A, 144, 425-451. https://doi.org/10.1098/rspa.1934.0059
[15] Makarenko, A.N., Odintsov, S.D. and Olmo, G.J. (2014) Little Rip, Λ CDM and Singular Dark Energy Cosmology from Born-Infeld-f(R) Gravity. Physics Letters B, 734, 36-40. https://doi.org/10.1016/j.physletb.2014.05.024
[16] Harko, T., Lobo, F.S.N., Mak, M.K. and Sushkov, S.V. (2015) Wormhole Geometries in Eddington-Inspired Born-Infeld Gravity. Modern Physics Letters A, 30, Article ID: 1550190. https://doi.org/10.1142/S0217732315501904
[17] Elizalde, E. and Makarenko, A.N. (2016) Singular Inflation from Born-Infeld-f(R) gravity. Modern Physics Letters A, 31, Article ID: 1650149. https://doi.org/10.1142/S0217732316501492
[18] Kruglov, S.I. (2019) Dyonic Black Holes in Framework of Born-Infeld-Type Electrodynamics. General Relativity and Gravitation, 51, Article No. 121. https://doi.org/10.1007/s10714-019-2603-5
[19] Jayawiguna, B.N. and Ramadhan, H.S. (2019) Charged Black Holes in HigherDimensional Eddington-Inspired Born-Infeld Gravity. Nuclear Physics B, 943, Article ID: 114615. https://doi.org/10.1016/j.nuclphysb.2019.114615
[20] Bahrami-Asl, B. and Hendi, S.H. (2020) Complexity of the Einstein-Born-InfeldMassive Black Holes. Nuclear Physics B, 950, Article ID: 114829.
https://doi.org/10.1016/j.nuclphysb.2019.114829
[21] Chernikov, N.A. and Shavokhina, N.S. (1986) The Born-Infeld Theory as Part of Einstein.s Unified Field Theory. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 4, 62-64
[22] Chernitskii, A.A. (2020) Fundamental Interactions and Quantum Behavior in Unified Field Theory. International Journal of Modern Physics A, 35, Article ID: 2040021. https://doi.org/10.1142/S0217751X20400217
[23] Lie, S. (1877) Neue Integrationsmethods der Monge-Ampérschen Gleichung. Archiv der Mathematik, 2, 1-9.
[24] Lie, S. (1898) Zur Geometrie einer Monge'schen Gleichung. Berichte Sächs. Ges., 50, 1-2.
[25] Minkowski, H. (1903) Volumen und Oberfläche. Mathematische Annalen, 57, 447495. https://doi.org/10.1007/BF01445180
[26] Țițeica, G. (1907) Sur une nouvelle classe de surfaces, Comptes Rendus Mathématique. Académie des Sciences. Paris, 144, 1257-1259.
[27] Jörgens, K. (1954) Über die Lösungen der Differentialgleichung $r t-s^{2}=1$, Ma-
thematische Annalen, 127, 130-134. https://doi.org/10.1007/BF01361114
[28] Calabi, E. (1958) Improper Affine Hyperspheres of Convex Type and a Generalization of a Theorem by K.Jörgens. Michigan Mathematical Journal, 5, 105-126. https://doi.org/10.1307/mmj/1028998055
[29] Pogorelov, A.V. (1975) The Multidimensional Minkowski Problem. Nauka, Moscow.
[30] Pogorelov, A.V. (1988) The multidimensional Monge-Ampère equation $\operatorname{det}\left\|z_{i j}\right\|=\varphi\left(z_{1}, \cdots, z_{n}, z, x_{1}, \cdots, x_{n}\right)$, Nauka, Moscow.
[31] Zhdanov, R.Z. (1988) General Solution of the Multidimensional Monge-Ampère Equation. In: Symmetry Analysis and Solutions of Equations of Mathematical Physics (Russian), Academy of Sciences of Ukrainian Soviet Socialist Republic, Institute of Mathematics, Kiev, 13-16.
[32] Mokhov, O.I. and Nutku, Y. (1994) Bianchi Transformation between the Real Hyperbolic Monge-Ampère Equation and the Born-Infeld Equation. Letters in Mathematical Physics, 32, 121-123. https://doi.org/10.1007/BF00739421
[33] Udrişte, C. and Bîlă, N. (1999) Symmetry Lie Group of the Monge-Ampère Equation. Applied Sciences, 1, 60-74.
[34] Fu, Ji-Xiang and Yau, Shing-Tung (2007) A Monge-Ampère-Type Equation Motivated by String Theory. Communications in Analysis and Geometry, 15, 29-75. https://doi.org/10.4310/CAG.2007.v15.n1.a2
[35] Fu, Ji-Xiang and Yau, Shing-Tung. (2008) The Theory of Superstring with Flux on non-Kähler Manifolds and the Complex Monge-Ampère Equation. Journal of Differential Geometry, 78, 369-428. https://doi.org/10.4310/jdg/1207834550
[36] Yau, S.-T. and Nadis, S. (2010) The Shape of Inner Space. String Theory and the Geometry of the Universe's Hidden Dimensions. Basic Books, New York.
[37] Jiang, F. and Trudinger, N.S. (2018) On the Second Boundary Value Problem for Monge-Ampère Type Equations and Geometric Optics. Archive for Rational Mechanics and Analysis, 229, 547-567. https://doi.org/10.1007/s00205-018-1222-8
[38] Yau, S.-T. and Nadis, S. (2019) The Shape of a Life. One Mathematician's Search for the Universe's Hidden Geometry. Yale University Press, New Haven.
[39] Awanou, G. (2021) Computational Nonimaging Geometric Optics: Monge-Ampère. Notices of the American Mathematical Society 68, 186-193. https://doi.org/10.1090/noti2220
[40] Fushchich, W.I., Shtelen, W.M. and Serov, N.I. (1993) Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics. Kluwer Academic Publishers Group, Dordrecht. https://doi.org/10.1007/978-94-017-3198-0
[41] Lie, S. (1895) Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung. Berichte Sächs. Ges., 47, 53-128.
[42] Ovsiannikov, L.V. (1982) Group Analysis of Differential Equations. Academic Press, New York. https://doi.org/10.1016/B978-0-12-531680-4.50012-5
[43] Olver, P.J. (1986) Applications of Lie Groups to Differential Equations. In: Hersh, P., Vakil, R. andWunsch, J., Eds., Graduate Texts in Mathematics, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4684-0274-2
[44] Fushchich, V.I., Barannik, L.F. and Barannik, A.F. (1991) Subgroup Analysis of Galilei and Poincaré Groups and the Reduction of Nonlinear Equations. Naukova Dumka, Kiev.
[45] Li, X.X., Liu, H.Z. and Chang, L.N. (2020) Invariant Subspaces and Exact Solutions
to the Generalized Strongly Dispersive DGH Equation. Journal of Applied Mathematics and Physics, 8, 1654-1663. https://doi.org/10.4236/jamp.2020.88126
[46] Zhang, Q., Xiong, M. and Chen, L. (2020) Exact Solutions of Two Nonlinear Partial Differential Equations by the First Integral Method. Advances in Pure Mathematics, 10, 12-20. https://doi.org/10.4236/apm.2020.101002
[47] Fedorchuk, V. and Fedorchuk, V. (2016) On Classification of Symmetry Reductions for the Eikonal Equation. Symmetry, 8, Article 51. https://doi.org/10.3390/sym8060051
[48] Fedorchuk, V. and Fedorchuk, V. (2018) Classification of Symmetry Reductions for the Eikonal Equation. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv, Ukraine.
[49] Fushchich, W.I. and Nikitin, A.G. (1980) Reduction of the Representations of the Generalized Poincaré Algebra by the Galilei Algebra. Journal of Physics A: Mathematical and General, 13, 2319-2330. https://doi.org/10.1088/0305-4470/13/7/015
[50] Fedorchuk, V.M. and Fedorchuk, V.I. (2006) On Classification of the Low-Dimensional Nonconjugate Subalgebras of the Lie Algebra of the Poincaré Group $P(1,4)$. Proceedings of Institute of Mathematics of NAS of Ukraine, 3, 302-308.

On the Spectral Properties of Graphs with Rank 4

Jianxuan Luo
School of Mathematics and Statistics, Qinghai Minzu University, Xining, China
Email: jianxuanluo@163.com

How to cite this paper: Luo, J.X. (2023) On the Spectral Properties of Graphs with Rank 4. Applied Mathematics, 14, 748-763.
https://doi.org/10.4236/am.2023.1411045

Received: October 5, 2023
Accepted: November 13, 2023
Published: November 16, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Let G be a graph and $A(G)$ the adjacency matrix of G. The spectrum of G is the eigenvalues together with their multiplicities of $A(G)$. Chang et al. (2011) characterized the structures of all graphs with rank 4. Monsalve and Rada (2021) gave the bound of spectral radius of all graphs with rank 4. Based on these results as above, we further investigate the spectral properties of graphs with rank 4. And we give the expressions of the spectral radius and energy of all graphs with rank 4. In particular, we show that some graphs with rank 4 are determined by their spectra.

Keywords

Spectral Radius, Energy, Cospectral Graphs, Rank

1. Introduction

All graphs considered in this paper are undirected, finite and simple. Let $G=(V(G), E(G))$ be a graph with n vertices and m edges. For convenience, the path, cycle and complete graph of order n are denoted by P_{n}, C_{n} and K_{n}, respectively. Let C be a set, and the number of elements in C is denoted by $|C|$, let $c_{i}(G)$ denote the number of cycles of length i.

The adjacency matrix of G is denoted by $A(G)$. The polynomial $\phi(G, x)=\operatorname{det}|x I-A(G)|$ is called the characteristic polynomial of a graph G, where I is the identity matrix of order n. The spectrum of G consists of the eigenvalues together with their multiplicities of $A(G)$. The spectral radius of G, denoted by $\rho(G)$, is the maximum eigenvalue of graph G. The nullity of G, denoted by $\eta(G)$, is the multiplicity of zeros in the spectrum of G. Let $r(G)$ be the rank of $A(G)$. Obviously, $\eta(G)=n-r(G)$. Two graphs G and H are said to be cospectral (denoted by $G \sim H$) if they share the same spectrum. A
graph G is said to be determined by its spectrum ($D S$ for short) if for any graph $H, \phi(G, x)=\phi(H, x)$ implies that H is isomorphic to G.

The energy of G first is defined by Gutman in 1978 as the sum of the absolute values of its eigenvalues. That is,

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The theory of graph energy is well developed nowadays; its details can be found in the book [1] and reviews [2] [3].

Definition 1.1. ([4]) Given a graph G with the set of vertices $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$ and a vector of positive integers $m=\left(m_{1}, m_{2}, \cdots, m_{p}\right)$, denote by Gom $\left(m_{1}, m_{2}, \cdots, m_{p}\right)$ (Gom for short) the graph obtained from G by replacing each vertex v_{i} of G with an independent set of m_{i} vertices $v_{i}^{1}, v_{i}^{2}, \cdots, v_{i}^{m_{i}}$ and joining v_{i}^{s} with v_{j}^{t} if and only if v_{i} and v_{j} are adjacent in G. The resulting graph Gom is said to be obtained from G by multiplication of vertices. For graph $G_{1}, G_{2}, \cdots, G_{k}$, we denote by $N\left(G_{1}, G_{2}, \cdots, G_{k}\right)$ the class of all graphs that can be obtained from one of the graphs in $\left\{G_{1}, G_{2}, \cdots, G_{k}\right\}$ by multiplication of vertices.

By Definition 2.1, Chang et al. [4] characterized all connected graphs with rank 4. That is, if G is a connected graph with rank 4, then $G \in N\left(G_{2}, \cdots, G_{9}\right)$, the resulting graph, see Figure 1. Wu et al. [5] studied further the spectral properties of graphs with rank 4 . They computed the characteristic polynomials of all graphs with rank 4 . And they showed that some graphs with rank 4 are determined by their spectra. In particular, they proposed a problem: Which graphs with rank 4 are determined by their spectra? Recently, Monsalve and Rada [6] characterized spectral radius of all connected graphs with rank 4. A natural problem is: How to characterize the spectral radius of all graphs with rank 4?

In this paper, we intend to solve these two problems. Preliminaries are presented in Section 2. And we give the expressions of the spectral radius and energy of all graphs with rank 4 in Section 3. In Section 4, we consider which graphs

Figure 1. $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}, G_{8}, G_{9}$.
with rank 4 are $D S$. More precisely, we prove that two classes of graphs with rank 4 are $D S$. And some cospectral graphs with rank 4 are presented.

2. Some Lemmas

Several lemmas are of importance to the description and proof of our results later, and we list them below.

By the properties of vertex multiplication, Wu et al. [5] computed the characteristic polynomials with rank 4 as follows.

Lemma 2.1. ([5]) Let G be a simple graph on n vertices and $n \geq 4$. Then $r(G)=4$ if an only if $G \in\left(G_{1}, G_{2}, \cdots, G_{9}\right)$, where the graphs G_{1}, \cdots, G_{9} are depicted in Figure 1.

Lemma 2.2. ([7]) Let G be a graph. For the adjacency matrix the following can be deduced from the spectrum:
(i) The number of vertices.
(ii) The number of edges.
(iii) Whether G is regular.
(iv) Whether G is regular with any fixed girth.
(v) The number of closed walk of any length.
(vi) Whether G is bipartite.

Lemma 2.3. ([8]) Let G be a simple bipartite graph with e edges. Then

$$
\rho(G) \leq \sqrt{e}
$$

with equality if G is a disjoint union of a complete bipartite graph and isolated vertices.

Lemma 2.4. ([5]) Suppose that $G_{i}^{\prime}=G_{i} o m\left[m_{1}, m_{2}, \cdots, m_{p}\right]$, where G_{i} is depicted in Figure 1, $i=1,2, \cdots, 9, p=\left|V\left(G_{i}\right) \leq 6\right|,\left|m_{1}\right|=a,\left|m_{2}\right|=b,\left|m_{3}\right|=c$, $\left|m_{4}\right|=d,\left|m_{5}\right|=e,\left|m_{6}\right|=f$. Then each of the following holds.
(i) $\phi\left(G_{1}^{\prime}, x\right)=x^{a+b+c+d-4}\left[x^{4}-(a b+c d) x^{2}+a b c d\right]$.
(ii) $\phi\left(G_{2}^{\prime}, x\right)=x^{a+b+c+d-4}\left[x^{4}-(a b+b c+b d+c d) x^{2}-2 b c d x+a b c d\right]$.
(iii) $\phi\left(G_{3}^{\prime}, x\right)=x^{a+b+c+d+e-4}\left[x^{4}-(a b+a c+b c+b d+c e) x^{2}-2 a b c x\right.$ $+a b d c+a b e c+d b e c]$
(iv)
$\phi\left(G_{4}^{\prime}, x\right)=x^{a+b+c+d+e-4}\left[x^{4}-(a b+a e+b e+b c+c d+d e) x^{2}-2 a b e x\right.$. $+a b e d+a e c d+a b c d+a b e c]$
(v)

$$
\begin{aligned}
& \text { (v) } \left.\begin{array}{rl}
\phi\left(G_{5}^{\prime}, x\right)= & x^{a+b+c+d+e+f-4}\left[x^{4}-(a b+b c+b f+c f+c d+d e+e f) x^{2}-2 b c f x\right. \\
& +a b e d+a b c d+b d e c+a b c f+a b e f+b c e f+f b c d+f b e d]
\end{array}\right\} \begin{aligned}
\phi\left(G_{6}^{\prime}, x\right)= & x^{a+b+c+d-4}\left[x^{4}-(a b+a c+a d+b c+b d+c d) x^{2}\right. \\
& -2(a b c+a b d+a c d+b c d) x-3 a b c d]
\end{aligned} .
\end{aligned}
$$

(vii)

$$
\begin{aligned}
\phi\left(G_{7}^{\prime}, x\right)= & x^{a+b+c+d+e+f-4}\left[x^{4}-(a b+a c+a f+b c+b e+c d+d f+d e+f e) x^{2}\right. \\
& -2(a b c+d e f) x+a b e d+a b d f+a c b e+a c e d+a c e f+a f e d \\
& +a b c d+f c d e+a b c f+b c e f+f b c d+f b e d]
\end{aligned}
$$

(viii) $\phi\left(G_{8}^{\prime}, x\right)=x^{a+b+c+d-4}\left[x^{4}-(a b+b c+c d) x^{2}+a b c d\right]$.
(ix) $\phi\left(G_{9}^{\prime}, x\right)=x^{a+b+c+d+e-4}\left[x^{4}-(a b+b c+c d+d e) x^{2}+a b c d+b c d e+a b d e\right]$.

3. The Spectral Radii and Energies of Graphs with Rank 4

In this section, we give the spectral radii and energies of graphs with rank 4. All the notation in this paragraph is followed in Lemma 2.4.

Theorem 3.1. Let $G \in N\left(G_{1}, G_{2}, \cdots, G_{9}\right)$. Then the spectral radius of graph G as follows.
(i) If $G \in N\left(G_{1}\right)$. Then

$$
\left.\rho(G)=\left(\left\lfloor\frac{n-2}{2}\right\rfloor \frac{n-2}{2}\right\rceil\right)^{\frac{1}{2}} .
$$

(ii) If $G \in N\left(G_{2}\right)$ and let $c^{\prime}=a b+b c+b d+c d, d^{\prime}=b c d, e^{\prime}=a b c d$. Then

$$
\rho(G)=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} \prime\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
$$

where

$$
\begin{aligned}
\Delta= & {\left[\sqrt[3]{4}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right)+\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{2}{3}}\right] } \\
& /\left[3 \sqrt[3]{2}\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{1}{3}}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
A= & -432 e^{\prime}\left(c^{\prime}\right)^{4}+3456\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-432\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}+15552 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2} \\
& -6912\left(e^{\prime}\right)^{3}+11664\left(d^{\prime}\right)^{4} .
\end{aligned}
$$

(iii) If $G \in N\left(G_{3}\right)$ and let $c^{\prime}=a b+a c+b c+b d+c e, d^{\prime}=a b c$, $e^{\prime}=a b d c+a b e c+d b e c$. Then

$$
\rho(G)=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} \prime\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
$$

where

$$
\begin{aligned}
\Delta= & {\left[\sqrt[3]{4}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right)+\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{2}{3}}\right] } \\
& /\left[3 \sqrt[3]{2}\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{1}{3}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
A= & -432 e^{\prime}\left(c^{\prime}\right)^{4}+3456\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-432\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}+15552 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2} \\
& -6912\left(e^{\prime}\right)^{3}+11664\left(d^{\prime}\right)^{4} .
\end{aligned}
$$

(iv) If $G \in N\left(G_{4}\right)$ and let $c^{\prime}=a b+a e+b e+b c+c d+d e, \quad d^{\prime}=a b e$, $e^{\prime}=a b e d+a e c d+a b c d+a b e c$. Then

$$
\rho(G)=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
$$

where

$$
\begin{aligned}
\Delta= & {\left[\sqrt[3]{4}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right)+\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{2}{3}}\right] } \\
& /\left[3 \sqrt[3]{2}\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{1}{3}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
A= & -432 e^{\prime}\left(c^{\prime}\right)^{4}+3456\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-432\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}+15552 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2} \\
& -6912\left(e^{\prime}\right)^{3}+11664\left(d^{\prime}\right)^{4} .
\end{aligned}
$$

(v) If $G \in N\left(G_{5}\right)$ and let $c^{\prime}=a b+b c+b f+c f+c d+d e+e f, \quad d^{\prime}=b c f$, $e^{\prime}=a b e d+a b c d+b d e c+a b c f+a b e f+b c e f+f b c d+f b e d$. Then

$$
\rho(G)=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
$$

where

$$
\begin{aligned}
\Delta= & {\left[\sqrt[3]{4}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right)+\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{2}{3}}\right] } \\
& /\left[3 \sqrt[3]{2}\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{1}{3}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
A= & -432 e^{\prime}\left(c^{\prime}\right)^{4}+3456\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-432\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}+15552 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2} \\
& -6912\left(e^{\prime}\right)^{3}+11664\left(d^{\prime}\right)^{4} .
\end{aligned}
$$

(vi) If $G \in N\left(G_{6}\right)$ and let $c^{\prime}=a b+a c+a d+b c+b d+c d$, $d^{\prime}=a b c+a b d+a c d+b c d, \quad e^{\prime}=a b c d$. Then

$$
\rho(G)=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
$$

where

$$
\begin{aligned}
\Delta= & {\left[\sqrt[3]{4}\left(\left(c^{\prime}\right)^{2}-36 e^{\prime}\right)+\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}-216 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{2}{3}}\right] } \\
& /\left[3 \sqrt[3]{2}\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}-216 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{1}{3}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
A= & 1296 e^{\prime}\left(c^{\prime}\right)^{4}+31104\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-432\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}-46656 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2} \\
& +1886624\left(e^{\prime}\right)^{3}+11664\left(d^{\prime}\right)^{4}
\end{aligned}
$$

(vii) If $G \in N\left(G_{7}\right)$ and let $c^{\prime}=a b+a c+a f+b c+b e+c d+d f+d e+f e$, $d^{\prime}=a b c+d e f, \quad e^{\prime}=a b e d+a b d f+a c b e+a c e d+a c e f+a f e d+a b c d+f c d e+$ $a b c f+b c e f+f b c d+f b e d$. Then

$$
\rho(G)=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
$$

where

$$
\begin{aligned}
\Delta= & {\left[\sqrt[3]{4}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right)+\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{2}{3}}\right] } \\
& /\left[3 \sqrt[3]{2}\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{1}{3}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
A= & -432 e^{\prime}\left(c^{\prime}\right)^{4}+3456\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-432\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}+15552 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2} \\
& -6912\left(e^{\prime}\right)^{3}+11664\left(d^{\prime}\right)^{4} .
\end{aligned}
$$

(viii) If $G \in N\left(G_{8}\right)$. Then

$$
\rho(G)=\frac{1}{2}\left[2 a b+2 b c+2 c d+2\left((a b+b c+c d)^{2}-4 a b c d\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}
$$

(ix) If $G \in N\left(G_{9}\right)$. Then
$\rho(G)=\frac{1}{2}\left[2 a b+2 b c+2 c d+2 d e+2\left((a b+b c+c d+d e)^{2}-4(a b c d+b c d e+a b d e)\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}$.
Proof. Here we only consider the cases $G \in N\left(G_{1}\right), G \in N\left(G_{2}\right)$. The proof of
other cases is quite similar to $G \in N\left(G_{2}\right)$ and is thus omitted.
Let $G \in N\left(G_{1}\right)$. By Lemma 2.3, directly yields $\rho(G)=\left(\left\lfloor\frac{n-2}{2}\right\rfloor\left[\frac{n-2}{2}\right\rceil\right)^{\frac{1}{2}}$.
Let $G \in N\left(G_{2}\right)$. By Theorem 2.4 (ii), there exist 4 nonzero eigenvalues and all other eigenvalues are 0 . So we only need to input polynomial
$x^{4}-(a b+b c+b d+c d) x^{2}-2 b c d x+a b c d$ in maple 13.0, we can get the nonzero eigenvalues of the graph G as follows.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left[\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right. \\
& +\left(\frac{4}{3}(a b+b c+b d+c d)-\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}+3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right. \\
& \left.\left.+4 b c d /\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right], \\
& \lambda_{2}=\frac{1}{2}\left[\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right. \\
& -\left(\frac{4}{3}(a b+b c+b d+c d)-\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}+3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right. \\
& \left.\left.+4 b c d /\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right], \\
& \lambda_{3}=-\frac{1}{2}\left[\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right. \\
& +\left(\frac{4}{3}(a b+b c+b d+c d)-\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}+3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right. \\
& \left.\left.-4 b c d /\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{4}= & -\frac{1}{2}\left[\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right. \\
& -\left(\frac{4}{3}(a b+b c+b d+c d)-\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}+3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right. \\
& \left.\left.-4 b c d /\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right] .
\end{aligned}
$$

where

$$
\begin{aligned}
D= & -a^{3} b^{3}-b^{3} c^{3}-b^{3} d^{3}-c^{3} d^{3}+33 a^{2} b^{2} c d+30 a b^{2} c^{2} d+30 a b^{2} c d^{2} \\
& +33 a b c^{2} d^{2}-6 a b^{3} c d-3 a^{2} b^{3} c-3 a^{2} b^{3} d-3 a b^{3} c^{2}-3 a b^{3} d^{2} \\
& -3 b^{3} c^{2} d-3 b^{3} c d^{2}-3 b^{2} c^{3} d-3 b^{2} c d^{3}-3 b c^{3} d^{2}-3 b c^{2} d^{3}+48 b^{2} c^{2} d^{2}, \\
= & -3 a^{5} b^{5} c d-12 a^{4} b^{5} c^{2} d-12 a^{4} b^{5} c d^{2}+12 a^{4} b^{4} c^{2} d^{2}-18 a^{3} b^{5} c^{3} d \\
& -39 a^{3} b^{5} c^{2} d^{2}-18 a^{3} b^{5} c d^{3}+12 a^{3} b^{4} c^{3} d^{2}+12 a^{3} b^{4} c^{2} d^{3}-18 a^{3} b^{3} c^{3} d^{3} \\
& -12 a^{2} b^{5} c^{4} d-45 a^{2} b^{5} c^{3} d^{2}-45 a^{2} b^{5} c^{2} d^{3}-12 a^{2} b^{5} c d^{4}-12 a^{2} b^{4} c^{4} d^{2} \\
& +75 a^{2} b^{4} c^{3} d^{3}-12 a^{2} b^{4} c^{2} d^{4}+12 a^{2} b^{3} c^{4} d^{3}+12 a^{2} b^{3} c^{3} d^{4}+12 a^{2} b^{2} c^{4} d^{4} \\
& -3 a b^{5} c^{5} d-21 a b^{5} c^{4} d^{2}-36 a b^{5} c^{3} d^{3}-21 a b^{5} c^{2} d^{4}-3 a b^{5} c d^{5}-12 a b^{4} c^{5} d^{2} \\
& +54 a b^{4} c^{4} d^{3}+54 a b^{4} c^{3} d^{4}-12 a b^{4} c^{2} d^{5}-18 a b^{3} c^{5} d^{3}+63 a b^{3} c^{4} d^{4} \\
& -18 a b^{3} c^{3} d^{5}-12 a b^{2} c^{5} d^{4}-12 a b^{2} c^{4} d^{5}-3 a b c^{5} d^{5}-3 b^{5} c^{5} d^{2}-9 b^{5} c^{4} d^{3} \\
& -9 b^{5} c^{3} d^{4}-3 b^{5} c^{2} d^{5}-9 b^{4} c^{5} d^{3}+63 b^{4} c^{4}-9 b^{4} c^{3} d^{-9}-9 b^{5} d^{4} \\
& -9 b^{3} c^{4} d^{5}-3 b^{2} c^{5} d^{5}, \\
& F=-\frac{14}{9} a b c d-\frac{1}{9} a^{2} b^{2}-\frac{2}{9} a b^{2} d-\frac{1}{9} b^{2} c^{2}-\frac{2}{9} b^{2} c d \\
& \quad-\frac{1}{9} b^{2} d^{2}-\frac{2}{9} c^{2} b d-\frac{2}{9} b c d^{2}-\frac{1}{9} c^{2} d^{2} .
\end{aligned}
$$

Due to $\lambda_{3}, \lambda_{4}<0, \lambda_{1}, \lambda_{2}>0$ and $\lambda_{1}>\lambda_{2}$, we can obviously get λ_{1} is the spectral radius of graph G. Let $c^{\prime}=a b+b c+b d+c d, d^{\prime}=b c d, \quad e^{\prime}=a b c d$, due to

$$
\begin{aligned}
D= & -a^{3} b^{3}-b^{3} c^{3}-b^{3} d^{3}-c^{3} d^{3}+33 a^{2} b^{2} c d+30 a b^{2} c^{2} d+30 a b^{2} c d^{2} \\
& +33 a b c^{2} d^{2}-6 a b^{3} c d-3 a^{2} b^{3} c-3 a^{2} b^{3} d-3 a b^{3} c^{2}-3 a b^{3} d^{2} \\
& -3 b^{3} c^{2} d-3 b^{3} c d^{2}-3 b^{2} c^{3} d-3 b^{2} c d^{3}-3 b c^{3} d^{2}-3 b c^{2} d^{3}+48 b^{2} c^{2} d^{2} \\
= & -(a b+b c+b d+c d)^{3}+54(b c d)^{2}+36 a b c d(a b+b c+b d+c d) \\
= & -\left(c^{\prime}\right)^{3}+54\left(d^{\prime}\right)^{2}+36 e^{\prime} c^{\prime} \\
E= & -3 a^{5} b^{5} c d-12 a^{4} b^{5} c^{2} d-12 a^{4} b^{5} c d^{2}+12 a^{4} b^{4} c^{2} d^{2}-18 a^{3} b^{5} c^{3} d \\
& -39 a^{3} b^{5} c^{2} d^{2}-18 a^{3} b^{5} c d^{3}+12 a^{3} b^{4} c^{3} d^{2}+12 a^{3} b^{4} c^{2} d^{3}-18 a^{3} b^{3} c^{3} d^{3} \\
& -12 a^{2} b^{5} c^{4} d-45 a^{2} b^{5} c^{3} d^{2}-45 a^{2} b^{5} c^{2} d^{3}-12 a^{2} b^{5} c d^{4}-12 a^{2} b^{4} c^{4} d^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +75 a^{2} b^{4} c^{3} d^{3}-12 a^{2} b^{4} c^{2} d^{4}+12 a^{2} b^{3} c^{4} d^{3}+12 a^{2} b^{3} c^{3} d^{4}+12 a^{2} b^{2} c^{4} d^{4} \\
& -3 a b^{5} c^{5} d-21 a b^{5} c^{4} d^{2}-36 a b^{5} c^{3} d^{3}-21 a b^{5} c^{2} d^{4}-3 a b^{5} c d^{5}-12 a b^{4} c^{5} d^{2} \\
& +54 a b^{4} c^{4} d^{3}+54 a b^{4} c^{3} d^{4}-12 a b^{4} c^{2} d^{5}-18 a b^{3} c^{5} d^{3}+63 a b^{3} c^{4} d^{4} \\
& -18 a b^{3} c^{3} d^{5}-12 a b^{2} c^{5} d^{4}-12 a b^{2} c^{4} d^{5}-3 a b c^{5} d^{5}-3 b^{5} c^{5} d^{2}-9 b^{5} c^{4} d^{3} \\
& -9 b^{5} c^{3} d^{4}-3 b^{5} c^{2} d^{5}-9 b^{4} c^{5} d^{3}+63 b^{4} c^{4} d^{4}-9 b^{4} c^{3} d^{5}-9 b^{3} c^{5} d^{4} \\
& -9 b^{3} c^{4} d^{5}-3 b^{2} c^{5} d^{5} \\
= & -3 a b c d(a b+b c+b d+c d)^{4}+24(a b c d)^{2}(a b+b c+b d+c d)^{2} \\
& -3(b c d)^{2}(a b+b c+b d+c d)^{3}+108 a b c d(a b+b c+b d+c d)(b c d)^{2} \\
& -48(a b c d)^{3}+81(b c d)^{4} \\
= & -3 e^{\prime}\left(c^{\prime}\right)^{4}+24\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-3\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}+108 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2}-48\left(e^{\prime}\right)^{3}+81\left(d^{\prime}\right)^{4} \\
= & {\left[-432 e^{\prime}\left(c^{\prime}\right)^{4}+3456\left(e^{\prime}\right)^{2}\left(c^{\prime}\right)^{2}-432\left(d^{\prime}\right)^{2}\left(c^{\prime}\right)^{3}+15552 e^{\prime} c^{\prime}\left(d^{\prime}\right)^{2}\right.} \\
& \left.-6912\left(e^{\prime}\right)^{3}+11664\left(d^{\prime}\right)^{4}\right] / 144 \\
= & A / 144 \\
F= & -\frac{14}{9} a b c d-\frac{1}{9} a^{2} b^{2}-\frac{2}{9} a b^{2} d-\frac{1}{9} b^{2} c^{2}-\frac{2}{9} b^{2} c d \\
& -\frac{1}{9} b^{2} d^{2}-\frac{2}{9} c^{2} b d-\frac{2}{9} b c d^{2}-\frac{1}{9} c^{2} d^{2} \\
= & -\frac{1}{9}\left((a b+b c+b d+c d)^{2}+12 a b c d\right) \\
= & -\frac{1}{9}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}} \\
&= \frac{1}{3}\left(-\left(c^{\prime}\right)^{3}+54\left(d^{\prime}\right)^{2}+36 e^{\prime} c^{\prime}+6(A / 144)^{\frac{1}{2}}\right)^{\frac{1}{3}} \\
&-3\left(-\frac{1}{9}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right)\right) /\left(-\left(c^{\prime}\right)^{3}+54\left(d^{\prime}\right)^{2}+36 e^{\prime} c^{\prime}+6(A / 144)^{\frac{1}{2}}\right)^{\frac{1}{3}} \\
&= {\left[\sqrt[3]{4}\left(\left(c^{\prime}\right)^{2}+12 e^{\prime}\right)+\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{2}{3}}\right] } \\
&=\left.\Delta 3 \sqrt[3]{2}\left(-2\left(c^{\prime}\right)^{3}+108\left(d^{\prime}\right)^{2}+72 e^{\prime} c^{\prime}+A^{\frac{1}{2}}\right)^{\frac{1}{3}}\right] \\
& {[}
\end{aligned}
$$

So we get

$$
\lambda_{1}=\frac{1}{2}\left[\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right.
$$

$$
\begin{aligned}
& +\left(\frac{4}{3}(a b+b c+b d+c d)-\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}+3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right. \\
& \left.\left.+4 b c d /\left(\frac{2}{3}(a b+b c+b d+c d)+\frac{1}{3}\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}-3 F /\left(D+6 E^{\frac{1}{2}}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}\right] \\
& =\frac{1}{2}\left[\left(\frac{2}{3}(a b+b c+b d+c d)+\Delta\right)^{\frac{1}{2}}\right] \\
& \left.+\left[\frac{4}{3}(a b+b c+b d+c d)-\Delta+4 b c d /\left(\frac{2}{3}(a b+b c+b d+c d)+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right] \\
& =\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right] \\
& =\rho(G)
\end{aligned}
$$

It is consistent with the spectral radius obtained as above.
This completes the proof.
Example 1. Solve the spectral radius of graph $G=G_{4} o(5,6,3,4,6)$.
By employing maple 13.0 to calculate, we can get that 1.5808, $-5.3747,-9.5359$, 13.3297 are the nonzero eigenvalues of the graph G. By comparison, it is obvious that 13.3297 is the spectral radius of the graph G.

Theorem 3.2. Let $G \in N\left(G_{1}, G_{2}, \cdots, G_{9}\right)$. Then the energy of graph G as follows, where the notations is defined as same as above Theorem.
(i) If $G \in N\left(G_{1}\right)$. Then

$$
E(G)=2(a b)^{\frac{1}{2}}+2(c d)^{\frac{1}{2}}
$$

(ii) If $G \in N\left(G_{2}\right)$. Then

$$
E(G)=2\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}
$$

(iii) If $G \in N\left(G_{3}\right)$.Then

$$
E(G)=2\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}
$$

(iv) If $G \in N\left(G_{4}\right)$. Then

$$
E(G)=2\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}
$$

(v) If $G \in N\left(G_{5}\right)$. Then

$$
E(G)=2\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}
$$

(vi) If $G \in N\left(G_{6}\right)$. Then

$$
E(G)=\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}
$$

(vii) If $G \in N\left(G_{7}\right)$. Then

$$
E(G)=2\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}
$$

(viii) If $G \in N\left(G_{8}\right)$. Then

$$
\begin{aligned}
E(G)= & {\left[2 a b+2 b c+2 c d+2\left((a b+b c+c d)^{2}-4 a b c d\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} } \\
& +\left[2 a b+2 b c+2 c d-2\left((a b+b c+c d)^{2}-4 a b c d\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}
\end{aligned}
$$

(ix) If $G \in N\left(G_{9}\right)$. Then

$$
\begin{aligned}
E(G)= & {\left[2 a b+2 b c+2 c d+2 d e+2\left((a b+b c+c d+d e)^{2}-4(a b c d+b c d e\right.\right.} \\
& \left.+a b d e))^{\frac{1}{2}}\right]^{\frac{1}{2}}+\left[2 a b+2 b c+2 c d+2 d e-2\left((a b+b c+c d+d e)^{2}\right.\right. \\
& \left.-4(a b c d+b c d e+a b d e))^{\frac{1}{2}}\right]^{\frac{1}{2}}
\end{aligned}
$$

Proof. Here we only consider the cases $G \in N\left(G_{2}\right)$. The proof of other cases is quite similar to $G \in N\left(G_{2}\right)$ and is thus omitted.

The proof of Theorem 3.2 follows from Theorem 3.1. So we have

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right] \\
& \lambda_{2}=\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}-\left(\frac{4}{3} c^{\prime}-\Delta+4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right], \\
& \lambda_{3}=-\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}+\left(\frac{4}{3} c^{\prime}-\Delta-4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

$$
\lambda_{4}=-\frac{1}{2}\left[\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}-\left(\frac{4}{3} c^{\prime}-\Delta-4 d^{\prime} /\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
$$

Due to $\lambda_{3}, \lambda_{4}<0, \lambda_{1}, \lambda_{2}>0$, we get

$$
\begin{aligned}
E(G) & =\left|\lambda_{1}\right|+\left|\lambda_{2}\right|+\left|\lambda_{3}\right|+\left|\lambda_{4}\right| \\
& =\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4} \\
& =2\left(\frac{2}{3} c^{\prime}+\Delta\right)^{\frac{1}{2}}
\end{aligned}
$$

It is consistent with the energy obtained as above.
This completes the proof.

4. The Spectral Characterization of Graphs with Rank 4

In this section, we will investigate which graph $G \in N\left(G_{1}, G_{2}, \cdots, G_{9}\right)$ is $D S$ and find some cospectral graphs.

Theorem 4.1. Let $G=G_{4}^{\prime} \cup r K_{1}$, where $a=b=e=1$ in G_{4}^{\prime}. Then G is $D S$.
Proof. Suppose that G has $3+c^{\prime}+d^{\prime}+r$ vertices. Checking G, we note that it only contains one triangle. This implies, by Lemma 2.2 (v), that if graph H is cospectral with G, then H must contain one triangle. By Lemma 2.1 and Lemma 2.4, $G_{2}^{\prime} \cup g K_{1}$ (here $b=c=d=1$ in G_{2}^{\prime}), $G_{3}^{\prime} \cup m K_{1}$ (here $a=b=c=1$ in G_{3}^{\prime}) and $G_{5}^{\prime} \cup w K_{1}$ (here $b=c=f=1$ in G_{5}^{\prime}) contains one triangle, respectively. It has been proved that $G_{2}^{\prime} \cup g K_{1}$ (here $b=c=d=1$ in G_{2}^{\prime}) is $D S$. In the following we consider two cases.

Case 1. Assume that G and $G_{3}^{\prime} \cup m K_{1}$ are cospectral and let $1 \leq d \leq e$, $1 \leq c^{\prime} \leq d^{\prime}$. Therefore, G and $G_{3}^{\prime} \cup m K_{1}$ have the same vertices and coefficients of their characteristic polynomials. By Lemma 2.4 (iv) and (iii), we have

$$
\left\{\begin{array}{l}
3+c^{\prime}+d^{\prime}+r=3+d+e+m \\
3+c^{\prime}+d^{\prime}+c^{\prime} d^{\prime}=3+d+e \\
c^{\prime}+d^{\prime}+2 c^{\prime} d^{\prime}=d+e+d e
\end{array}\right.
$$

Solving the equation system as above, we obtain that $r-m=c^{\prime} d^{\prime}=d e$, which implies $d=c^{\prime} d^{\prime} / e$ and $r-m>0$. By $3+c^{\prime}+d^{\prime}+r=3+d+e+m$ and $r-m>0$, we can obtain that $d+e>c^{\prime}+d^{\prime}$. Taking $d=c^{\prime} d^{\prime} / e$ into $d+e>c^{\prime}+d^{\prime}$, we obtain that $e^{2}-\left(c^{\prime}+d^{\prime}\right) e+c^{\prime} d^{\prime}>0$. Solving this equation, we obtain that $e>d^{\prime}$ or $e<c^{\prime}$. However, by $c^{\prime} d^{\prime}=d e$ and $1 \leq d \leq e, 1 \leq c^{\prime} \leq d^{\prime}$, we obtain that $c^{\prime} \leq d \leq e \leq d^{\prime}$ or $d \leq c^{\prime} \leq d^{\prime} \leq e$, which in contradict with $e>d^{\prime}$ or $e<c^{\prime}$. Hence G and $G_{3}^{\prime} \cup m K_{1}$ are not cospectral.

Case 2. Assume that G and $G_{5}^{\prime} \cup w K_{1}$ are cospectral. Therefore, G and $G_{5}^{\prime} \cup w K_{1}$ have the same vertices and coefficients of their characteristic polynomials. By Lemma 2.4 (iv) and (v), we obtain that

$$
\left\{\begin{array}{l}
3+c^{\prime}+d^{\prime}+r=3+a+d+e+w \\
3+c^{\prime}+d^{\prime}+c^{\prime} d^{\prime}=3+a+d+e+e d \\
c^{\prime}+d^{\prime}+2 c^{\prime} d^{\prime}=a+d+e+a d+a e+2 e d+a e d
\end{array}\right.
$$

Solving the equation system as above, we have

$$
\left\{\begin{array}{l}
w-r=e d-c^{\prime} d^{\prime} \\
c^{\prime} d^{\prime}=a d+a e+e d+a e d \\
c^{\prime}+d^{\prime}+c^{\prime} d^{\prime}=a+d+e+e d
\end{array}\right.
$$

By $\quad c^{\prime} d^{\prime}=a d+a e+e d+a e d$, we obtain that $c^{\prime}=(a d+a e+e d+a e d) / d^{\prime}$. Taking $c^{\prime}=(a d+a e+e d+a e d) / d^{\prime}$ into $c^{\prime}+d^{\prime}+c^{\prime} d^{\prime}=a+d+e+e d$, we obtain that $d^{\prime 2}+(a d+a e+a e d-a-d-e) d^{\prime}+a d+a e+e d+a e d=0$. Supposing the roots of the equation as above are d_{11}, d_{12}, we have

$$
\left\{\begin{array}{l}
d_{11}+d_{12}=a(1-d)+d(1-a e)+e(1-a) \\
d_{11} d_{12}=a d+a e+e d+a e d
\end{array}\right.
$$

By the definition of G_{5}^{\prime}, one has $a, e, d \geq 1$, which implies that $d_{11}+d_{12} \leq 0$, $d_{11} d_{12}>0$. By $d_{11} d_{12}>0$, we know that d_{11}, d_{12} are nonzero and have the same sign. However, by $d_{11}+d_{12} \leq 0$, we know that $d_{11}, d_{12}<0$. This contradicts the fact $d_{11}, d_{12}>0$. Thus, G and $G_{5}^{\prime} \cup w K_{1}$ are not cospectral.

Next, assume that $G_{4} o\left(1,1, c^{\prime}, d^{\prime}, 1\right)$ and $G_{4} o\left(1,1, c^{\prime \prime}, d^{\prime \prime}, 1\right)$ are cospectral and $c^{\prime \prime}<c^{\prime} \leq d^{\prime}<d^{\prime \prime}$. Therefore, they have the same vertices and coefficients of their characteristic polynomials. By Lemma 2.4 (iv), we get that

$$
\left\{\begin{array}{l}
3+c^{\prime \prime}+d^{\prime \prime}=3+c^{\prime}+d^{\prime} \\
3+c^{\prime \prime}+d^{\prime \prime}+c^{\prime \prime} d^{\prime \prime}=3+c^{\prime}+d^{\prime}+c^{\prime} d^{\prime} \\
c^{\prime \prime}+d^{\prime \prime}+2 c^{\prime \prime} d^{\prime \prime}=c^{\prime}+d^{\prime}+2 c^{\prime} d^{\prime}
\end{array}\right.
$$

Solving the equation system as above, we obtain that $c^{\prime \prime}+d^{\prime \prime}=c^{\prime}+d^{\prime}$, $c^{\prime \prime} d^{\prime \prime}=c^{\prime} d^{\prime}$. By $c^{\prime \prime} d^{\prime \prime}=c^{\prime} d^{\prime}$, we obtain that $c^{\prime \prime}=c^{\prime} d^{\prime} / d^{\prime \prime}$. Taking $c^{\prime \prime}=c^{\prime} d^{\prime} / d^{\prime \prime}$ into $c^{\prime \prime}+d^{\prime \prime}=c^{\prime}+d^{\prime}$, we have $d^{\prime \prime 2}-\left(c^{\prime}+d^{\prime}\right) d^{\prime \prime}+c^{\prime} d^{\prime}=0$. Solving this equation, we obtain that $d^{\prime \prime}=c^{\prime}$ or $d^{\prime \prime}=d^{\prime}$. If $d^{\prime \prime}=c^{\prime}, c^{\prime \prime}<d^{\prime}$, then we have $c^{\prime \prime}+d^{\prime \prime}<c^{\prime}+d^{\prime}$, a contradiction; If $d^{\prime \prime}=d^{\prime}, c^{\prime}>c^{\prime \prime}$, then we have $c^{\prime \prime}+d^{\prime \prime}<c^{\prime}+d^{\prime}$, a contradiction. Thus, $G_{4} o\left(1,1, c^{\prime}, d^{\prime}, 1\right)$ and $G_{4} o\left(1,1, c^{\prime \prime}, d^{\prime \prime}, 1\right)$ are not cospectral.

From the argument above, we obtain that G is $D S$.
Theorem 4.2. Let $G=G_{3}^{\prime}$, where $a=b=c=1$ in G_{3}^{\prime}. Then G is $D S$ if and only if $w \neq e d$ or $e^{\prime 2}-(a+d+e+d e) e^{\prime}+a d+a e+d e+a e d=0$ has no positive integer solution.

Proof. Suppose that G has $3+d^{\prime}+e^{\prime}$ vertices. By Lemma 2.2 (v), we know if graph H is cospectral with graph G, then H must contain one triangle. By Lemma 2.1 and Theorem 2.4, $G_{2}^{\prime} \cup g K_{1}$ (here $b=c=d=1$), $G_{4}^{\prime} \cup r K_{1}$ (here $a=b=e=1$) and $G_{5}^{\prime} \cup w K_{1}$ (here $b=c=f=1$) contain one triangle, respectively. It has been proved that $G_{2}^{\prime} \cup g K_{1}$ (here $b=c=d=1$) is $D S$. In the following we consider two cases.

Case 1. Assume that G and $G_{4}^{\prime} \cup r K_{1}$ are cospectral and let $1 \leq d^{\prime} \leq e^{\prime}$, $1 \leq c \leq d$. Therefore, G and $G_{4}^{\prime} \cup r K_{1}$ have the same vertices and coefficients of their characteristic polynomials. By Lemma 2.4 (iii) and (iv), we have

$$
\left\{\begin{array}{l}
3+d^{\prime}+e^{\prime}=3+c+d+r \\
3+d^{\prime}+e^{\prime}=3+c+d+c d \\
s+e^{\prime}+d^{\prime} e^{\prime}=c+d+2 c d
\end{array}\right.
$$

Solving the equation system as above, we obtain that $r=c d=d^{\prime} e^{\prime}$, which implies that $d^{\prime}=c d / e^{\prime}$ and $r>0$. By $3+d^{\prime}+e^{\prime}=3+c+d+r$ and $r>0$, we can obtain that $d^{\prime}+e^{\prime}>c+d$. Taking $d^{\prime}=c d / e^{\prime}$ into $d^{\prime}+e^{\prime}>c+d$, we obtain that $e^{\prime 2}-(c+d) e^{\prime}+c d>0$. Solving the equation as above, we obtain that $e^{\prime}>d$ or $e^{\prime}<c$. However, by $c d=d^{\prime} e^{\prime}, 1 \leq d^{\prime} \leq e^{\prime}, 1 \leq c \leq d$, we obtain that $c \leq d^{\prime} \leq e^{\prime} \leq d$ or $d^{\prime} \leq c \leq d \leq e^{\prime}$, which in contradict with $e^{\prime}>d$ or $e^{\prime}<c$. Thus, G and $G_{4}^{\prime} \cup r K_{1}$ are not cospectral.

Case 2. Assume that G and $G_{5}^{\prime} \cup w K_{1}$ are cospectral. Therefore, G and $G_{5}^{\prime} \cup w K_{1}$ have the same vertices and coefficients of their characteristic polynomials. By Lemma 2.4 (iii) and (v), we have

$$
\left\{\begin{array}{l}
3+d^{\prime}+e^{\prime}=3+a+d+e+w \\
3+d^{\prime}+e^{\prime}=3+a+d+e+e d \\
s+d^{\prime}+d^{\prime} e^{\prime}=a+d+e+a d+a e+2 e d+a e d
\end{array}\right.
$$

Solving the equation system as above, we have

$$
\left\{\begin{array}{l}
w=e d \\
d^{\prime} e^{\prime}=a d+a e+e d+a e d \\
d^{\prime}+e^{\prime}=a+d+e+2 e d
\end{array}\right.
$$

By $d^{\prime} e^{\prime}=a d+a e+e d+a e d$, we obtain that $d^{\prime}=(a d+a e+e d+a e d) / e^{\prime}$. Taking $d^{\prime}=(a d+a e+e d+a e d) / e^{\prime}$ into $d^{\prime}+e^{\prime}=a+d+e+2 e d$, we obtain that $e^{\prime 2}-(a+d+e+d e) e^{\prime}+a d+a e+d e+a e d=0$. If $w=e d$ and $e^{\prime 2}-(a+d+e+d e) e^{\prime}+a d+a e+d e+a e d=0$ has positive integer solution are satisfied at the same time, then G and $G_{5}^{\prime} \cup w K_{1}$ are cospectral. On the contrary, G and $G_{5}^{\prime} \cup w K_{1}$ are not cospectral.

Then, assume that $G_{3} o\left(1,1,1, d^{\prime}, e^{\prime}\right)$ and $G_{3} o\left(1,1,1, d^{\prime \prime}, e^{\prime \prime}\right)$ are cospectral and let $d^{\prime \prime}<d^{\prime} \leq e^{\prime}<e^{\prime \prime}$. Therefore, they have the same vertices and coefficients of their characteristic polynomials. By Lemma 2.4 (iii), we have

$$
\left\{\begin{array}{l}
3+d^{\prime}+e^{\prime}=3+d^{\prime \prime}+e^{\prime \prime} \\
d^{\prime}+e^{\prime}+d^{\prime} e^{\prime}=d^{\prime \prime}+e^{\prime \prime}+d^{\prime \prime} e^{\prime \prime}
\end{array}\right.
$$

Solving the equation system as above, we obtain that $d^{\prime}+e^{\prime}=d^{\prime \prime}+e^{\prime \prime}$, $d^{\prime} e^{\prime}=d^{\prime \prime} e^{\prime \prime}$. By $d^{\prime} e^{\prime}=d^{\prime \prime} e^{\prime \prime}$, we have $d^{\prime}=d^{\prime \prime} e^{\prime \prime} / e^{\prime}$. Taking $d^{\prime}=d^{\prime \prime} e^{\prime \prime} / e^{\prime}$ into $d^{\prime}+e^{\prime}=d^{\prime \prime}+e^{\prime \prime}$, we have $e^{\prime 2}-\left(d^{\prime \prime}+e^{\prime \prime}\right) e^{\prime}+d^{\prime \prime} e^{\prime \prime}=0$. Solving the equation as above, we obtain that $e^{\prime}=d^{\prime \prime}$ or $e^{\prime}=e^{\prime \prime}$. If $e^{\prime}=d^{\prime \prime}, d^{\prime}<e^{\prime \prime}$. Then we have $d^{\prime}+e^{\prime}<d^{\prime \prime}+e^{\prime \prime}$, which in contradict with $d^{\prime}+e^{\prime}=d^{\prime \prime}+e^{\prime \prime}$; When $e^{\prime}=e^{\prime \prime}$, $d^{\prime}>d^{\prime \prime}$. Then we have $d^{\prime}+e^{\prime}>d^{\prime \prime}+e^{\prime \prime}$, which in contradict with
$d^{\prime}+e^{\prime}=d^{\prime \prime}+e^{\prime \prime}$. Thus, $G_{3} o\left(1,1,1, d^{\prime}, e^{\prime}\right)$ and $G_{3} o\left(1,1,1, d^{\prime \prime}, e^{\prime \prime}\right)$ are not cospectral.

In conclusion, we obtain that G is $D S$ if and only if $w \neq e d$ or $e^{\prime 2}-(a+d+e+d e) e^{\prime}+a d+a e+d e+a e d=0$ has no positive integer solution.

Figure 2. G and H.

Corollary 4.3. Let $G=G_{3}^{\prime}$ where $a=b=c=1$ in G_{3}^{\prime} and $H=G_{5}^{\prime} \cup k K_{1}$ where $b=c=d=e=f=1$ in G_{5}^{\prime}. They are cospectral if and only if $k=1$ and $e^{\prime 2}-(a+3) e^{\prime}+3 a+1=0$ has positive integer solution, where the graphs G, H are depicted in Figure 2.

Proof. By Theorem 4.2, we can obtain it obviously.

5. Conclusion

In this paper, we give the expressions of the spectral radius and energy of all graphs with rank 4. At the same time, we investigate some graph $G \in N\left(G_{1}, G_{2}, \cdots, G_{9}\right)$ is $D S$ and find some cospectral graphs.

Conflicts of Interest

The author declares that they have no conflicts of interest.

Acknowledgements

This work is supported by the planning project of Qinghai Minzu University (No. 2021XJXS18), the innovation project of Qinghai Minzu University (No. 07M2022001).

References

[1] Li, X., Shi, Y. and Gutman, I. (2012) Graph Energy. Springer, New York. https://doi.org/10.1007/978-1-4614-4220-2
[2] Gutman, I. (2001) The Energy of a Graph: Old and New Results. In: Betten, A., Kohnert, A., Laue, R. and Wassermann, A., Eds., Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 196-211. https://doi.org/10.1007/978-3-642-59448-9 13
[3] Gutman, I., Li, X. and Zhang, J. (2009) Graph Energy. In: Dehmer, M. and Em-mert-Streib, F., Eds., Analysis of Complex Networks, From Biology to Linguistics, Wiley-VCH, Weinheim, 145-174. https://doi.org/10.1002/9783527627981.ch7
[4] Chang, G.J., Huang, L.H. and Yeh, H.G. (2011) A Characterization of Graphs with Rank 4. Linear Algebra and its Applications, 434, 1793-1798. https://doi.org/10.1016/j.laa.2010.09.040
[5] Wu, T., Feng, L. and Ma, H. (2016) On the Characteristic Polynomials of Graphs with Nullity n-4. Acta Scientiarum Naturalium Universitatis Sunyatseni, 55, 57-63.
[6] Monsalve, J. and Rada, J. (2021) External Spectral Radius of Graphs with Rank 4. Linear Algebra and its Applications, 609, 1-11. https://doi.org/10.1016/j.laa.2020.08.017
[7] van Dam, E.R. and Haemers, W.H. (2003) Which Graphs Are Determined by Their Spectrum? Linear Algebra and its Applications, 373, 241-272. https://doi.org/10.1016/S0024-3795(03)00483-X
[8] Bhattacharya, A., Friedland, S. and Peled, U.N. (2008) On the First Eigenvalue of Bipartite Graphs. The Electronic Journal of Combinatorics, 15, 144. https://doi.org/10.37236/868

A Class of New Optimal Ternary Cyclic Codes over $\mathbb{F}_{3^{m}}$ with Minimum Distance 4

Wenwei Qiu
School of Mathematics and Information, China West Normal University, Nanchong, China
Email: 1686789000@qq.com

How to cite this paper: Qiu, W.W. (2023)
A Class of New Optimal Ternary Cyclic Codes over $\mathbb{F}_{3^{m}}$ with Minimum Distance
4. Applied Mathematics, 14, 764-772.
https://doi.org/10.4236/am.2023.1411046

Received: October 29, 2023
Accepted: November 25, 2023
Published: November 28, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

As a branch of applied mathematics, coding theory plays an important role. Among them, cyclic codes have attracted much attention because of their good algebraic structure and easy analysis performance. In this paper, we will study one class of cyclic codes over \mathbb{F}_{3}. Given the length and dimension, we show that it is optimal by proving its minimum distance is equal to 4 , according to the Sphere Packing bound.

Keywords

Cyclic Code, Minimal Distance, Sphere Packing Bound

1. Introduction

Information transmission is an important means of human communication, and with the development of technology, coding theory has also been established. In the information age, cyberspace security is a very important issue, and cryptography and encoding play important roles in it. Coding theory is a technique for encoding information. During the process of transmitting information, it is inevitable that information may be distorted due to some reasons. In this process, information cannot correct errors on its own. Therefore, a self-correcting code space has been studied, which is called the error-correcting-codes.

Among error-correction-codes, linear codes are widely studied due to their excellent algebraic structure and other characteristics, and cyclic codes are the most important among them. Due to their excellent algebraic structure and cyclic properties, they can be easily studied and obtained through algebraic methods, and are widely used in various information security systems.

Let $\mathbb{F}_{p^{m}}$ be a finite field with p^{m} elements, where p is a prime. A linear code \mathcal{C} with parameters $[n, k, d]$ over \mathbb{F}_{p} is a linear subspace of $\mathbb{F}_{p^{m}}^{n}$, which
has the length n, dimension k and minimum Hamming distance d. We say the linear code \mathcal{C} is a cyclic code if for any codewords $c=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in \mathcal{C}$, the cyclic shift of the codeword $\left(c_{n-1}, c_{0}, \cdots, c_{n-2}\right) \in \mathcal{C}$. Now we use the polynomial ring $\mathbb{F}_{p}[x]$ and the quotient ring $\mathbb{F}_{p}[x] /\left(x^{n}-1\right)$ to describe the cyclic code. We define a linear code as a cyclic code if for any codeword $f(x) \in \mathcal{C}$, which can be identified with a polynomial

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1} \in \mathbb{F}_{p}[x] /\left(x^{n}-1\right)
$$

the codeword $x f(x) \in \mathcal{C}$. So we can easily know that an nonempty set \mathcal{C} in \mathbb{F}_{p}^{n} is a cyclic code if and only if \mathcal{C} is a principal ring in \mathbb{F}_{p}^{n}. We denote any cyclic code \mathcal{C} as $\mathcal{C}=\langle g(x)\rangle$, and $g(x)$ is called the generator polynomial of \mathcal{C}.

The study of cyclic codes has been the focus of attention in recent years. Because of its excellent characteristics, it has been widely used in lots of fields. We always hope that a cyclic code has better error correction ability. The error correction ability is closely related to the minimum distance. The larger minimum distance it has, the better error correction ability it gets. Therefore, we are very interested in the minimum distance of a code.

Let $p=3$, we consider the cyclic code $\mathcal{C}_{(u, v)}$ over the finite field \mathbb{F}_{3}. Ding and Helleseth [1] state the theory of the APN monomials and used some of these to construct many classes of optimal ternary cyclic codes in 2013. In 2019, by giving a new ternary power mapping, Yan and Han [2] considered a related optimal ternary cyclic code which $u=1, v=\left(3^{m}-3\right) / 4$ in some conditions. Zha and Hu [3] proved some new classes of optimal ternary cyclic codes with minimum distance 4 for some given parameters $v, u=1$ in 2020. For the given $u=\left(3^{m}+1\right) / 2$, Ding and Zhou [4] studied the cyclic code is optimal when $v=\left(3^{s}+1\right) / 2$ in some conditions. Similarly, Fan, Zhou and Li [5] proved that the cyclic code $\mathcal{C}_{\left(\frac{3^{m}+1}{2}, 2 \cdot 3^{(m-1) / 2}+1\right)}$ is optimal when m is odd in 2016. They also discussed the weight distribution of the dual of this code. In 2020, Liu, Cao and Lu [6] studied the code $\mathcal{C}_{(2, v)}$, which is constructed by using monomials x^{2} and x^{v}. For $v=\left(3^{m}-1\right) / 2+2\left(3^{k}+1\right), \mathcal{C}_{(2, v)}$ is optimal by choosing suitable m and k. Recently, by choosing proper u and v, Zha, Hu, Liu and Cao [7] show that $\mathcal{C}_{\left(\frac{3^{m}+1}{2}, \frac{3^{m}-1}{2}+v\right)}$ and $\mathcal{C}_{(1, v)}$ have the same optimality.

In previous studies, there are not many studies on cyclic codes with parameter $\mathcal{C}_{(u, v)}, \quad u=\frac{3^{m}+1}{2}$. In this paper, we study the cyclic code $\mathcal{C}_{(u, v)}$ with the parameters which is $\mathcal{C}_{\left(\frac{3^{m}+1}{2}, \frac{3^{m+1}+7}{8}\right)}$. We show that the minimum distance of this cyclic code is equal to 4 for the given $n=3^{m}-1$ and $k=3^{m}-1-2 m$, according to the Sphere Packing bound. It is optimal. Therefore, in the coding theory, we can obtain a new class of ternary cyclic codes whose minimum distance can reach the theoretical maximum for the given length and dimension. It can achieve the best
error correction effect and ensure that the information is not distorted as much as possible in the transmission process. These cyclic codes will have important applications in radar, satellite communications and other communication fields.

2. Preliminaries

- The notation we use in this paper
(1) p is prime, and is an odd. Let $p=3$.
(2) s, r, m, k are positive integers, m is odd.
(3) Let $S Q$ be the set of square in $\mathbb{F}_{3^{m}}, N S Q$ be the set of the nonsquare in $\mathbb{F}_{3^{m}}$.
(4) In $\mathbb{F}_{3^{m}}$, we have $\alpha^{\frac{3^{m}+1}{2}}=\alpha$ if $\alpha \in S Q$ and $\alpha^{\frac{3^{m}+1}{2}}=-\alpha$ if $\alpha \in N S Q$.
- The p-cyclotomic cosets modulo $n, n=p^{m}-1$

We define the p-cyclotomic coset modulo n containing j as

$$
C_{j}=\left\{j, p j, p^{2} j, \cdots, p^{k-1} j\right\}
$$

and k is the smallest positive integer such that $p^{k} j \equiv j(\operatorname{modn})$. In this paper, let $p=3$. The cyclic code of length $n=3^{m}-1$. The dimension of this code $\mathcal{C}_{(u, v)}$ is determined by k, where $k=\left|C_{v}\right|$. The dimension of $\mathcal{C}_{(u, v)}$ is equal to $n-(m+k)$. We now consider the case that $v \notin C_{1}$ and $k=m$, so the dimension is equal to $3^{m}-1-2 m$.

Theorem 2.1. [8] (Sphere Packing Bound) $A_{p}(n, d)$ is the maximum number of codewords in a code over \mathbb{F}_{p} of length n and minimum distance at least d, or we use p^{k} to represent it. Then

$$
A_{p}(n, d) \leq \frac{p^{n}}{\sum_{i=0}^{t}\binom{n}{i}(p-1)^{i}}
$$

where $t=[(d-1) / 2]$.
We can see that by using Sphere Packing Bound, we can get a bound of the minimum distance of a cyclic code. Taking the cyclic code to be studied in this paper as an example, let $p=3$, and when $n=3^{m}-1, k=3^{m}-1-2 m$, the minimum distance of this cyclic codes can be obtained no more than 4 . We obtain the upper bound of the minimum distance of this cyclic code. Therefore, we only need to prove that the minimum distance of this cyclic code can reach this upper bound, and it can be shown that it is optimal.

The distance d between two codewords $c, \bar{c} \in \mathcal{C}$ is defined to be the number of coordinates in which c, \bar{c} are different. The minimum distance of a code \mathcal{C} is the smallest distance between distinct codewords. The weight $w t(c)$ of a codeword c is the number of the nonzero coordinates in c. It has $d(c, \bar{c})=w t(c-\bar{c})$ [9]. If \mathcal{C} is a linear code, the minimum distance equal to the minimum weight of the nonzero codewords of \mathcal{C}. The parity check matrices of a code is a matrices H which satisfied

$$
H c^{\mathrm{T}}=0
$$

$c \in \mathcal{C}$. The parity check matrices of a code are the generator matrices of its dual code. From the definition of dual codes, the parity check matrices of the code $\mathcal{C}_{(u, v)}$ is define as

$$
\left(\begin{array}{llll}
\pi^{u} & \pi^{2 u} & \cdots & \pi^{\left(3^{m}-1\right) u} \\
\pi^{v} & \pi^{2 v} & \cdots & \pi^{\left(3^{m}-1\right) v}
\end{array}\right)
$$

π is a generator of $\mathbb{F}_{3^{m}}^{*}$.
If a linear code \mathcal{C} has minimum distance d, there exist two distinct codewords $c, \bar{c} \in \mathcal{C}, H c^{\mathrm{T}}=0, H \bar{c}^{\mathrm{T}}=0$, satisfied

$$
\left\{\begin{array}{l}
\tilde{c}_{1} x_{1}^{u}+\tilde{c}_{2} x_{2}^{u}+\cdots+\tilde{c}_{d} x_{d}^{u}=0 \\
\tilde{c}_{1} x_{1}^{v}+\tilde{c}_{2} x_{2}^{v}+\cdots+\tilde{c}_{d} x_{d}^{v}=0
\end{array}\right.
$$

c_{j}, \bar{c}_{j} is the coordinates of the codeword c, \bar{c}, respectively. $\tilde{c}_{i}=c_{j}-\bar{c}_{j}$, $c_{j} \neq \bar{c}_{j}, \quad x_{i}=\pi^{j}, \quad 1 \leq j \leq 3^{m}-1, \quad i=1,2, \cdots, d$.

If the code has minimum distance d, the equations above has solution, if the code has not minimum distance d, the equations above has not solution. So we can discuss the solution of the equations to find if the code has the codeword of weight d. According to the minimum distance $d \leq 4$ given by the sphere packing bound, we can prove that $d=4$.

Lemma 2.2. Let $u=\left(3^{m}+1\right) / 2$, v be an odd, $v \notin C_{1}$, and $\ell_{v}=\left|C_{v}\right|=m$. Cyclic code $\mathcal{C}_{(u, v)}$ has parameters $\left[3^{m}-1,3^{m}-1-2 m, 4\right]$ if and only if the following equations:

$$
\begin{align*}
& 1+x^{v}= \pm(1+x)^{v} \tag{1}\\
& 1+x^{v}= \pm(1-x)^{v} \tag{2}\\
& x^{v}-1= \pm(1-x)^{v} \tag{3}
\end{align*}
$$

and the equation

$$
\begin{equation*}
x^{v}-1= \pm(1+x)^{v} \tag{4}
\end{equation*}
$$

have no solution in $\mathbb{F}_{3^{m}} \backslash\{0,1\}$.
Proof. It is clear that the distance of the code cannot be 1 . The code $\mathcal{C}_{(u, v)}$ has a codeword of Hamming weight 2 if and only if there exist two elements $c_{1}, c_{2} \in \mathbb{F}_{3}^{*}$ and two distinct elements $x_{1}, x_{2} \in \mathbb{F}_{3^{m}}^{*}$ such that

$$
\left\{\begin{array}{l}
c_{1} x_{1}^{u}+c_{2} x_{2}^{u}=0 \\
c_{1} x_{1}^{v}+c_{2} x_{2}^{v}=0
\end{array}\right.
$$

Case 1: $c_{1}=c_{2}=1$ If $x_{1} \in S Q, x_{2} \in S Q$, the first equation becomes to $x_{1}+x_{2}=0$, which is impossible because x_{1}, x_{2} are all $S Q$. If $x_{1} \in N S Q$, $x_{2} \in N S Q$, the first equation becomes to $x_{1}=-x_{2}$, let $x_{1}=-a^{2}$, then we have $-a^{2}=-x_{2}, a^{2}=x_{2}$ but x_{2} is a $N S Q$, which is also impossible. If $x_{1} \in S Q$, $x_{2} \in N S Q$ or $x_{1} \in N S Q, x_{2} \in S Q$, the first equation becomes to $x_{1}=x_{2}$, which is also a contradiction..

Case 2: $c_{1}=1, c_{2}=-1$ If $x_{1} \in S Q, x_{2} \in S Q$ or $x_{1} \in N S Q, x_{2} \in N S Q$, the first
equation becomes to $x_{1}=x_{2}$, which is a contradiction. If $x_{1} \in S Q, x_{2} \in N S Q$ or $x_{1} \in N S Q, x_{2} \in S Q$, the first equation becomes to $x_{1}=-x_{2}$. Taking it into the second equation we will get $2 x_{1}=0$, which is a contradiction.

Thus it does not have a codeword of Hamming weight 2.
The code $\mathcal{C}_{(u, v)}$ has a codeword of Hamming weight 3 if and only if there exist three elements $c_{1}, c_{2}, c_{3} \in \mathbb{F}_{3}^{*}$ and three distinct elements $x_{1}, x_{2}, x_{3} \in \mathbb{F}_{3^{m}}^{*}$ such that

$$
\left\{\begin{array}{l}
c_{1} x_{1}^{u}+c_{2} x_{2}^{u}+c_{3} x_{3}^{u}=0 \tag{5}\\
c_{1} x_{1}^{v}+c_{2} x_{2}^{v}+c_{3} x_{3}^{v}=0
\end{array}\right.
$$

Case 1: $c_{1}=c_{2}=c_{3}=1$. In this case, let $y_{1}=x_{2} / x_{1}, y_{2}=x_{3} / x_{1}$. It follows from (5) that

$$
\left\{\begin{array}{l}
y_{1}^{u}+y_{2}^{u}+1=0 \tag{6}\\
y_{1}^{v}+y_{2}^{v}+1=0
\end{array}\right.
$$

$y_{1}, y_{2} \notin\{0,1\}$. If $y_{1}, y_{2} \in S Q$ or $y_{1} \in S Q, y_{2} \in N S Q$, (6) becomes to

$$
y_{1}^{v}+1= \pm\left(1+y_{1}\right)^{v}
$$

If $y_{1}, y_{2} \in N S Q$ or $y_{1} \in N S Q, y_{2} \in S Q$, (6) becomes to

$$
y_{1}^{v}+1= \pm\left(1-y_{1}\right)^{v}
$$

Case 2: $\quad c_{1}=c_{2}=1, c_{3}=-1$. Similarly, we arrive at

$$
\left\{\begin{array}{l}
y_{1}^{u}+y_{2}^{u}-1=0 \tag{7}\\
y_{1}^{v}+y_{2}^{v}-1=0
\end{array}\right.
$$

$y_{1}, y_{2} \notin\{0,1\}$. If $y_{1}, y_{2} \in S Q$ or $y_{1} \in S Q, y_{2} \in N S Q$, (7) becomes to

$$
y_{1}^{v}-1= \pm\left(1-y_{1}\right)^{v}
$$

If $y_{1}, y_{2} \in N S Q$ or $y_{1} \in N S Q, y_{2} \in S Q$, (7) becomes to

$$
y_{1}^{v}-1= \pm\left(1+y_{1}\right)^{v}
$$

So if the four equations have no solutions in $\mathbb{F}_{3^{m}}^{*}$, we get $d \geq 4$, according to the Sphere Packing bound, the minimal distance of any linear code with length $3^{m}-1$ and the dimension $3^{m}-1-2 m$ should be less than or equal 4 . Hence $d=4$.

The following Lemma will be used in the sequel of the proof.
Lemma 2.3. [10] Let $f(x)$ be a irreducible polynomial with degree r over \mathbb{F}_{p}. If $f(x)$ has a root in $\mathbb{F}_{p^{m}}$, then $r \mid m$.

3. A Class of Optimal Ternary Cyclic Codes

In this section, we construct a class of optimal ternary cyclic codes $\mathcal{C}_{(u, v)}$ with parameters $\left[3^{m}-1,3^{m}-1-2 m, 4\right]$.

Theorem 3.1. Let m is odd, $m \geq 3, \quad u=\left(3^{m}+1\right) / 2, \quad v=\left(3^{m+1}+7\right) / 8$.
$m \equiv 3(\bmod 4), 9 \nmid m, 5 \nmid m$. The cyclic code $\mathcal{C}_{(u, v)}$ is an optimal ternary cyclic code with parameters $\left[3^{m}-1,3^{m}-1-2 m, 4\right]$.

Proof. It is easy to prove that the minimal distance of the code $d \geq 2$. By lemma 2.2 we can know that it does not have a codeword of Hamming weight 2, which means $d \geq 3$. Now we prove that the minimal distance of the code $d=4$.

Now, we prove that the code has no codewords of Hamming weight 3. It has a codeword of Hamming weight 3 if and only if there exist three elements $c_{1}, c_{2}, c_{3} \in \mathbb{F}_{3}^{*}$ and three distinct elements $x_{1}, x_{2}, x_{3} \in \mathbb{F}_{3^{m}}^{*}$ such that

$$
\left\{\begin{array}{l}
c_{1} x_{1}^{u}+c_{2} x_{2}^{u}+c_{3} x_{3}^{u}=0 \tag{8}\\
c_{1} x_{1}^{v}+c_{2} x_{2}^{v}+c_{3} x_{3}^{v}=0
\end{array}\right.
$$

Case 1: $c_{1}=c_{2}=c_{3}=1$. In this case, let $y_{1}=x_{2} / x_{1}, y_{2}=x_{3} / x_{1}$ It follows from (8) that

$$
\begin{gather*}
\left\{\begin{array}{l}
y_{1}^{u}+y_{2}^{u}+1=0 \\
y_{1}^{v}+y_{2}^{v}+1=0
\end{array}\right. \tag{9}\\
y_{1}, y_{2} \notin\{0,1\} .
\end{gather*}
$$

Now we consider the following four cases.
Case 1.1: When $y_{1}, y_{2} \in S Q$, (9) follows to

$$
\left\{\begin{array}{l}
y_{1}+y_{2}+1=0 \tag{10}\\
y_{1}^{v}+y_{2}^{v}+1=0
\end{array}\right.
$$

The Equation (10) leads to

$$
1+y_{1}^{v}=\left(1+y_{1}\right)^{v}
$$

Let $y_{1}=a^{2}$, Then we have

$$
1+a^{\frac{3^{m+1}+7}{4}}=\left(1+a^{2}\right)^{\frac{3^{m+1}+7}{8}}
$$

By taking the eight power of both sides of the equation, we can get

$$
\left(1+a^{\frac{3^{m+1}+7}{4}}\right)^{8}=\left(1+a^{2}\right)^{3^{m+1}+7}
$$

If $a \in S Q$, let $a=t^{2}$, and if t also $\in S Q$, we have

$$
\left(1+t^{4}\right)^{3^{m+1}+7}=\left(1+t^{\frac{3^{m+1}+7}{2}}\right)^{8}
$$

It becomes to

$$
\left(1+t^{4}\right)^{10}=\left(1+t^{5}\right)^{8}
$$

Expand it, we can get

$$
t^{36}+t^{35}+2 t^{30}+t^{25}+2 t^{20}+t^{15}+2 t^{10}+t^{5}+t^{4}=0
$$

Because $t \neq 0$, we have

$$
t^{32}+t^{31}+2 t^{26}+t^{21}+2 t^{16}+t^{11}+2 t^{6}+t+1=0
$$

It can be factorized over \mathbb{F}_{3} by Magma to

$$
\begin{aligned}
& (t-1)^{2}\left(t^{2}+1\right)\left(t^{5}-t^{2}+t+1\right)\left(t^{5}+t^{4}-t^{3}+1\right)\left(t^{9}-t^{6}+t^{4}+t^{3}+t-1\right) \\
& \times\left(t^{9}-t^{8}-t^{6}-t^{5}+t^{3}-1\right)=0
\end{aligned}
$$

if $t=1$, it means $y_{1}=1$, is impossible, and by lemma 2.3, we get it has no root in $\mathbb{F}_{3^{m}} \backslash\{0,1\}$.

If $a \in S Q$, let $a=t^{2}$, and if $t \in N S Q$, we have

$$
\left(1+t^{4}\right)^{10}=\left(1-t^{5}\right)^{8}
$$

By following the same steps, we get

$$
t^{32}-t^{31}-t^{26}-t^{21}-t^{16}-t^{11}-t^{6}-t+1=0
$$

It can be factorized over \mathbb{F}_{3} by Magma to

$$
\begin{aligned}
& (t+1)^{2}\left(t^{2}+1\right)\left(t^{5}+t^{2}+t-1\right)\left(t^{5}-t^{4}-t^{3}-1\right)\left(t^{9}+t^{6}-t^{4}+t^{3}+t+1\right) \\
& \times\left(t^{9}+t^{8}+t^{6}-t^{5}+t^{3}+1\right)=0
\end{aligned}
$$

By the same reason, it has no root in $\mathbb{F}_{3^{m}} \backslash\{0,1\}$.
If $a \in N S Q, a=-t^{2}$ and $t \in S Q$ or $t \in N S Q$, it is similar to the above case, we omit it here.

Case 1.2: When $y_{1} \in N S Q, y_{2} \in N S Q$, (8) follows to

$$
\left\{\begin{array}{l}
y_{1}+y_{2}+1=0 \tag{11}\\
y_{1}^{v}+y_{2}^{v}+1=0
\end{array}\right.
$$

The Equation (11) leads to

$$
1+y_{1}^{v}=-\left(1-y_{1}\right)^{v}
$$

Let $y_{1}=-a^{2}$, Then we have

$$
1-a^{\frac{3^{m+1}+7}{4}}=-\left(1+a^{2}\right)^{\frac{3^{m+1}+7}{8}}
$$

By taking the eight power of both sides of the equation, we can get

If $a \in S Q$, let $a=t^{2}$, and if t also $\in S Q$, by the similar steps, we directly obtain

$$
\left(1+t^{4}\right)^{10}=\left(1-t^{5}\right)^{8}
$$

As before, with the help of Magma, we get the same equation

$$
\begin{aligned}
& (t+1)^{2}\left(t^{2}+1\right)\left(t^{5}+t^{2}+t-1\right)\left(t^{5}-t^{4}-t^{3}-1\right)\left(t^{9}+t^{6}-t^{4}+t^{3}+t+1\right) \\
& \times\left(t^{9}+t^{8}+t^{6}-t^{5}+t^{3}+1\right)=0
\end{aligned}
$$

if $t=-1$, it means $y_{1}=-1$, but $y_{1}=-1$ is not the solution of $1+y_{1}^{v}=-\left(1-y_{1}\right)^{v}$, and by lemma 2.3, we get it has no root in $\mathbb{F}_{3^{m}} \backslash\{0,1\}$

If $a \in S Q$, let $a=t^{2}$, and if $t \in N S Q$, we have

$$
\left(1+t^{4}\right)^{10}=\left(1+t^{5}\right)^{8}
$$

By following the same steps, we get

$$
\begin{aligned}
& (t-1)^{2}\left(t^{2}+1\right)\left(t^{5}-t^{2}+t+1\right)\left(t^{5}+t^{4}-t^{3}+1\right)\left(t^{9}-t^{6}+t^{4}+t^{3}+t-1\right) \\
& \times\left(t^{9}-t^{8}-t^{6}-t^{5}+t^{3}-1\right)=0
\end{aligned}
$$

By the same reason as before, it has no root in $\mathbb{F}_{3^{m}} \backslash\{0,1\}$.
If $a \in N S Q, a=-t^{2}$ and $t \in S Q$ or $t \in N S Q$, it is similar to the above case, we omit it here.

Case 1.3: When $y_{1} \in N S Q, y_{2} \in S Q$. It is similar as before, we omit it here.
Case 1.4: When $y_{1} \in S Q, y_{2} \in N S Q$. It is similar as before, we omit it here.
Case 2: $c_{1}=c_{2}=1, c_{3}=-1$. By the similar calculation as Case 1, we can prove that the equation

$$
\left\{\begin{array}{l}
y_{1}^{u}+y_{2}^{u}-1=0 \tag{12}\\
y_{1}^{v}+y_{2}^{v}-1=0
\end{array}\right.
$$

also has no solution in $\mathbb{F}_{3^{m}} \backslash\{0,1\}$. We omit the details of the proof.
By the Lemma 2.2, we have finished the proof.

Example

Let $m=3, \quad u=\left(3^{m}+1\right) / 2, \quad v=\left(3^{m+1}+7\right) / 8$. Let α be the generator of $\mathbb{F}_{3^{m}}^{*}$ with $\alpha^{3}+2 \alpha+1=0$. Then $\mathcal{C}_{(u, v)}$ is a ternary cyclic code with parameters [26, 20, 4] and generator polynomial $x^{6}+x^{5}+x^{4}+2 x^{3}+2$.

4. Conclusions

In this paper, based on the Sphere Packing Bound, we show that for the fixed length and dimension, with the help of factorization by Magma, by discussing the solutions of some correlative equations on $\mathbb{F}_{3^{m}}$, the ternary cyclic code $\mathcal{C}_{\left(\frac{3^{m}+1}{2}, \frac{3^{m+1}+7}{8}\right)}$ has the minimum distance 4 , according to the Sphere Packing bound. It is optimal.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Ding, C.S. and Helleseth, T. (2013) Optimal Ternary Cyclic Codes from Monomials. IEEE Transactions on Information Theory, 59, 5898-5904. https://doi.org/10.1109/TIT.2013.2260795
[2] Han, D.C. and Yan, H.D. (2019) On an Open Problem about a Class of Optimal Ternary Cyclic Codes. Finite Fields and Their Applications, 59, 335-343. https://doi.org/10.1016/j.ffa.2019.07.002
[3] Zha, Z.B. and Hu, L. (2020) New Classes of Optimal Ternary Cyclic Codes with Minimum Distance Four. Finite Fields and Their Applications, 64, Article ID: 101671.
https://doi.org/10.1016/j.ffa.2020.101671
[4] Zhou, Z.C. and Ding, C.S. (2014) A Class of Three-Weight Cyclic Codes. Finite Fields and Their Applications, 25, 79-93. https://doi.org/10.1016/j.ffa.2013.08.005
[5] Fan, C.L., Li, N. and Zhou, Z.C. (2016) A Class of Optimal Ternary Cyclic Codes and Their Duals. Finite Fields and Their Applications, 37, 193-202. https://doi.org/10.1016/j.ffa.2015.10.004
[6] Liu, Y., Cao, X.W. and Lu, W. (2021) Two Classes of New Optimal Ternary Cyclic Codes. Advances in Mathematics of Communications, 17, 979-993. https://doi.org/10.3934/amc. 2021033
[7] Zha, Z.B., Hu, L., Liu, Y. and Cao, X.W. (2021) Further Results on Optimal Ternary Cyclic Codes. Finite Fields and Their Applications, 75, Article ID: 101898. https://doi.org/10.1016/j.ffa.2021.101898
[8] Huffman, W.C. and Pless, V. (2010) Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge.
[9] Van Lint, J.H. (1998) Coding Theory. Elsevier, Netherlands, 773-807.
[10] Lidl, R. and Niederreiter, H. (1997) Finite Fields. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511525926

Applied Mathematics (AM)

ISSN Print: 2152-7385 ISSN Online: 2152-7393 https://www.scirp.org/journal/am

Applied Mathematics (AM) is an international journal dedicated to the latest advancements in applied mathematics. The goal of this journal is to provide a platform for scientists and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of applied mathematics.

Subject Coverage

All manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online followed by printed hard copy. The journal publishes original papers including but not limited to the following fields:

- Applied Probability
- Applied Statistics
- Approximation Theory
- Chaos Theory
- Combinatorics
- Complexity Theory
- Computability Theory
- Computational Methods in Mechanics and Physics
- Continuum Mechanics
- Control Theory
- Cryptography
- Discrete Geometry
- Dynamical Systems
- Elastodynamics
- Evolutionary Computation
- Financial Mathematics
- Fuzzy Logic
- Game Theory
- Graph Theory
- Information Theory
- Inverse Problems
- Linear Programming
- Mathematical Biology
- Mathematical Chemistry
- Mathematical Economics
- Mathematical Physics
- Mathematical Psychology
- Mathematical Sociology
- Matrix Computations
- Neural Networks
- Nonlinear Processes in Physics
- Numerical Analysis
- Operations Research
- Optimal Control
- Optimization
- Ordinary Differential Equations
- Partial Differential Equations
- Probability Theory
- Statistical Finance
- Stochastic Processes
- Theoretical Statistics

We are also interested in: 1) Short Reports-2-5 page papers where an author can either present an idea with theoretical background but has not yet completed the research needed for a complete paper or preliminary data; 2) Book Reviews-Comments and critiques.

Notes for Intending Authors

Submitted papers should not have been previously published nor be currently under consideration for publication elsewhere. Paper submission will be handled electronically through the website. All papers are refereed through a peer review process. For more details about the submissions, please access the website.

Website and E-mail

What is SCIRP?

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

What is Open Access?

All original research papers published by SCIRP are made freely and permanently accessible online immediately upon publication. To be able to provide open access journals, SCIRP defrays operation costs from authors and subscription charges only for its printed version. Open access publishing allows an immediate, worldwide, barrier-free, open access to the full text of research papers, which is in the best interests of the scientific community.

- High visibility for maximum global exposure with open access publishing model
- Rigorous peer review of research papers
- Prompt faster publication with less cost
- Guaranteed targeted, multidisciplinary audience

