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Abstract 
In this research, we explore the properties and applications of the mapping 
cone and its variant, the pinched mapping cone. The mapping cone is a con-
struction that arises naturally in algebraic topology and is used to study the 
homotopy type of spaces. It has several key properties, including its homoto-
py equivalence to the cofiber of a continuous map, and its ability to compute 
homotopy groups using the long exact sequence associated with the cofiber. 
We also provide an overview of the properties and applications of the map-
ping cone and the pinched mapping cone in algebraic topology. This work 
highlights the importance of these constructions in the study of homotopy 
theory and the calculation of homotopy groups. The study also points to the 
potential for further research in this area which includes the study of higher 
homotopy groups and the applications of these constructions to other areas 
of mathematics. 
 

Keywords 
Complex, Tensor Product, Pinched Tensor Product, Mapping Cone,  
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1. Introduction 

The mapping cone is a construction used in algebraic topology and homological 
algebra to study maps between two topological spaces or algebraic objects. Let S, 
T, be two topological spaces and let :f S T→  be a continuous map from S to 
T. The mapping cone associated with f is a new space that captures information 
about the failure of f to be a homotopy equivalence.  

Intuitively, the mapping cone is constructed by taking a cylinder [ ]0,1S ×  
and gluing one end to the image of S under f and the other end to a single point. 
The resulting space has a cone-like shape and encodes information about the 
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twisting or winding of the map f. 
In recent years, the mapping cone is used in algebraic topology to define the 

cone of a chain complex, which in turn is used to define the homology groups of 
a space. In homological algebra, the mapping cone is used to construct long ex-
act sequences that relate the homology groups of two spaces connected by a map. 
Also it has been used for some discrete problems [1] and by bearing cone to es-
timate gazes in geological aspect of its applications [2]. 

Algebraic topology was significantly advanced by the work of German ma-
thematician Tammo tom Dieck [3]. His research had a profound impact on ho-
motopy theory, particularly in stable homotopy theory and its applications. In [4] 
Dieck’s contributions encompassed work on the stable homotopy groups of 
spheres, surgery theory, and various other topics within algebraic topology. His 
research has greatly influenced the field, inspiring subsequent generations of 
mathematicians to explore these foundational ideas further. 

Geometrically, the mapping cone of f can be visualized as the space obtained 
by gluing the cone over S to T via f. The chain complex ( )C f  plays a pertinent 
role in algebraic topology, of note is its role in the study of spectral sequences 
and the long exact sequence of homology groups associated to a short exact se-
quence of chain complexes. 

The pinched mapping cone of f has several important properties. First, it is 
homotopy equivalent to the suspension of the mapping cone ( )C f . This fol-
lows from the fact that the suspension of ( )C f  is obtained by attaching two 
cones to its base, and the pinched mapping cone identifies the basepoints of 
these cones. 

Second, the homotopy groups of the pinched mapping cone can be computed 
using the long exact sequence in homotopy associated with the mapping cone. 
This sequence relates the homotopy groups of S, T, and ( )C f , and can be used 
to compute the homotopy groups of Z. 

Third, the pinched mapping cone is used in the proof of the Freudenthal sus-
pension theorem, which relates the stable homotopy groups of spheres to the 
homotopy groups of suspensions of spheres. The pinched mapping cone is used 
to construct a sequence of maps that are used to show that the stable homotopy 
groups of spheres stabilize at a certain point. 

For more details you may see in [5] [6] and [7].  

2. Basic Setup 

It is assumed in this paper that E, F, S, and T are complexes of R-modules, with 
R being an associative ring. We will see most of the definitions and results of this 
section in [8] [9] and [10].  

Definition 2.1. A chain complex S of R-modules is a sequence of R-module 
homomorphisms,  

1

1 1:
S S
n n

n n nS S S S
+∂ ∂

+ −→ → → →   

such that 1 kerS S
n nIm +∂ ⊆ ∂  for all n. Equivalently 1 0S S

n n+∂ ∂ = , for all n. The maps 
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n∂  are called the differentials of S. 
Definition 2.2. Given a complex S of R-modules  

 
1

1 1:
S S
n n

n n nS S S S
+∂ ∂

+ −→ → → →   

We say that it is exact at Sn if 1 kerS S
n nIm +∂ = ∂ . Moreover, we say S is an exact 

sequence if 1 kerS S
n nIm +∂ = ∂  for all n. 

Definition 2.3. A morphism, or a degree zero chain map, :f S T→  be-
tween complexes S and T is a family of R-module homomorphisms nf , such 
that each square in the diagram  

 
commutes. In other words, for each n we have 1

S T
n n n nf f− ∂ = ∂ . 

Also, if :n n nf S T→  is an isomorphism for all n, then, S and T are said to be 
isomorphic, denoted by ≅ . 

Definition 2.4. Let E be a complex of R-modules. Then the Shift of E, EΣ  is 
complex of R-modules defined by ( ) 1nn

E E −Σ = , and 1
2 1 1

E E
n n n nσ σΣ −

− − −∂ = − ∂  for 
all n. Also, the canonical map : E Eσ →Σ , is obtained by shifting degrees of 
elements, specifically, if e E∈ . Then, ( ) 1e eσ = + . 

On the other hand, Lars Christensen and David Jorgensen unveiled in 2014 a 
variant of the tensor product of complexes in their paper [11] known as the pinched 
tensor product. We recall some essential definitions and recommendations. 

Definition 2.5. Let S and T a complexes of R-modules. The tensor product 

RS T⊗  of S and T is specified by letting  

( ) .R i R n in
i

S T S T −
∈

⊗ = ⊗



 

The differential is defined by,  

 ( ) ( ) ( ) ( )1 .R iS T S T
n i n is t s t s t⊗

−∂ ⊗ = ∂ ⊗ + − ⊗∂  

For is S∈  and n it T −∈ . The sign ( )1 i−  ensures that 1 0R RS T S T
n n
⊗ ⊗

+∂ ∂ =  for all n. 
Definition 2.6. Let S and T be complexes of R-modules. We define the 

pinched tensor product RS T⊗  of S and T by:  

 ( )
( )

( )( )
0 0

1 0

for 0

for 1.

R n
R n

R n

S T n
S T

S T n

≥ ≥

≤− ≤

 ⊗ ≥⊗ = 
⊗ Σ ≤ −

  

With differential RS T⊗∂


 defined by,  

 ( )
( )

0 0

1 0

0 0

for 1

for 0

for 1,

R

R

R

S T
n

S T S T
n R

S T
n

n

n

n

σ

≥ ≥

≤− ≤

⊗

⊗

⊗ Σ

∂ ≥
∂ = ∂ ⊗ ∂ =

∂ ≤ −



 

where σ  denotes the canonical map T T→Σ .  
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For more details you may see [11] [12] and [13]. 

3. Mapping Cone 

Definition 3.1. Let A, B, S and T be complexes, and let :f S T→  and  
:g A B→  be chain maps. Then for i n is a S A −⊗ ∈ ⊗  we have  

( )( ) ( ) ( ) ( )1 s g
i n if g s a f s g a−⊗ ⊗ = − ⊗ . 

Definition 3.2. If :f S T→  is a chain map, then its mapping cone,  
( )cone f , is a complex of R-modules whose term of degree n is  
( ) ( )cone nn n

f S T= Σ ⊕  and whose differentials ( ) ( ) 1
: cone conen n n

f f
−

∂ →  is 
given by  

( )cone
1

1 1

0
.

S
f n

n T
n n nf σ

Σ

−
− −

 ∂
∂ =  

∂ 
 

A straightforward computation shows that ( ) ( )cone cone
1 0f f

n n−∂ ∂ = : 

( ) ( )cone cone 1
1 1 1

2 2 1 1 1

1
1 1

2 2 1 1 1 1

0 0

0 00
.

0 0

S S
f f n n

n n T T
n n n n n n

S S
n n
S T T T

n n n n n n n n

f f

f f

σ σ

σ σ

Σ Σ
−

− − −
− − − − −

Σ Σ
−

− Σ −
− − − − − −

   ∂ ∂
∂ ∂ =    

∂ ∂   
 ∂ ∂  

= =   ∂ + ∂ ∂ ∂   

 

Since we know that f is a morphism and 1
2 1 1

S S
n n n nσ σΣ −

− − −∂ = − ∂ . 
Theorem 3.3. Let A be an R-complex and :f S T→  be a morphism of 

complexes of R-modules. Then,  

( ) ( )cone cone .R RA f A f⊗ ≅ ⊗  

Proof: The proof is well-known. (Proposition 4.1.12 in [14].)            □ 

4. Main Results 

In the following section, we will present the main theorem applied in the special 
case of the pinched mapping cone and we provide the detailed proof of it. 

Theorem 4.1. Let A be an R-complex and :f S T→  be a morphism of 
complexes of R-modules. Then, there exist a morphism from ( )coneRA f⊗  to 

( )cone RA h⊗ . Where, n nh f=  when 1n ≥ −  and n nh f= −  when 1n < −   
Proof: We consider three cases: 0n = , 1n ≥  and 1n ≤ − . 

0n = : 
In this case the diagram is  

 
Define ( )( ) ( )( ) ( )( )0 1 0, ,RA S Aa s t a s a tτ σ ⊗

−⊗ = ∂ ⊗ ⊗


 and  
( ) ( )( ) ( ) ( )( )( )cone

1 1 2 1, ,Rf A S Ta s t a t a tτ σ σ σ⊗
− − − −⊗ = ⊗ ⊗



. Choose an element  
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( )( ) ( )( )0 00
, Ra s t A S T⊗ ∈ ⊗ Σ ⊕ . Then,  

( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( )( )
( )( )( ) ( ) ( )( ) ( )

( ) ( )( )( )

cone
0 0

cone
0 1 0

0 1 0

1

1 1 1 0 00

1

2 1 1 1 0

,

,

,

,

R

R R

R

R R

R R R

A f

A f A S A

A S A S A

A S A S A A T
R

A S A S A SA S A

a s t

a s a t

a s

A f a s a t

a s

τ

σ

σ

σ σ

σ σ σ

⊗

⊗ ⊗
−

Σ ⊗ ⊗
−

−
⊗ ⊗ ⊗

− − −

−
⊗ ⊗ ⊗⊗

− − − −

∂ ⊗

= ∂ ∂ ⊗ ⊗

= ∂ ∂ ⊗
⊗ Σ ∂ ⊗ + ∂ ⊗ 

= − ∂ ∂ ⊗











  

  

 

( )( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 0 0 1 00

2 1 0 0 0 1 00

2 1 0 0 1

0 0 1 00

2 0 1 0 0 1 00

,

1 ,

, .

R

R

R

A A T T
R

A S A S A A A T T
R

A S A A A S

A A T T
R

A S A S A A T T
R

A f a s a t

a s a f s a t

a s a s

a f s a t

a s a f s a t

σ

σ σ

σ

σ

σ σ

− −

⊗ ⊗
− − −

⊗ Σ
− − −

−

⊗ Σ
− − −

⊗ Σ ∂ ⊗ + ∂ ⊗ ∂ 
 = − ∂ ∂ ⊗ ∂ ⊗ Σ + ∂ ⊗ ∂ 
= − ∂ ∂ ⊗ + − ∂ ⊗∂

∂ ⊗ Σ + ∂ ⊗ ∂ 
 = ∂ ⊗∂ ∂ ⊗ Σ + ∂ ⊗ ∂ 

 





 

And 
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

cone
1 0

Cone
1 0 0

1

1 0 1 1 1 0

1

2 0 1 0 1 1 1 0

,

,

,

, .

R

R

A f

fA

A S S T

A S A S A T S T
R

a s t

a s t

a s f s t

a s a f s t

τ

τ

τ σ

σ σ σ

⊗
−

−

−Σ
− − − −

−⊗ Σ
− − − − −

∂ ⊗

 = ∂ ⊗∂ 
 = ∂ ⊗ ∂ + ∂  

 = ∂ ⊗∂ ∂ ⊗ + ∂  





 

Clear that ( ) ( ) ( ) ( )
1

1 1 10
T Sf s f sσ σ

−

− − −Σ =  since the following diagram commutes  

 
Therefore, ( ) ( )cone cone

0 0 1 0
R R

A f A fτ τ
⊗ ⊗

−∂ = ∂




, which is what we wanted to show. 
1n ≥ : 

In this case the diagram is  
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Define ( )( ) ( )( ) ( )( )1
1, ,RA S

n n ia s t a s a tτ σ σ⊗ −
−⊗ = ⊗ ⊗


. We have two subcases 
0i =  and 1i ≥  

0i = : 
Choose an element ( )( ) ( )( )00

, n Ra s t A S T⊗ ∈ ⊗ Σ ⊕ . Then,  

( ) ( )( )
( ) ( )( )

( )

( ) ( ) ( )

cone

cone

0

,

1 .

R

R

A f
n n

A f
n

A T
n

nA T
n

a s t

a t

a t

a t a t

τ
⊗

⊗

⊗

∂ ⊗

= ∂ ⊗

 = ∂ ⊗ 
 = ∂ ⊗ + − ⊗∂ 







 

And  
( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

cone
1

cone
1 0

1

1 0 1 1 0

0

,

, 1 ,

, 1 ,

1 .

RA f
n n

n fA
n n

nA S S T
n n

nA T
n

a s t

a s t a s t

a s t a s f s t

a t a t

τ

τ

τ σ

⊗
−

−

−Σ
− − −

∂ ⊗

 = ∂ ⊗ + − ⊗∂ 
 = ∂ ⊗ + − ⊗ ∂ + ∂  

 = ∂ ⊗ + − ⊗∂ 



 

0i ≥ : 
Choose an element ( )( ) ( )( ), n i R ii

a s t A S T−⊗ ∈ ⊗ Σ ⊕ . Then,  

 

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )

( ) ( )

cone

1cone
1

1

1

1 1

1 1

1 1

2 1 1 1

,

,

,

R

R R

R

R R

R R R

A f
n n

A f A S S
n n i

A S A S S
n n i

n
A S A S S A T

n i R i n n i n

A S A S A SA S S
n n n n i

a s t

a s a t

a s

A f a s a t

a

τ

σ σ

σ σ

σ σ σ

σ σ σ σ

⊗

−⊗ ⊗
−

−Σ ⊗ ⊗
−

− −⊗ ⊗ ⊗
− − −

− −⊗ ⊗ ⊗⊗
− − − −

∂ ⊗

 = ∂ ⊗ ⊗ 
 

  = ∂ ⊗   
⊗ ⊗ + ∂ ⊗ 

= − ∂ ⊗











  

   ( )( ) ,s     

 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

1

1

2 1

1

1 1

2 1 1

1

1

,

1

1 ,

1 .

R

R

n iS A T
n i R i i n i i

A S A S S
n n i

n iS A T
R i i n i i

n iA S A S S S
n n i i i i

n iS A T
R i i n i i

A f a s a t a t

a s

a f s a t a t

a s a s

a f s a t a t

σ

σ σ

σ

σ σ σ

σ

− −
− −

−⊗ ⊗
− −

− −
−

− −−⊗
− − − −

− −
−

⊗ ⊗ + ∂ ⊗ + − ⊗∂ 
= − ∂ ⊗

⊗ + ∂ ⊗ + − ⊗∂ 
= − ∂ ⊗ + − ⊗∂

⊗ + ∂ ⊗ + − ⊗∂ 

 



 

And 
( ) ( )( )
( ) ( ) ( ) ( ) ( )

cone
1

cone
1

,

, 1 ,

RA f
n n

n i fA
n n i i

a s t

a s t a s t

τ

τ

⊗
−

−
− −

∂ ⊗

 = ∂ ⊗ + − ⊗∂ 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

1

1 1 1

1 1

2 1

1

1 1

, 1 ,

1 ,

1 .

R

n iA S S T
n n i i i i i

n iA S A S S S
n n i i i i

n iS A T
i i n i i

a s t a s f s t

a s a s

a f s a t a t

τ σ

σ σ σ

σ

−− Σ
− − − −

− −−⊗ Σ
− − −

− −
− − −

 = ∂ ⊗ + − ⊗ ∂ + ∂  
= − ∂ ⊗ + − ⊗ ∂

⊗ + ∂ ⊗ + − ⊗∂ 



 

Therefore, ( ) ( )cone cone
1

R R
A f A f

n n n nτ τ
⊗ ⊗

−∂ = ∂




, which is what we wanted to show. 
1n ≤ − : 

In this case the diagram is  

 
Define ( ) ( )( ) ( )( ) ( )( )( )cone 1

1, ,Rf A S T
n n n i ia s t a s a tτ σ σ σ σ⊗ −

−⊗ = ⊗ ⊗


 and choose 
an element ( )( ) ( )( )11

, i R n in i
a s t A S T − −− −
⊗ ∈ ⊗ Σ ⊕ . Then,  

( ) ( ) ( )( )
( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( ) ( )

( )( )

( ) ( )( ) ( )

cone cone

cone 1
1

1

1 1 11

1

2 1 1 1

,

,

,

,

R

R R

R R R

R R R

A f f
n n n

A f A S T
n n i i

nA S A S A S A S
n n i R n nn i

A T T
n i

n
A S A S A SA S
n n n n i R

a s t

a s a t

a s A f a s

a t

a s A f

τ σ

σ σ σ

σ σ σ

σ

σ σ σ

⊗

⊗ ⊗ −
−

−Σ ⊗ ⊗ ⊗ ⊗
− − −− −

⊗

−
⊗ ⊗ ⊗⊗
− − − −

∂ ⊗

= ∂ ⊗ ⊗

= ∂ ⊗ ⊗ Σ ⊗
+ ∂ ⊗ 

= − ∂ ⊗ ⊗ Σ









  



   ( )( )1n i a s
− −

⊗

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 1 1

2 1 1

1

,

1

1 ,

1 .

R

R

iA T T T
i i n i i

A S A S
n n R n i

iA T S T
i i n i i

iA S A S
n i n i R n i

iA T T T
i i n i i

a t a t

a s a f s

a t a t

a s a s a f s

a t a t

σ σ

σ

σ σ

σ

σ σ

Σ
−

⊗ ⊗
− − − −

Σ
−

⊗ Σ
− − − − −

Σ
−

+ ∂ ⊗ + − ⊗∂ 
= − ∂ ⊗ ⊗ Σ

+ ∂ ⊗ + − ⊗∂ 
= − ∂ ⊗ + − ⊗∂ ⊗ Σ

+ ∂ ⊗ + − ⊗∂ 

 



 

And  

 

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

cone
1

cone
1

1

1 11

1

2

1

,

, 1 ,

, 1 ,

1 , 1

.

R

R

A f
n n

i fA
n i n i

iA S S T
n i n i n i n in i

i iA S A S S
n i n i n in i

A T T T
i i n i n i

a s t

a s t a s t

a s t a s f s t

a s a s a f s

a t t

τ

τ

τ σ

σ σ

σ σ

⊗
−

− −

−Σ
− − − − −− −

−⊗ Σ
− − −−

− − −

∂ ⊗

 = ∂ ⊗ + − ⊗∂ 
 = ∂ ⊗ + − ⊗ ∂ Σ + ∂  

= − ∂ ⊗ + − ⊗∂ − ⊗ Σ
+ ∂ ⊗ + ∂ 
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Therefore, ( ) ( )cone cone
1

R R
A f A f

n n n nτ τ
⊗ ⊗

−∂ = ∂




, which is what we wanted to show. □ 
Remark 4.2. In Theorem 4.1 we note that we will not have an isomorphism 

between ( )coneRA f⊗  and ( )cone RA f⊗  because ( )( )coneR n
C f⊗  has 

one more term than ( )( )cone R n
A f⊗  for 0n >  and vice versa for 0n < . 

Theorem 4.3. Let A be an R-complex and :f S T→  be a morphism of 
complexes of R-modules. Then there exist a morphism from ( )cone RA f⊗  to 

( )coneRA f⊗ . 
Proof: The proof is similar to that of Theorem 4.1.                     □ 

5. Conclusion 

To conclude, the mapping cone stands as a potent instrument within algebraic 
topology, boasting myriad vital applications. Its inherent properties facilitate the 
establishment of intriguing connections among homotopy groups of spaces, 
playing a pivotal role in substantiating numerous key theorems. The mapping 
cone’s versatility extends its utility across a wide array of subjects, spanning from 
homotopy groups to fiber bundles. For algebraic topologists, it remains an in-
dispensable tool, frequently employed to tackle the challenging computation of 
homotopy groups. Notably, the pinched mapping cone serves as a testament to 
the robustness and value of algebraic topology in the realm of mathematics. As 
referenced in the central theorem, we substantiate the existence of morphisms 
from one cone to another, contributing significantly to the expansion of homo-
topy group properties. Future research avenues may delve even deeper into the 
intricacies of the mapping cone, providing more extensive exploration of its ap-
plications and investigating its pertinence in other mathematical domains. 
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Abstract 
We consider the following (1 + 3)-dimensional ( )1,4P -invariant partial dif-
ferential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born- 
Infeld equation, the homogeneous Monge-Ampère equation, the inhomoge-
neous Monge-Ampère equation. The purpose of this paper is to construct and 
classify the common invariant solutions for those equations. For this aim, we 
have used the results concerning construction and classification of invariant 
solutions for the (1 + 3)-dimensional ( )1,4P -invariant Eikonal equation, 
since this equation is the simplest among the equations under investigation. 
The direct checked allowed us to conclude that the majority of invariant solu-
tions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of 
low-dimensional ( 3dimL ≤ ) nonconjugate subalgebras of the Lie algebra of 
the Poincaré group ( )1,4P , satisfy all the equations under investigation. In 
this paper, we present obtained common invariant solutions of the equations 
under study as well as the classification of those invariant solutions. 
 

Keywords 
Symmetry Reduction, Classification of Invariant Solutions, Common  
Invariant Solutions, The Eikonal Equations, The Euler-Lagrange-Born-Infeld 
Equations, The Monge-Ampère Equations, Classification of Lie Algebras, 
Nonconjugate Subalgebras, Poincaré Group ( )1,4P  

 

1. Introduction 

A solution of many problems of the geometric optics, theories of anisotropic 
media, theory of minimal surfaces, nonlinear electrodynamics, theories of gravi-
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ty, geometry, unified field theory, string theories, black holes, cosmology, etc. is 
reduced to the investigation of the Eikonal equations [1] [2] [3] [4] [5], the Eu-
ler-Lagrange equations [6]-[12], the Born-Infeld equations [13]-[22], the Monge- 
Ampère equations [23]-[40] in the spaces of different dimensions and different 
types (see also the references therein). 

Nowadays, there exist a lot of methods for the construction exact solutions of 
linear and nonlinear partial differential equations (PDEs). More details on this 
theme can be found in [41]-[46] (see also the references therein). 

We consider the following (1 + 3)-dimensional ( )1,4P -invariant PDEs: 
 the Eikonal equation, 
 the Euler-Lagrange-Born-Infeld equation, 
 the homogeneous Monge-Ampère equation, 
 the inhomogeneous Monge-Ampère equation.  

From the results obtained by Fushchich W.I., Shtelen W.M. and Serov N.I.  
[40], it follows, in particular, that the common symmetry group of those equa-
tions is the generalized Poincaré group ( )1,4P . Therefore, in the natural way 
arises the following question: what is the relationship between invariant solu-
tions of the equations under study? In particular, whether those equations have 
common invariant solutions? 

The purpose of this paper is to try to construct and classify the common inva-
riant solutions for the equations under consideration. It is known that the (1 + 
3)-dimensional ( )1,4P -invariant Eikonal equation is the simplest one among 
the equations under study. Therefore, we can use this fact for constructing the 
common invariant solutions. At the present time, we have constructed invariant 
solutions for the (1 + 3)-dimensional ( )1,4P -invariant Eikonal equation ob-
tained on the base of low-dimensional ( 3dimL ≤ ) nonconjugate subalgebras of 
the Lie algebra of the Poincaré group ( )1,4P , by using classical Lie-Ovsiannikov 
approach [41] [42] [43] [44]. This method, in particular, allows us to perform 
the symmetry reduction of the many-dimensional PDEs with non-trivial sym-
metry groups to differential equations with a fewer number of independent va-
riables as well as to construct solutions, invariant with respect to nonconjugate 
subgroups of the symmetry groups, of the equations under study. According to 
this method, reduced equations (invariant solutions) should be classified with 
respect to the ranks of the corresponding nonconjugate subalgebras of the Lie 
algebras of the symmetry groups of the equations under study. 

Our contribution in classical Lie-Ovsiannikov method consists in the sugges-
tion to use, for the classification of symmetry reductions (invariant solutions) of 
PDEs with non-trivial symmetry groups, not only ranks of nonconjugate subal-
gebras, but also their structural property. Some details on this theme can be 
found in [47] [48]. 

In our paper, we have performed the suggestion for the classification of the 
common invariant solutions of some P(1, 4)-invariant PDEs by using the struc-
tural property of the low-dimensional ( 3dimL ≤ ) nonconjugate subalgebras of 
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the Lie algebra of the Poincaré group P(1, 4). 
The direct checks allowed us to conclude that the majority of invariant solu-

tions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low- 
dimensional ( 3dimL ≤ ) nonconjugate subalgebras of the Lie algebra of the 
Poincaré group ( )1,4P , satisfy all the equations under investigation. In this 
paper, we present obtained common invariant solutions of the equations under 
study as well as the classification of those invariant solutions. 

To present the results obtained, we give some information about the Lie alge-
bra of the Poincaré group ( )1,4P  and its nonconjugate subalgebras. 

2. The Lie Algebra of the Poincaré Group ( )P 1,4  and Its  
Nonconjugate Subalgebras 

The group ( )1,4P  is a group of rotations and translations of the five-dimen- 
sional Minkowski space ( )1,4M . It is the smallest group, which contains, as 
subgroups, the extended Galilei group ( )1,3G  [49] (the symmetry group of 
classical physics) and the Poincaré group ( )1,3P  (the symmetry group of relati-
vistic physics). 

The Lie algebra of the group ( )1,4P  is generated by 15 bases elements  
( ), 0,1,2,3,4M Mµν νµ µ ν= − =  and ( )0,1,2,3,4Pµ µ = , which satisfy the com-

mutation relations 

, 0, , ,P P M P g P g Pµ ν µν σ νσ µ µσ ν   = = −                   (1) 

, ,M M g M g M g M g Mµν ρσ µσ νρ νρ µσ µρ νσ νσ µρ  = + − −           (2) 

where 00 11 22 33 44 1g g g g g= − = − = − = − = , 0gµν = , if µ ν≠ . 
In this paper, we consider the following representation [40] of the Lie algebra 

of the group ( )1,4P : 

0 1 2 3
0 1 2 3

, , , ,P P P P
x x x x
∂ ∂ ∂ ∂

= = − = − = −
∂ ∂ ∂ ∂

           (3) 

4 4, , .P M x P x P x u
u µν µ ν ν µ
∂

= − = − ≡
∂

               (4) 

In the following, we will use the next bases elements: 

04 1 23 2 13 3 12, , , ,G M L M L M L M= = = − =             (5) 

( )4 0 4 0, , 1,2,3 ,a a a a a aP M M C M M a= − = + =           (6) 

( ) ( ) ( )0 0 4 4 0 4
1 1, 1,2,3 , .
2 2k kX P P X P k X P P= − = = = +        (7) 

The Lie algebra of the extended Galilei group ( )1,3G  is generated by the 
following bases elements: 

1 2 3 1 2 3 0 1 2 3 4, , , , , , , , , , .L L L P P P X X X X X       (8) 

The classification of all nonconjugate subalgebras of the Lie algebra of the 
group ( )1,4P  of dimensions ≤ 3 was performed in [50]. 
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3. On the Construction and Classification of the Common  
Invariant Solutions for Some (1 + 3)-Dimensional  
( )P 1,4 -Invariant PDEs  

In this Section, We Consider the Following PDEs 
 the Eikonal equation  

2 2 2 2
0 1 2 3 1;u u u u− − − =  

 the Euler-Lagrange-Born-Infeld equation  

( )1 0;u u u u u uν µ ν
ν µν− + =  

 the homogeneous Monge-Ampère equation  

( )det 0;uµν =  

 the inhomogeneous Monge-Ampère equation  

( ) ( )3
det 1 , 0,u u uν

µν νλ λ= − ≠  

where ( )u u x= , ( ) ( )0 1 2 3, , , 1,3x x x x x M= ∈ , uu
xµ µ

∂
≡
∂

, 
2uu

x xµν µ ν

∂
≡
∂ ∂

,  

u g uµ µν
ν= , ( )1, 1, 1, 1gµν µνδ= − − − , , 0,1,2,3µ ν = ,   is the d’Alembert op-

erator. 
Here, and in what follows, ( )1,3M  is a four-dimensional Minkowski space, 
( )R u  is a real number axis of the depended variable u. 
From the results obtained by Fushchich W.I., Shtelen W.M. and Serov N.I.  

[40] it follows, in particule, that the common symmetry group of those equations 
is the generalised Poincaré group ( )1,4P . 

In this section we present obtained common invariant solutions of the equa-
tions under study as well as the classification of those invariant solutions. To 
obtain those results, we used the nonconjugate subalgebras of the Lie algebra of 
the group ( )1,4P , structural properties of its low-dimensional ( 3dimL ≤ ) 
nonconjugate subalgebras as well as the results of the classification of symmetry 
reductions of the eikonal equation. More details on this theme can be found in 
[47] [48]. 

Bellow we present the results obtained.   

3.1. Classification of the Common Invariant Solutions for the  
Equations under Study Using One-Dimensional Nonconjugate  
Subalgebras of the Lie Algebra of the Group ( )P 1,4   

1) G :  
The common invariant solution for the equations under study: 

( ) ( )2 2 2 21 2 1 2

0 2 3 1 2 2 3 3 11 ,x u c c x c x c x c− = − − − + + +  

where 1 2,c c  and 3c  are arbitrary real constants. 
2) 1, 0G Xα α+ > : 
The common invariant solution for the equations under study: 
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( )( )( )

( )( )

2 2 2 2 2
1 2 0

0

2 2 2 2 2
1 2 0 1 1 2 2 3 3

2 1
ln

1 ,

c c x u

x u

c c x u x c x c x c

α α α
α

α

 + + − + + 
 − 
 

− + + − + − + + +

 

where 1 2,c c  and 3c  are arbitrary real constants. 
3) 3L :  
The common invariant solution for the equations under study: 

( ) ( )1 22 2 2 2
2 3 0 2 3 3 1

1 2

2 11 ,u c c x c x c x x c= + + + + + +  

where 1 2,c c  and 3c  are arbitrary real constants. 
4) ( )3 0 4 , 0L X Xα α+ + > :  
The common invariant solution for the equations under study: 

( )( )( )
( )( )( )

2
2

2 2 2 2 2 2
1 2 1 2 2

2 2 2 2 2 2 1
1 2 1 2 2 2 0 1 3 3

1 2

1

2

2

arctanh
1

1 arctan .

cu i c
c c x x c

xi c c x x c c x c x c
x

α
α

α

α α

=
− + + +

 
− − + + + + − + + 

 

 

5) 3 3 , 0L Xα α+ > :  
The common invariant solution for the equations under study: 

( )( )

( )( )

2 2 2 2 2 2 1
1 2 1 2 2 2

2

2 2 2 2 2 2
1 2 1 2 2

2 2 3 1 0 3
2

1 arctan

1
arctan .

xu c c x x c c
x

c c x x c
c c x c x c

c

α α

α
α

α

= − − + − +

 − − + − − + + +  
 

 

6) 3 42L X+ :  
The common invariant solution for the equations under study: 

( )( )
( )( )

( )

2
0

1

2 2 2
2 1 1 2

2 2 2
2 1 1 2

1 0 2 3 3

2arctan

24 4 2 arctanh
4 4

.

xx u
x

i c c x x i
c c x x

c x u c x c

− +

 
 = + + + −   + + + 

+ + + +

 

7) 3 02P X− :  
The common invariant solution for the equations under study: 

( ) ( )

( )( )

3
0 3 0 0

2 2 2
0

3

3 1 2 1 1 2 2 3

2

1
6

1 4 ,
6

x u x x u x u

x u x c c c x c x c

+ + + + −

= − + + − − + + +
 

where 1 2,c c  and 3c  are arbitrary real constants. 
8) 0 4X X+ :  
The common invariant solution for the equations under study: 
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( )2 2
2 3 1 2 2 3

1

3 1

2
1u i c c x c x c x c= + + + + + , 

where 1 2,c c  and 3c  are arbitrary real constants. 
9) 4X : 
The common invariant solution for the equations under study: 

( ) ( )2
3 2 1 2 2

1

1

2

01 ,x i c x c x c f x u= − + + + + +  

where: 1 2,c c  are arbitrary real constants, f is an arbitrary smooth function. 

3.2. Classification of the Common Invariant Solutions for the  
Equations under Study Using Two-Dimensional Nonconjugate  
Subalgebras of the Lie Algebra of the Group ( )P 1,4  

3.2.1. Lie Algebras of the Type 2A1 
1) 3G L⊕ :  
The common invariant solution for the equations under study: 

( ) ( ) ( )2 2 2 2 2
0 2 3

1 2 1 2

2

1

1 2 1

2
1 ,x u c x c x x c− = − + + +  

where 1 2,c c  are arbitrary real constants. 
2) 3 3, 0G X Lα α+ > ⊕ :  
The common invariant solution for the equations under study: 

( )

( )( )
( )( )( )

3 0

2 2 2 2
1 0

2 2 2 2
1 0 2 2

0

2 2
1 1 2 2

ln

2 1
1 ln

,

x x u

c x u
c x u

x u

c x x c

α

α α α
α α

− +

 + − + + 
= − + − + +  − 

 

+ + +

 

where 1 2,c c  are arbitrary real constants. 
3) 3 3 , 0G L Xα α⊕ + > :  
The common invariant solution for the equations under study: 

( )( )
( )

( )( )

1
3

2

2 2
2 0

2 2 2 2
2 1 2

2 2 2 2
2 1 2 1

1 2

arctan

arctan
1

1 ,

xx
x

c x u
c x x

c x x c

α

αα
α

α

+

= + −
− + −

+ − + − +

 

where 1 2,c c  are arbitrary real constants. 
4) 1G X⊕ :  
The common invariant solution for the equations under study: 

( ) ( )1 2 1 22 2 2
0 2 2 2 3 11 , 1,x u c x c x cε ε− = − + + = ±  

where 1 2,c c  are arbitrary constants. 
5) 2 1, 0G X Xα α+ > ⊕ :  
The common invariant solution for the equations under study: 
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( )( )

( )( )

2 2 2 2 2
3 2 0 2

02 2
2 2 2 1

2 2 2 2 2 02 0 2

1

arctanh ln ,
21

x c x u c

x uc cc c x c
x uc x u c

α

α α
α

α

+ + − +

−
= + + +

++ − +

 

where 1 2,c c  are arbitrary constants. 
6) 3 3 3L P C⊕ + :  
The common invariant solution for the equations under study: 

( ) ( ) ( )2 2 2 2 2
3 2 0

1 2 1 2

2 1 1

2

2

1
1 ,u x c x c x x c+ = + + + +  

where 1 2,c c  are arbitrary constants. 
7) ( )3 0 4 3 3, 0L X X P Cα α+ + > ⊕ + :  
The common invariant solution for the equations under study: 

( )( )
( )( )

1
0

2

2 2
2 3

2 2 2 2
2 1 2

2 2 2 2
2 1 2 1

arctan

arctan
1

1 ,

xx
x

c u x
c x x

c x x c

α

αα
α

α

−

= + +
− + −

+ − + − +

 

where 1 2,c c  are arbitrary constants. 
8) 3 0 4L X X⊕ + :  
The common invariant solution for the equations under study: 

( ) ( )2 2 21 2 1

2 1 2 2 3 1

2
1 , 1,u i c x x c x cε ε= + + + + = ±  

where 1 2,c c  are arbitrary constants. 
9) ( )3 0 4 4, 0L X X Xα α+ + > ⊕ :  
The common invariant solution for the equations under study: 

( )

( )

2 2 2 21
1 1 2

2

0 1 3 2
2 2 2 2
1 1 2

arctan

arctanh ,

xu i c x x
x

i x c x c
c x x

α α

αα
α

= + + +

− − + +
+ +

 

where 1 2,c c  are arbitrary constants. 
10) 3 3 0 4, 0L X X Xα α+ > ⊕ + :  
The common invariant solution for the equations under study: 

( )( )
( )( )

( )( )

2 2 2 2
1 1 1 2 2

2 2 2 21 2 1 1 2 1

2 2 2 2 3
1 1 2 2 1

1 1

1
arctan

1

1 , 0.

x c x x i x
u

c x c x x i x

xi c x x c c
c c

α αα

α α

α

 + + + − =   + + + + 

+ + + + + + ≠

 

11) 3 4 32L X X+ ⊕ :  
The common invariant solution for the equations under study: 

2
0

1

2arctan
xx u
x

− +  
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( )
( ) ( )2 2

1 1 2 1 0 2
2 2

1 1 2

12 arctanh 2 1 ,
1

i i c x x c x u c
c x x

= − + + + + +
+ +

 

where 1 2,c c  are arbitrary constants. 
12) 3 3 0 42 , 0L P X Xα α− + ≠ ⊕ :  
The common invariant solution for the equations under study: 

( )
( )

( )( )

1
0

2

2 2 2
2 1 2

2 2 2
2 1 2

2
2 0 3 1

2 arctan

12 4 1 2 arctanh
4 1

4 , 1,

xx u
x

i c x x i
c x x

c x u x c

α

αε αε

α ε

+ −

= + + −
+ +

+ + + + = ±

 

where 1 2,c c  are arbitrary constants. 
13) 3 3 02L P X⊕ − : 
The common invariant solution for the equations under study: 

( ) ( ) ( )( )3 22 2 2
0 3 0 0 1 1 2 0 3

3 2

1 2
1 1 4 ,
6 6

x u x x u x u c x x x u x c c+ + + + − = + − + + − +  

where 1 2,c c  are arbitrary constants. 
14) 1 2P P⊕ : 
The common invariant solution for the equations under study: 

2 2 2 2
0 1 2 0.x x x u− − − =  

15) 1 3 2P X P− ⊕ : 
The common invariant solution for the equations under study: 

2 2 2 2
0 1 2 0.x x x u− − − =  

16) 1 3 2 2 3 , 0, 0P X P X Xγ β β γ− ⊕ − − > > : 
The common invariant solution for the equations under study: 

( ) ( )
( )( )

( )( )

2 2 2
1 1 2 2 2 2 2

0 0 0 0

2
2 0 2 3 1

2

1 2 2 0,

x x c x c c c
x u x u x u x u

c x u c x u c

β γ
γ γ

− − +
+ +

+ + + + + +

− + + + + + =

 

where 1 2,c c  are arbitrary constants. 
17) 1 3 2 2 , 0P X P Xγ γ− ⊕ − > :  
The common invariant solution for the equations under study: 

( ) ( )( )
2 2

1 2 22
2 0 2 3 1

0 0

2 1 2 ,
x c x u c x u c x c
x u x u γ
−

+ + = + + − +
+ + +

 

where 1 2,c c  are arbitrary constants. 
18) 1 2 2 3 , 0P P X Xβ β⊕ − − > : 
The common invariant solution for the equations under study: 

( ) ( )
( )

22 2
2 21 2

0 2 3 1
0 0

2
2 1 ,

4 4 1
c xx cu x u c x c

x u x u
β + 

+ = + + − + + + + + 
 

where 1 2,c c  are arbitrary constants. 
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19) 1 2 2P P X⊕ − : 
The common invariant solution for the equations under study: 

( )
2 2 2
1 2 2

0 2 3 1
0 0

2 1 ,
1 4

x x cu x u c x c
x u x u

 
+ + = + + + + + + +  

 

where 1 2,c c  are arbitrary constants. 
20) 3 0 42P X X− ⊕ : 
The common invariant solution for the equations under study: 

2
2 2 3 2 1 1 04 16 ,u c x x i c x c x= ± − − + + −  

where 1 2,c c  are arbitrary constants. 
21) 3 0 12P X X− ⊕ : 
The common invariant solution for the equations under study: 

( ) ( ) ( )( )33 2 2
0 3 0 0 1 2 0 3 1

2

2
1 4 ,
6 6

x u x x u x u c x x u x c cεε+ + + + − = − + + − +  

where 1 2,c c  are arbitrary constants. 
22) 3 4L X⊕ : 
The common invariant solution for the equations under study: 

( ) ( )2 2
1 2 3

2

0

1
, 1,x x i x f x uε ε+ = + + = ±  

where f is an arbitrary smooth function. 
23) 3 3 4, 0L X Xα α+ > ⊕ : 
The common invariant solution for the equations under study: 

( )

1
3

2

2 2 2
1 2 02 2 2

1 2

arctan

arctanh , 1,

xx
x

i x x i f x u
x x

α

αε α εα ε
α

+

= + + − + + = ±
+ +

 

where f is an arbitrary smooth function. 
24) 3 1 4P X X− ⊕ :  
The common invariant solution for the equations under study: 

( )
( )3

1 2 02
0 0

1 1 , 1,xx i x f x u
x u x u

ε ε− = + + + = ±
+ +

 

where f is an arbitrary smooth function. 
25) 3 4P X⊕ : 
The common invariant solution for the equations under study: 

( )1 2 0 , 1,x i x f x uε ε= + + = ±  

where f is an arbitrary smooth function. 
26) 1 4X X⊕ : 
The common invariant solution for the equations under study: 

( )3 2 0 , 1,x i x f x uε ε= + + = ±  

where f is an arbitrary smooth function. 
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3.2.2. Lie Algebras of the Type A2 
1) 3,G P− :  
The common invariant solution for the equations under study: 

( )2 2 2 2
0 3 2 1 2 1

1 2

21 , 1,x x u c x c x cε ε− − = − + + = ±  

where 1 2,c c  are arbitrary constants. 

2) 3 4
1 , , 0G L X λ
λ

− − > :  

The common invariant solution for the equations under study: 

( )
( )

( )2 2 2 2
0 1 1 2

2 2 2 2
1 1 2

1
1 3 2

2

ln arctanh

arctan ,

x u i i c x x
c x x

x c x c
x

λλ λ
λ

λ

+ = − + +
+ +

− + +

 

where 1 2,c c  are arbitrary constants. 
3) 1 4, , 0G X Xα α− − > :  
The common invariant solution for the equations under study: 

( ) ( )12
1 0 2 2 2 3 1

2
ln 1 , 1,x x u i c x c x cα ε ε− + = + + + = ±  

where 1 2,c c  are arbitrary constants. 

4) ( )3 3 4
1 , , 0, 0L G X Xλ α α λ
λ

− + + > > :  

The common invariant solution for the equations under study: 

( ) ( ) ( )

( )
( ) ( )

( )

22 2 2
0 2 1 2 2

2
2 22 2 2

2 1 2 2

1
2 2 3 1

2

ln

arctanh

arctan , 1,

x u i c x x c

ci c
c x x c

xc c x c
x

ε α λ

α λ
ε α λ

α λ

α λ ε

+ = + + −

−
− −

+ + −

+ − + + = ±

 

where 1 2,c c  are arbitrary constants. 
5) 1 3, , 0G X Pα α− − > :  
The common invariant solution for the equations under study: 

( )
( )( )

( )( )

2 2 2 2 2
1 0 3

1 0 2 2 2
0 3

2 2 2 2 2
1 0 3 1 2 2

1
ln ln 2

1 ,

c x x u
x x u

x x u

c x x u c x c

α α
α α α

α

 + − − + + − + =  − − 
 

− + − − + + +

 

where 1 2,c c  are arbitrary constants. 

3.3. Classification of the Common Invariant Solutions for the  
Equations under Study Using Three-Dimensional Nonconjugate  
Subalgebras of the Lie Algebra of the Group ( )P 1,4  

3.3.1. Lie Algebras of the Type 3A1 
1) 1 3 2 2 3 4, 0 , 0P X P X X Xγ γ δ δ− > ⊕ − − ≠ ⊕ :  
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The common invariant solution for the equations under study: 

( ) ( ) ( )( ) ( )4 3 22 2 2 2
0 0 0 02 1 2 0.x u x u x u x uγ δ γ γ+ + + + + + + + + + =  

2) 1 2 2 3 4, 0P P X X Xδ δ⊕ − − > ⊕ :  
The common invariant solution for the equations under study: 

( ) ( )2 2
0 02 1 0.x u x u δ+ + + + + =  

3) 1 2 3P P X⊕ ⊕ :  
The common invariant solution for the equations under study: 

( )2 2 2 2
0 1 2 0 ,x x x u c x u− − − = +  

where c is an arbitrary constant. 
4) 3 1 2P X X⊕ ⊕ :  
The common invariant solution for the equations under study: 

( )2 2 2
0 3 0 ,x x u c x u− − = +  

where c is an arbitrary constant. 
5) 1 2 3P P P⊕ ⊕ :  
The common invariant solution for the equations under study: 

( )2 2 2 2 2
0 1 2 3 0 ,x x x x u c x u− − − − = +  

where c is an arbitrary constant. 
6) 1 2 2 3P P X X⊕ − ⊕ :  
The common invariant solution for the equations under study: 

2 2 2 2
0 1 2

0 0

,
1

x x u x c
x u x u
− −

− =
+ + +

 

where c is an arbitrary constant. 
7) 1 2 2 3 3, 0 , 0P P X P Xα α γ γ⊕ − > ⊕ − ≠ :  
The common invariant solution for the equations under study: 

22 2
31 2

0
0 0 0

2 ,xx xu x u c
x u x u x uα γ

+ + + = + +
+ + + + +

 

where c is an arbitrary constant. 
8) 1 2 2 3, 0P P X Pα α⊕ − > ⊕ :  
The common invariant solution for the equations under study: 

2 2 2
1 3 2

0
0 0

2 ,x x xu x u c
x u x u α
+

+ + = + +
+ + +

 

where c is an arbitrary constant. 
9) 2 1G X X⊕ ⊕ :  
The common invariant solution for the equations under study: 

( )2 2 1 2

0 3 , 1,x u x cε ε− = + = ±  

where c is an arbitrary constant. 
10) 3 3G L X⊕ ⊕ :  
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The common invariant solution for the equations under study: 

( ) ( )2 2 2 2
0 1

1 2 1 2

2 , 1,x u x x cε ε− = + + = ±  

where c is an arbitrary constant. 
11) 3 0 1 22P X X X− ⊕ ⊕ :  
The common invariant solution for the equations under study: 

( ) ( ) ( )( )3 23 2
0 3 0 0 0 3

1 4 , 1,
6 6

x u x x u x u x u x cε ε+ + + + − = + + + = ±  

where c is an arbitrary constant. 
12) 3 1 2, 0G X X Xα α+ > ⊕ ⊕ :  
The common invariant solution for the equations under study: 

( )

( ) ( ) ( )
3 0

2 2 2
02 2 2

1 2
1 2 2 2

0 0

ln

ln arctanh , 1,
2

x x u

x u
x u x u c

α

ααε α εα ε
α

− +

+ −
= + − − − − + = ±

 

where c is an arbitrary constant. 
13) 3 3 3 0 4L P C X X⊕ + ⊕ + :  
The common invariant solution for the equations under study: 

( ) ( )2 2 2 2
3 1

1 2 1 2

2 , 1,x u i x x cε ε+ = + + = ±  

where c is an arbitrary constant. 
14) ( )3 0 4 3 4, 0L X X X Xα α+ + > ⊕ ⊕ :  
The common invariant solution for the equations under study: 

( )2 22
0 1 2

1

arctan ln , 1,
2

xx u i x x c
x

εαα ε+ + = + + = ±  

where c is an arbitrary constant. 
15) 3 0 1 42P X X X− ⊕ ⊕ :  
The common invariant solution for the equations under study: 

( )2
0 3 24 4 , 1,x u x i x cε ε+ + = + = ±  

where c is an arbitrary constant. 
16) 3 3 0 42 2L P X X⊕ − + ⊕ :  
The common invariant solution for the equations under study: 

( ) ( )2 2 2
0 3 1 2

1 2
4 4 , 1,x u x i x x cε ε+ + = + + = ±  

where c is an arbitrary constant. 

3.3.2. Lie Algebras of the Type A A2 1⊕  

1) 3 1,G P X− ⊕ :  
The common invariant solution for the equations under study: 

( )12 2 2
0 3 2

2
, 1,x x u x cε ε− − = + = ±  

where c is an arbitrary constant. 
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2) 3 3,G P L− ⊕ :  
The common invariant solution for the equations under study: 

( ) ( )2 2 2 2 2
0 3 1 2

1 2 1 2
, 1,x x u x x cε ε− − = + + = ±  

where c is an arbitrary constant. 
3) ( )2 3 1, , 0G X P Xα α− + > ⊕ :  
The common invariant solution for the equations under study: 

( )

( ) ( )

( )

2 0

2 2 2 2 2 2 2
0 3 0 3

2 2 2 2
0

1

3

2

1 2

ln

ln
2

arctanh , 1,

x x u

x x u x x u

c
x x u

α

αε α

αεα ε
α

− +

= − − + − − −

− + = ±
− − +

 

where c is an arbitrary constant. 

4) 3 4 3
1 , 2 , 0L G X Xλ
λ

− − > ⊕ :  

The common invariant solution for the equations under study: 

( ) ( )2 21
0 1 2

2

ln arctan ln , 1,
2

xx u i x x c
x

ελλ ε+ + = + + = ±  

where c is an arbitrary constant. 
5) ( )3 4 3 3, , 0 , 0G X X L Xα α β β− + > ⊕ + > :  
The common invariant solution for the equations under study: 

( )

( )
( )

1
3 0

2

2 2 2
1 22 2 2

1

1

2

1 2

2

ln arctan

arctanh , 1,

xx x u
x

i i x x c
x x

α β

βεβ ε β ε
β

− + +

= − + + + + = ±
+ +

 

where c is an arbitrary constant. 
6) ( )3 4 3, , 0G X X Lα α− + > ⊕ :  
The common invariant solution for the equations under study: 

( ) ( )2 2
3 0

1 2

1 2ln , 1,x x u i x x cα ε ε− + = + + = ±  

where c is an arbitrary constant. 

3.3.3. Lie Algebras of the Type A3,1 
1) 4 1 2 3 2 1 2 34 , , , 0, 0, 0X P X X P X X Xγ µ δ γ δ µ− − + − − > ≠ > :  
The common invariant solution for the equations under study: 

( ) ( ) ( )( )

( )( ) ( )

4 3 22 2 2
0 0 0

22 2
0

2 2

2 1 1 0.

x u x u x u

x u

µ γ µ δ

µ γ γµ δ γ

+ + + + + + + +

+ + + + − + + =
 

2) 4 3 0 1 32 , 2 , , 0X P X X Xµ µ µ− + > :  
The common invariant solution for the equations under study: 

( )2
2 1 3 0

1 2
2 1 , 1,u i x x x c xε µ µ ε= + + − + − = ±  
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where c is an arbitrary constant. 
3) 4 3 3 0 32 , 2 , , 0X P L X Xα α− − > :  
The common invariant solution for the equations under study: 

( )2 21
1 2 0

2

2 arctan ln , 1,xu i x x x c
x

α εα ε= + + − + = ±  

where c is an arbitrary constant. 
4) 4 3 3 3 02 , , 2 , 0X L X P Xβ β β− + − > :  
The common invariant solution for the equations under study:  

( )21
0

2

2 2 2
1 2 32 2 2

1 2

1arctan
4

arctanh , 1,

x x u
x

i x x i x c
x x

β

βε β εβ ε
β

+ +

= + + − − + = ±
+ +

 

where c is an arbitrary constant. 
5) 4 3 32 , ,X P X :  
The common invariant solution for the equations under study: 

( )2 1 0 , 1,x i x f x uε ε= + + = ±   

where f is an arbitrary smooth function. 

3.3.4. Lie Algebras of the Type A3,2 

1) 4 3 3 3
12 , , , 0, 0X P L G Xαα λ α λ
λ λ

+ + > > :  

The common invariant solution for the equations under study: 

( ) ( )2 21
0 1 2

2

ln arctan ln , 1,
2

xx u i x x c
x

λλ ε ε+ + = + + = ±  

where c is an arbitrary constant. 

3.3.5. Lie Algebras of the Type A3,3 
1) 1 2, ,P P G :  
The common invariant solution for the equations under study: 

( )12 2 2 2
0 1

2

2 3 , 1,x x x u x cε ε− − − = + = ±  

where c is an arbitrary constant. 
2) 1 2 3, , , 0P P G Xα α+ > : 
The common invariant solution for the equations under study: 

( )

( ) ( )

( )

3 0

2 2 2 2 2
0 1 22 2 2 2 2

0 1 2

2 2 2 2
0 1 2

1 2
1 2

ln

arctan

ln , 1.
2

x x u

x x x u
x x x u i

i

x x x u c

α

α
ε α εα

α
α ε

− +

− − − +
= − − − + −

− − − − + = ±

 

3) 3 4 3
1, , , 0P X L G λ
λ

+ > :  
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The common invariant solution for the equations under study: 

( ) ( )2 21
0 1 2

2

ln arctan ln , 1,
2

xx u i x x c
x

λλ ε ε+ + = + + = ±  

where c is an arbitrary constant. 

3.3.6. Lie Algebras of the Type A3,6 
1) 1 1 2 2 3 3, ,P X P X P L− − − + :  
The common invariant solution for the equations under study: 

22 2
31 2

0
0 0

2 ,
1

xx x u x u c
x u x u

+
+ + = + +

+ + +
 

where c is an arbitrary constant. 
2) ( )1 2 3 3, , , 0P P L Xα α− − + > :  
The common invariant solution for the equations under study: 

( )2 2 2 2
0 1 2 0 ,x x x u c x u− − − = +  

where c is an arbitrary constant. 
3) 1 2 3 3, ,P P P L− + :  
The common invariant solution for the equations under study: 

( )2 2 2 2 2
0 1 2 3 0 ,x x x x u c x u− − − − = +  

where c is an arbitrary constant. 
4) 1 2 3 3 0, , 2 , 0X X P L Xα α− − − > :  
The common invariant solution for the equations under study: 

( ) ( ) ( ) ( )( )3 22
0 3 0 0 0

2

3

3
6 6 4 , 1,x u x x u x u x u x cα α ε α ε+ + + + − = + + + = ±  

where c is an arbitrary constant. 

5) ( ) ( )1 2 3 3 3 0 4
1, , , 0
2

X X L P C X Xα α− − − + − + > :  

The common invariant solution for the equations under study: 

2 2 23
0 3 2 2 2

3

arctan arctan , 1,x x x u c
u x u

αα ε α εα ε
α

− = + − + + = ±
+ −

 

where c is an arbitrary constant. 

6) ( ) ( )1 2 3 3 3 0 4, , , 0, 0 1
2

X X L P C X Xλ α α λ+ + + + > < < :  

The common invariant solution for the equations under study: 

( )
( )

3
0

2 2 2 2
3

2 2 2 2
3

arctan

arctan , 1,

x x
u

x u c
x u

α λ

αε λ α εα ε
λ α

−

= + − + + = ±
+ −

 

where c is an arbitrary constant. 
7) 1 2 3 3, , , 0, 0X X L G Xλ α α λ+ + > > :  
The common invariant solution for the equations under study: 
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( )

( )
( )

( )

3 0

2 2 2 2
0

2 2 2 2
0

2 2
0

ln

arctanh

ln , 1.
2

x x u

x u
x u

x u c

λ α

αε λ α εα
λ α

α ε

− +

= − + −
− +

− − + = ±

 

where c is an arbitrary constant. 
8) 1 2 3, ,P P L :  
The common invariant solution for the equations under study: 

( ) ( )

( )

2 2 2 2 2
3 1 0 0 1 2 1

2 2 2 2 2
0 1 2 1

1
1

2 2 2 21
0 1 2 2 1

1 2
ln

arctanh

ln , 1, 0.
2

x c x u x x x u c

x x x u c
c

c
c x x x u c c

ε

ε

ε

= + − − − − +

− − − +
+

− − − − + = ± ≠

 

3.3.7. Lie Algebras of the Type aA3,7  

1) 1 2 3, , , 0P P L Gλ λ+ > :  
The common invariant solution for the equations under study: 

( )12 2 2 2
0 1

2

2 3 , 1,x x x u x cε ε− − − = + = ±  

where c is an arbitrary constant. 
2) 1 2 3 3, , , 0, 0P P L G Xλ α α λ+ + > > :  
The common invariant solution for the equations under study: 

( )

( )( ) ( )

( )

3 0

2 2 2 2 2 2
0 1 22 2 2 2 2 12

0

2

1 2

2 2 2 2
0 1 2

ln

arctanh

ln , 1,
2

x x u

x x x u
x x x u

x x x u c

λ α

λ α
ε λ α εα

α
α ε

− +

− − − +
= − − − + −

− − − − + = ±

 

where c is an arbitrary constant. 

3.3.8. Lie Algebras of the Type A3,8 

3 3, ,P G C− :  
The common invariant solution for the equations under study: 

( ) ( )2 2 2 21 2 1 2

0 3 2 1 2 2 11 , 1,x x u c x c x cε ε− − = − + + = ±   

where 1 2,c c  are arbitrary constants. 

3.3.9. Lie Algebras of the Type A3,9 

1) ( ) ( ) ( )3 3 3 2 2 2 1 1 1
1 1 1 1 1 1, ,
2 2 2 2 2 2

L P C L P C L P C     − + + + + + +     
     

:  

The common invariant solution for the equations under study: 

( )12 2 2 2
1 2

2

3 0 , 1,x x x u x cε ε+ + + = + = ±  

where c is an arbitrary constant. 
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2) 3 2 1, ,L L L− − − :  
The common invariant solution for the equations under study: 

( ) ( )2 2 2 2
2 0 2 1 2

1

3 1

2 1 2
1 , 1,u c x c x x x cε ε= + + + + + = ±  

where 1 2,c c  are arbitrary constants. 

4. Conclusions 

In this paper, we have presented obtained common invariant solutions of the 
following (1 + 3)-dimensional equations: the Eikonal equations, the Euler-Lag- 
range-Born-Infeld equation, the homogeneous Monge-Ampère equation and the 
inhomogeneous Monge-Ampère equation. We have used the structural proper-
ties of the low-dimensional ( 3dimL ≤ ) nonconjugate subalgebras of the same 
ranks of the Lie algebra of the Poincaré group ( )1,4P  for classification of the 
obtained common invariant solutions. 

Since the group ( )1,4P  contains, as subgroups, the extended Galilei group 
( )1,3G  [49] (the symmetry group of classical physics) and the Poincaré group 
( )1,3P  (the symmetry group of relativistic physics), the results obtained can be 

useful in construction and investigation of corresponding physical models. 
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Abstract 
Let G be a graph and ( )A G  the adjacency matrix of G. The spectrum of G is 

the eigenvalues together with their multiplicities of ( )A G . Chang et al. 
(2011) characterized the structures of all graphs with rank 4. Monsalve and 
Rada (2021) gave the bound of spectral radius of all graphs with rank 4. Based 
on these results as above, we further investigate the spectral properties of 
graphs with rank 4. And we give the expressions of the spectral radius and 
energy of all graphs with rank 4. In particular, we show that some graphs with 
rank 4 are determined by their spectra. 
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1. Introduction 

All graphs considered in this paper are undirected, finite and simple. Let 
( ) ( )( ),G V G E G=  be a graph with n vertices and m edges. For convenience, 

the path, cycle and complete graph of order n are denoted by nP , nC  and nK , 
respectively. Let C be a set, and the number of elements in C is denoted by C , 
let ( )ic G  denote the number of cycles of length i. 

The adjacency matrix of G is denoted by ( )A G . The polynomial  
( ) ( ), detG x xI A Gφ = −  is called the characteristic polynomial of a graph G, 

where I is the identity matrix of order n. The spectrum of G consists of the ei-
genvalues together with their multiplicities of ( )A G . The spectral radius of G, 
denoted by ( )Gρ , is the maximum eigenvalue of graph G. The nullity of G, 
denoted by ( )Gη , is the multiplicity of zeros in the spectrum of G. Let ( )r G  
be the rank of ( )A G . Obviously, ( ) ( )G n r Gη = − . Two graphs G and H are 
said to be cospectral (denoted by ~G H ) if they share the same spectrum. A 
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graph G is said to be determined by its spectrum (DS for short) if for any graph 
H, ( ) ( ), ,G x H xφ φ=  implies that H is isomorphic to G. 

The energy of G first is defined by Gutman in 1978 as the sum of the absolute 
values of its eigenvalues. That is,  

( )
1

.
n

i
i

E G λ
=

=∑  

The theory of graph energy is well developed nowadays; its details can be found 
in the book [1] and reviews [2] [3]. 

Definition 1.1. ([4]) Given a graph G with the set of vertices  
( ) { }1 2, , , pV G v v v=   and a vector of positive integers ( )1 2, , , pm m m m=  , 

denote by ( )1 2, , , pGom m m m  (Gom for short) the graph obtained from G by 
replacing each vertex iv  of G with an independent set of im  vertices  

1 2, , , im
i i iv v v  and joining s

iv  with t
jv  if and only if iv  and jv  are adjacent 

in G. The resulting graph Gom is said to be obtained from G by multiplication of 
vertices. For graph 1 2, , , kG G G , we denote by ( )1 2, , , kN G G G  the class of 
all graphs that can be obtained from one of the graphs in { }1 2, , , kG G G  by 
multiplication of vertices.  

By Definition 2.1, Chang et al. [4] characterized all connected graphs with 
rank 4. That is, if G is a connected graph with rank 4, then ( )2 9, ,G N G G∈  , 
the resulting graph, see Figure 1. Wu et al. [5] studied further the spectral prop-
erties of graphs with rank 4. They computed the characteristic polynomials of all 
graphs with rank 4. And they showed that some graphs with rank 4 are deter-
mined by their spectra. In particular, they proposed a problem: Which graphs 
with rank 4 are determined by their spectra? Recently, Monsalve and Rada [6] 
characterized spectral radius of all connected graphs with rank 4. A natural 
problem is: How to characterize the spectral radius of all graphs with rank 4? 

In this paper, we intend to solve these two problems. Preliminaries are pre-
sented in Section 2. And we give the expressions of the spectral radius and ener-
gy of all graphs with rank 4 in Section 3. In Section 4, we consider which graphs  
 

 
Figure 1. 1 2 3 4 5 6 7 8 9, , , , , , , ,G G G G G G G G G . 
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with rank 4 are DS. More precisely, we prove that two classes of graphs with 
rank 4 are DS. And some cospectral graphs with rank 4 are presented. 

2. Some Lemmas 

Several lemmas are of importance to the description and proof of our results lat-
er, and we list them below. 

By the properties of vertex multiplication, Wu et al. [5] computed the charac-
teristic polynomials with rank 4 as follows. 

Lemma 2.1. ([5]) Let G be a simple graph on n vertices and 4n ≥ . Then 
( ) 4r G =  if an only if ( )1 2 9, , ,G G G G∈  , where the graphs 1 9, ,G G  are de-

picted in Figure 1.  
Lemma 2.2. ([7]) Let G be a graph. For the adjacency matrix the following 

can be deduced from the spectrum: 
(i) The number of vertices. 
(ii) The number of edges. 
(iii) Whether G is regular. 
(iv) Whether G is regular with any fixed girth. 
(v) The number of closed walk of any length. 
(vi) Whether G is bipartite.  
Lemma 2.3. ([8]) Let G be a simple bipartite graph with e edges. Then  

 ( )G eρ ≤  

with equality if G is a disjoint union of a complete bipartite graph and isolated 
vertices.  

Lemma 2.4. ([5]) Suppose that 1 2, , ,i i pG G om m m m′  =   , where iG  is de-
picted in Figure 1, 1,2, ,9i =  , ( ) 6ip V G= ≤ , 1m a= , 2m b= , 3m c= , 

4m d= , 5m e= , 6m f= . Then each of the following holds. 
(i) ( ) ( )4 4 2

1, a b c dG x x x ab cd x abcdφ + + + −  ′ = − + +  . 
(ii) ( ) ( )4 4 2

2 , 2a b c dG x x x ab bc bd cd x bcdx abcdφ + + + −  ′ = − + + + − +  . 

(iii) 
( ) ( )

]

4 4 2
3 , 2a b c d eG x x x ab ac bc bd ce x abcx

abdc abec dbec

φ + + + + − ′ = − + + + + −
+ + +

. 

(iv) 
( ) ( )

]

4 4 2
4 , 2a b c d eG x x x ab ae be bc cd de x abex

abed aecd abcd abec

φ + + + + − ′ = − + + + + + −
+ + + +

. 

(v) 
( ) ( )

]

4 4 2
5 , 2a b c d e fG x x x ab bc bf cf cd de ef x bcfx

abed abcd bdec abcf abef bcef fbcd fbed

φ + + + + + − ′ = − + + + + + + −
+ + + + + + + +

. 

(vi) 
( ) ( )

( ) ]

4 4 2
6 ,

2 3

a b c dG x x x ab ac ad bc bd cd x

abc abd acd bcd x abcd

φ + + + − ′ = − + + + + +
− + + + −

. 

(vii) 

( ) ( )
( )

]

4 4 2
7 ,

2

a b c d e fG x x x ab ac af bc be cd df de fe x

abc def x abed abdf acbe aced acef afed

abcd fcde abcf bcef fbcd fbed

φ + + + + + − ′ = − + + + + + + + +
− + + + + + + +

+ + + + + +

. 
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(viii) ( ) ( )4 4 2
8 , a b c dG x x x ab bc cd x abcdφ + + + −  ′ = − + + +  . 

(ix) ( ) ( )4 4 2
9 , a b c d eG x x x ab bc cd de x abcd bcde abdeφ + + + + −  ′ = − + + + + + +  .  

3. The Spectral Radii and Energies of Graphs with Rank 4 

In this section, we give the spectral radii and energies of graphs with rank 4. All 
the notation in this paragraph is followed in Lemma 2.4. 

Theorem 3.1. Let ( )1 2 9, , ,G N G G G∈  . Then the spectral radius of graph G 
as follows: 

(i) If ( )1G N G∈ . Then  

 ( )
1
22 2 .

2 2
n nGρ  − −    =         

 

(ii) If ( )2G N G∈  and let , ,c ab bc bd cd d bcd e abcd′ ′ ′= + + + = = . Then  

 ( )

1
1 1 2
2 21 2 4 24 / ,

2 3 3 3
G c c d cρ

 
      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            

 

where  

 

( )( ) ( ) ( )

( ) ( )

2
1 32 3 23 2

1
1 33 23 2

4 12 2 108 72

/ 3 2 2 108 72 ,

c e c d e c A

c d e c A

 
  ′ ′ ′ ′ ′ ′∆ = + + − + + +   
   

 
  ′ ′ ′ ′− + + +   
   

 

where  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 3 2

3 4

432 3456 432 15552

6912 11664 .

A e c e c d c e c d

e d

′ ′ ′ ′ ′ ′ ′ ′ ′= − + − +

′ ′− +
 

(iii) If ( )3G N G∈  and let c ab ac bc bd ce′ = + + + + , d abc′ = ,  
e abdc abec dbec′ = + + . Then  

 ( )

1
1 1 2
2 21 2 4 24 / ,

2 3 3 3
G c c d cρ

 
      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            

 

where  

 

( )( ) ( ) ( )

( ) ( )

2
1 32 3 23 2

1
1 33 23 2

4 12 2 108 72

/ 3 2 2 108 72 ,

c e c d e c A

c d e c A

 
  ′ ′ ′ ′ ′ ′∆ = + + − + + +   
   

 
  ′ ′ ′ ′− + + +   
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where  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 3 2

3 4

432 3456 432 15552

6912 11664 .

A e c e c d c e c d

e d

′ ′ ′ ′ ′ ′ ′ ′ ′= − + − +

′ ′− +
 

(iv) If ( )4G N G∈  and let c ab ae be bc cd de′ = + + + + + , d abe′ = ,  
e abed aecd abcd abec′ = + + + . Then  

 ( )

1
1 1 2
2 21 2 4 24 / ,

2 3 3 3
G c c d cρ

 
      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            

 

where  

( )( ) ( ) ( )

( ) ( )

2
1 32 3 23 2

1
1 33 23 2

4 12 2 108 72

/ 3 2 2 108 72 ,

c e c d e c A

c d e c A

 
  ′ ′ ′ ′ ′ ′∆ = + + − + + +   
   

 
  ′ ′ ′ ′− + + +   
   

 

where  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 3 2

3 4

432 3456 432 15552

6912 11664 .

A e c e c d c e c d

e d

′ ′ ′ ′ ′ ′ ′ ′ ′= − + − +

′ ′− +
 

(v) If ( )5G N G∈  and let c ab bc bf cf cd de ef′ = + + + + + + , d bcf′ = ,  
e abed abcd bdec abcf abef bcef fbcd fbed′ = + + + + + + + . Then  

( )

1
1 1 2
2 21 2 4 24 / ,

2 3 3 3
G c c d cρ

 
      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            

 

where  

( )( ) ( ) ( )

( ) ( )

2
1 32 3 23 2

1
1 33 23 2

4 12 2 108 72

/ 3 2 2 108 72 ,

c e c d e c A

c d e c A

 
  ′ ′ ′ ′ ′ ′∆ = + + − + + +   
   

 
  ′ ′ ′ ′− + + +   
   

 

where  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 3 2

3 4

432 3456 432 15552

6912 11664 .

A e c e c d c e c d

e d

′ ′ ′ ′ ′ ′ ′ ′ ′= − + − +

′ ′− +
 

(vi) If ( )6G N G∈  and let c ab ac ad bc bd cd′ = + + + + + ,  
d abc abd acd bcd′ = + + + , e abcd′ = . Then  
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( )

1
1 1 2
2 21 2 4 24 / ,

2 3 3 3
G c c d cρ

 
      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            

 

where  

( )( ) ( ) ( )

( ) ( )

2
1 32 3 23 2

1
1 33 23 2

4 36 2 108 216

/ 3 2 2 108 216 ,

c e c d e c A

c d e c A

 
  ′ ′ ′ ′ ′ ′∆ = − + − + − +   
   

 
  ′ ′ ′ ′− + − +   
   

 

where  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 3 2

3 4

1296 31104 432 46656

1886624 11664 .

A e c e c d c e c d

e d

′ ′ ′ ′ ′ ′ ′ ′ ′= + − −

′ ′+ +
 

(vii) If ( )7G N G∈  and let c ab ac af bc be cd df de fe′ = + + + + + + + + ,  
d abc def′ = + , e abed abdf acbe aced acef afed abcd fcde′ = + + + + + + + +   
abcf bcef fbcd fbed+ + + . Then  

 ( )

1
1 1 2
2 21 2 4 24 / ,

2 3 3 3
G c c d cρ

 
      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            

 

where  

 

( )( ) ( ) ( )

( ) ( )

2
1 32 3 23 2

1
1 33 23 2

4 12 2 108 72

/ 3 2 2 108 72 ,

c e c d e c A

c d e c A

 
  ′ ′ ′ ′ ′ ′∆ = + + − + + +   
   

 
  ′ ′ ′ ′− + + +   
   

 

where  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 3 2

3 4

432 3456 432 15552

6912 11664 .

A e c e c d c e c d

e d

′ ′ ′ ′ ′ ′ ′ ′ ′= − + − +

′ ′− +
 

(viii) If ( )8G N G∈ . Then  

( ) ( )( )
1

1 2
2 21 2 2 2 2 4 .

2
G ab bc cd ab bc cd abcdρ

 
= + + + + + − 

  
 

(ix) If ( )9G N G∈ . Then  

 ( ) ( )( ( ))
1

1 22 2
1 2 2 2 2 2 4 .
2

G ab bc cd de ab bc cd de abcd bcde abdeρ
= + + + + + + + − + +  

 

Proof. Here we only consider the cases ( )1G N G∈ , ( )2G N G∈ . The proof of 
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other cases is quite similar to ( )2G N G∈  and is thus omitted. 

Let ( )1G N G∈ . By Lemma 2.3, directly yields ( )
1
22 2

2 2
n nGρ  − −    =         

. 

Let ( )2G N G∈ . By Theorem 2.4 (ii), there exist 4 nonzero eigenvalues and all 
other eigenvalues are 0. So we only need to input polynomial  

( )4 2 2x ab bc bd cd x bcdx abcd− + + + − +  in maple 13.0, we can get the nonzero 
eigenvalues of the graph G as follows.  

( )

( )

( )

1
1 1 2

1 13 3
2 2

1

1 1
1 13 3
2 2

1 1
1 13 3
2 2

1 2 1 6 3 / 6
2 3 3

4 1 6 3 / 6
3 3

2 14 / 6 3 / 6
3 3

ab bc bd cd D E F D E

ab bc bd cd D E F D E

bcd ab bc bd cd D E F D E

λ


      = + + + + + − +             



   + + + + − + + +       
   



 
    + + + + + + − +       
   

 

1
1 2
2

,


 
 
 
    

 

( )

( )

( )

1
1 1 2

1 13 3
2 2

2

1 1
1 13 3
2 2

1 1
1 13 3
2 2

1 2 1 6 3 / 6
2 3 3

4 1 6 3 / 6
3 3

2 14 / 6 3 / 6
3 3

ab bc bd cd D E F D E

ab bc bd cd D E F D E

bcd ab bc bd cd D E F D E

λ


      = + + + + + − +             



   − + + + − + + +       
   



 
    + + + + + + − +       
   

 

1
1 2
2

,


 
 
 
    

 

( )

( )

( )

1
1 1 2

1 13 3
2 2

3

1 1
1 13 3
2 2

1 1
1 13 3
2 2

1 2 1 6 3 / 6
2 3 3

4 1 6 3 / 6
3 3

2 14 / 6 3 / 6
3 3

ab bc bd cd D E F D E

ab bc bd cd D E F D E

bcd ab bc bd cd D E F D E

λ


      = − + + + + + − +             



   + + + + − + + +       
   



 
    − + + + + + − +       
   

 

1
1 2
2

,
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( )

( )

( )

1
1 1 2

1 13 3
2 2

4

1 1
1 13 3
2 2

1 1
1 13 3
2 2

1 2 1 6 3 / 6
2 3 3

4 1 6 3 / 6
3 3

2 14 / 6 3 / 6
3 3

ab bc bd cd D E F D E

ab bc bd cd D E F D E

bcd ab bc bd cd D E F D E

λ


      = − + + + + + − +             



   − + + + − + + +       
   



 
    − + + + + + − +       
   

 

1
1 2
2

.


 
       

 

where  
3 3 3 3 3 3 3 3 2 2 2 2 2 2

2 2 3 2 3 2 3 3 2 3 2

3 2 3 2 2 3 2 3 3 2 2 3 2 2 2

33 30 30

33 6 3 3 3 3

3 3 3 3 3 3 48 ,

D a b b c b d c d a b cd ab c d ab cd
abc d ab cd a b c a b d ab c ab d

b c d b cd b c d b cd bc d bc d b c d

= − − − − + + +

+ − − − − −

− − − − − − +

 

5 5 4 5 2 4 5 2 4 4 2 2 3 5 3

3 5 2 2 3 5 3 3 4 3 2 3 4 2 3 3 3 3 3

2 5 4 2 5 3 2 2 5 2 3 2 5 4 2 4 4 2

2 4 3 3 2 4 2 4 2 3 4 3 2 3 3

3 12 12 12 18

39 18 12 12 18

12 45 45 12 12

75 12 12 12

E a b cd a b c d a b cd a b c d a b c d
a b c d a b cd a b c d a b c d a b c d
a b c d a b c d a b c d a b cd a b c d
a b c d a b c d a b c d a b c

= − − − + −

− − + + −

− − − − −

+ − + + 4 2 2 4 4

5 5 5 4 2 5 3 3 5 2 4 5 5 4 5 2

12

3 21 36 21 3 12

d a b c d
ab c d ab c d ab c d ab c d ab cd ab c d

+

− − − − − −

 

 

4 4 3 4 3 4 4 2 5 3 5 3 3 4 4

3 3 5 2 5 4 2 4 5 5 5 5 5 2 5 4 3

5 3 4 5 2 5 4 5 3 4 4 4 4 3 5 3 5 4

3 4 5 2 5 5

54 54 12 18 63

18 12 12 3 3 9

9 3 9 63 9 9

9 3 ,

ab c d ab c d ab c d ab c d ab c d
ab c d ab c d ab c d abc d b c d b c d

b c d b c d b c d b c d b c d b c d
b c d b c d

+ + − − +

− − − − − −

− − − + − −

− −

 

2 2 2 2 2 2

2 2 2 2 2 2

14 1 2 1 2
9 9 9 9 9

1 2 2 1 .
9 9 9 9

F abcd a b ab d b c b cd

b d c bd bcd c d

= − − − − −

− − − −
 

Due to 3 4, 0λ λ < , 1 2, 0λ λ >  and 1 2λ λ> , we can obviously get 1λ  is the 
spectral radius of graph G. Let c ab bc bd cd′ = + + + , d bcd′ = , e abcd′ = , due 
to  

 

( ) ( ) ( )
( ) ( )

3 3 3 3 3 3 3 3 2 2 2 2 2 2

2 2 3 2 3 2 3 3 2 3 2

3 2 3 2 2 3 2 3 3 2 2 3 2 2 2

3 2

3 2

33 30 30

33 6 3 3 3 3

3 3 3 3 3 3 48

54 36

54 36

D a b b c b d c d a b cd ab c d ab cd
abc d ab cd a b c a b d ab c ab d

b c d b cd b c d b cd bc d bc d b c d

ab bc bd cd bcd abcd ab bc bd cd

c d e

= − − − − + + +

+ − − − − −

− − − − − − +

= − + + + + + + + +

′ ′ ′ ′= − + + c  
5 5 4 5 2 4 5 2 4 4 2 2 3 5 3

3 5 2 2 3 5 3 3 4 3 2 3 4 2 3 3 3 3 3

2 5 4 2 5 3 2 2 5 2 3 2 5 4 2 4 4 2

3 12 12 12 18

39 18 12 12 18

12 45 45 12 12

E a b cd a b c d a b cd a b c d a b c d
a b c d a b cd a b c d a b c d a b c d
a b c d a b c d a b c d a b cd a b c d

= − − − + −

− − + + −

− − − − −
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2 4 3 3 2 4 2 4 2 3 4 3 2 3 3 4 2 2 4 4

5 5 5 4 2 5 3 3 5 2 4 5 5 4 5 2

75 12 12 12 12

3 21 36 21 3 12

a b c d a b c d a b c d a b c d a b c d
ab c d ab c d ab c d ab c d ab cd ab c d

+ − + + +

− − − − − −
 

 

4 4 3 4 3 4 4 2 5 3 5 3 3 4 4

3 3 5 2 5 4 2 4 5 5 5 5 5 2 5 4 3

5 3 4 5 2 5 4 5 3 4 4 4 4 3 5 3 5 4

3 4 5 2 5 5

54 54 12 18 63

18 12 12 3 3 9

9 3 9 63 9 9

9 3

ab c d ab c d ab c d ab c d ab c d
ab c d ab c d ab c d abc d b c d b c d

b c d b c d b c d b c d b c d b c d
b c d b c d

+ + − − +

− − − − − −

− − − + − −

− −

 

( ) ( ) ( )
( ) ( ) ( )( )
( ) ( )

4 2 2

2 3 2

3 4

3 24

3 108

48 81

abcd ab bc bd cd abcd ab bc bd cd

bcd ab bc bd cd abcd ab bc bd cd bcd

abcd bcd

= − + + + + + + +

− + + + + + + +

− +

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

4 2 2 2 3 2 3 4

4 2 2 2 3 2

3 4

3 24 3 108 48 81

432 3456 432 15552

6912 11664 /144

/144

e c e c d c e c d e d

e c e c d c e c d

e d

A

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − + − + − +

 ′ ′ ′ ′ ′ ′ ′ ′ ′= − + − +
′ ′− + 

=

 

( )( )
( )( )

2 2 2 2 2 2

2 2 2 2 2 2

2

2

14 1 2 1 2
9 9 9 9 9

1 2 2 1
9 9 9 9
1 12
9
1 12 .
9

F abcd a b ab d b c b cd

b d c bd bcd c d

ab bc bd cd abcd

c e

= − − − − −

− − − −

= − + + + +

′ ′= − +

 

Then we have  

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )

1 1
1 13 3
2 2

1
1 33 2
2

1
1 32 3 2
2

2
1 32 3 23 2

3 23

1 6 3 / 6
3

1 54 36 6 /144
3

13 12 / 54 36 6 /144
9

4 12 2 108 72

/ 3 2 2 108

D E F D E

c d e c A

c e c d e c A

c e c d e c A

c d

   
+ − +      

   

 ′ ′ ′ ′= − + + + 
 

  ′ ′ ′ ′ ′ ′− − + − + + +      
 

  ′ ′ ′ ′ ′ ′= + + − + + +   
   

′ ′− +

1
1 3
272e c A

 
  ′ ′+ +   
   

= ∆

 

So we get  

( )

1
1 1 2

1 13 3
2 2

1
1 2 1 6 3 / 6
2 3 3

ab bc bd cd D E F D Eλ


      = + + + + + − +             
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( )

( )

1 1
1 13 3
2 2

1
1 2

1 1 2
1 13 3
2 2

4 1 6 3 / 6
3 3

2 14 / 6 3 / 6
3 3

ab bc bd cd D E F D E

bcd ab bc bd cd D E F D E


   + + + + − + + +       
   




         + + + + + + − +                  

 

 

( )

( ) ( )

( )

1
2

1
1 2
2

1
1 1 2
2 2

1 2
2 3

4 24 /
3 3

1 2 4 24 /
2 3 3 3

ab bc bd cd

ab bc bd cd bcd ab bc bd cd

c c d c

Gρ


 = + + + + ∆  


    + + + + − ∆ + + + + + ∆       
 

      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            
=

 

It is consistent with the spectral radius obtained as above. 
This completes the proof.                                           □ 

Example 1. Solve the spectral radius of graph ( )4 5,6,3,4,6G G o= . 
By employing maple 13.0 to calculate, we can get that 1.5808, −5.3747, −9.5359, 

13.3297 are the nonzero eigenvalues of the graph G. By comparison, it is obvious 
that 13.3297 is the spectral radius of the graph G.  

Theorem 3.2. Let ( )1 2 9, , ,G N G G G∈  . Then the energy of graph G as fol-
lows, where the notations is defined as same as above Theorem. 

(i) If ( )1G N G∈ . Then  

( ) ( ) ( )
1 1
2 22 2 .E G ab cd= +  

(ii) If ( )2G N G∈ . Then  

( )
1
222 .

3
E G c ′= + ∆ 

 
 

(iii) If ( )3G N G∈ .Then  

( )
1
222 .

3
E G c ′= + ∆ 

 
 

(iv) If ( )4G N G∈ . Then  

 ( )
1
222 .

3
E G c ′= + ∆ 

 
 

(v) If ( )5G N G∈ . Then  

https://doi.org/10.4236/am.2023.1411045


J. X. Luo 
 

 

DOI: 10.4236/am.2023.1411045 758 Applied Mathematics 
 

 ( )
1
222 .

3
E G c ′= + ∆ 

 
 

(vi) If ( )6G N G∈ . Then  

 ( )

1
1 1 2
2 22 4 24 / .

3 3 3
E G c c d c

 
    ′ ′ ′ ′= + ∆ + − ∆ + + ∆       

 

 

(vii) If ( )7G N G∈ . Then  

 ( )
1
222 .

3
E G c ′= + ∆ 

 
 

(viii) If ( )8G N G∈ . Then  

 

( ) ( )( )

( )( )

1
1 2

2 2

1
1 2

2 2

2 2 2 2 4

2 2 2 2 4 .

E G ab bc cd ab bc cd abcd

ab bc cd ab bc cd abcd

 
= + + + + + − 
  

 
+ + + − + + − 
  

 

(ix) If ( )9G N G∈ . Then  

 

( ) ( ) ((

)) ( )(

( ))

2

1
1 2 22

1
1 2
2

2 2 2 2 2 4

2 2 2 2 2

4 .

E G ab bc cd de ab bc cd de abcd bcde

abde ab bc cd de ab bc cd de

abcd bcde abde


= + + + + + + + − +


 
+ + + + + − + + + 




− + + 



 

Proof. Here we only consider the cases ( )2G N G∈ . The proof of other cases 
is quite similar to ( )2G N G∈  and is thus omitted. 

The proof of Theorem 3.2 follows from Theorem 3.1. So we have  

1
1 1 2
2 2

1
1 2 4 24 / ,
2 3 3 3

c c d cλ

 
      ′ ′ ′ ′= + ∆ + − ∆ + + ∆            

 

1
1 1 2
2 2

2
1 2 4 24 / ,
2 3 3 3

c c d cλ

 
      ′ ′ ′ ′= + ∆ − − ∆ + + ∆            

 

1
1 1 2
2 2

3
1 2 4 24 / ,
2 3 3 3

c c d cλ

 
      ′ ′ ′ ′= − + ∆ + − ∆ − + ∆            
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1
1 1 2
2 2

4
1 2 4 24 / .
2 3 3 3

c c d cλ

 
      ′ ′ ′ ′= − + ∆ − − ∆ − + ∆            

 

Due to 3 4, 0λ λ < , 1 2, 0λ λ > , we get  

 
( ) 1 2 3 4

1 2 3 4
1
222

3

E G

c

λ λ λ λ

λ λ λ λ

= + + +

= + − −

 ′= + ∆ 
 

 

It is consistent with the energy obtained as above. 
This completes the proof.                                           □ 

4. The Spectral Characterization of Graphs with Rank 4 

In this section, we will investigate which graph ( )1 2 9, , ,G N G G G∈   is DS and 
find some cospectral graphs. 

Theorem 4.1. Let 4 1G G rK′= ∪ , where 1a b e= = =  in 4G′ . Then G is DS.  
Proof. Suppose that G has 3 c d r′ ′+ + +  vertices. Checking G, we note that it 

only contains one triangle. This implies, by Lemma 2.2 (v), that if graph H is 
cospectral with G, then H must contain one triangle. By Lemma 2.1 and Lemma 
2.4, 2 1G gK′ ∪  (here 1b c d= = =  in 2G′ ), 3 1G mK′ ∪  (here 1a b c= = =  in 

3G′ ) and 5 1G wK′ ∪  (here 1b c f= = =  in 5G′ ) contains one triangle, respec-
tively. It has been proved that 2 1G gK′ ∪  (here 1b c d= = =  in 2G′ ) is DS. In 
the following we consider two cases. 

Case 1. Assume that G and 3 1G mK′ ∪  are cospectral and let 1 d e≤ ≤ ,  
1 c d′ ′≤ ≤ . Therefore, G and 3 1G mK′ ∪  have the same vertices and coefficients 
of their characteristic polynomials. By Lemma 2.4 (iv) and (iii), we have  

3 3
3 3

2

c d r d e m
c d c d d e

c d c d d e de

′ ′+ + + = + + +
 ′ ′ ′ ′+ + + = + +
 ′ ′ ′ ′+ + = + +

 

Solving the equation system as above, we obtain that r m c d de′ ′− = = , which 
implies d c d e′ ′=  and 0r m− > . By 3 3c d r d e m′ ′+ + + = + + +  and  

0r m− > , we can obtain that d e c d′ ′+ > + . Taking d c d e′ ′=  into  
d e c d′ ′+ > + , we obtain that ( )2 0e c d e c d′ ′ ′ ′− + + > . Solving this equation, we 
obtain that e d ′>  or e c′< . However, by c d de′ ′ =  and 1 d e≤ ≤ , 1 c d′ ′≤ ≤ , 
we obtain that c d e d′ ′≤ ≤ ≤  or d c d e′ ′≤ ≤ ≤ , which in contradict with e d ′>  
or e c′< . Hence G and 3 1G mK′ ∪  are not cospectral. 

Case 2. Assume that G and 5 1G wK′ ∪  are cospectral. Therefore, G and  

5 1G wK′ ∪  have the same vertices and coefficients of their characteristic poly-
nomials. By Lemma 2.4 (iv) and (v), we obtain that  

 
3 3
3 3

2 2

c d r a d e w
c d c d a d e ed

c d c d a d e ad ae ed aed

′ ′+ + + = + + + +
 ′ ′ ′ ′+ + + = + + + +
 ′ ′ ′ ′+ + = + + + + + +
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Solving the equation system as above, we have  

 
w r ed c d
c d ad ae ed aed
c d c d a d e ed

′ ′− = −
 ′ ′ = + + +
 ′ ′ ′ ′+ + = + + +

 

By c d ad ae ed aed′ ′ = + + + , we obtain that ( )c ad ae ed aed d′ ′= + + + . 
Taking ( )c ad ae ed aed d′ ′= + + +  into c d c d a d e ed′ ′ ′ ′+ + = + + + , we ob-
tain that ( )2 0d ad ae aed a d e d ad ae ed aed′ ′+ + + − − − + + + + = . Supposing 
the roots of the equation as above are 11 12,d d , we have  

( ) ( ) ( )11 12

11 12

1 1 1d d a d d ae e a
d d ad ae ed aed
 + = − + − + −


= + + +
 

By the definition of 5G′ , one has , , 1a e d ≥ , which implies that 11 12 0d d+ ≤ , 

11 12 0d d > . By 11 12 0d d > , we know that 11 12,d d  are nonzero and have the same 
sign. However, by 11 12 0d d+ ≤ , we know that 11 12, 0d d < . This contradicts the 
fact 11 12, > 0d d . Thus, G and 5 1G wK′ ∪  are not cospectral. 

Next, assume that ( )4 1,1, , ,1G o c d′ ′  and ( )4 1,1, , ,1G o c d′′ ′′  are cospectral 
and c c d d′′ ′ ′ ′′< ≤ < . Therefore, they have the same vertices and coefficients of 
their characteristic polynomials. By Lemma 2.4 (iv), we get that  

3 3
3 3

2 2

c d c d
c d c d c d c d

c d c d c d c d

′′ ′′ ′ ′+ + = + +
 ′′ ′′ ′′ ′′ ′ ′ ′ ′+ + + = + + +
 ′′ ′′ ′′ ′′ ′ ′ ′ ′+ + = + +

 

Solving the equation system as above, we obtain that c d c d′′ ′′ ′ ′+ = + ,  
c d c d′′ ′′ ′ ′= . By c d c d′′ ′′ ′ ′= , we obtain that c c d d′′ ′ ′ ′′= . Taking c c d d′′ ′ ′ ′′=  
into c d c d′′ ′′ ′ ′+ = + , we have ( )2 0d c d d c d′′ ′ ′ ′′ ′ ′− + + = . Solving this equa-
tion, we obtain that d c′′ ′=  or d d′′ ′= . If d c′′ ′= , c d′′ ′< , then we have  
c d c d′′ ′′ ′ ′+ < + , a contradiction; If d d′′ ′= , c c′ ′′> , then we have  
c d c d′′ ′′ ′ ′+ < + , a contradiction. Thus, ( )4 1,1, , ,1G o c d′ ′  and  

( )4 1,1, , ,1G o c d′′ ′′  are not cospectral. 
From the argument above, we obtain that G is DS.                     □ 
Theorem 4.2. Let 3G G′= , where 1a b c= = =  in 3G′ . Then G is DS if and 

only if w ed≠  or ( )2 0e a d e de e ad ae de aed′ ′− + + + + + + + =  has no posi-
tive integer solution.  

Proof. Suppose that G has 3 d e′ ′+ +  vertices. By Lemma 2.2 (v), we know if 
graph H is cospectral with graph G, then H must contain one triangle. By Lem-
ma 2.1 and Theorem 2.4, 2 1G gK′ ∪ (here 1b c d= = = ), 4 1G rK′ ∪  (here  

1a b e= = = ) and 5 1G wK′ ∪  (here 1b c f= = = ) contain one triangle, respec-
tively. It has been proved that 2 1G gK′ ∪  (here 1b c d= = = ) is DS. In the fol-
lowing we consider two cases. 

Case 1. Assume that G and 4 1G rK′ ∪  are cospectral and let 1 d e′ ′≤ ≤ ,  
1 c d≤ ≤ . Therefore, G and 4 1G rK′ ∪  have the same vertices and coefficients of 
their characteristic polynomials. By Lemma 2.4 (iii) and (iv), we have  
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3 3
3 3

2

d e c d r
d e c d cd

s e d e c d cd

′ ′+ + = + + +
 ′ ′+ + = + + +
 ′ ′ ′+ + = + +

 

Solving the equation system as above, we obtain that r cd d e′ ′= = , which im-
plies that d cd e′ ′=  and 0r > . By 3 3d e c d r′ ′+ + = + + +  and 0r > , we 
can obtain that d e c d′ ′+ > + . Taking d cd e′ ′=  into d e c d′ ′+ > + , we ob-
tain that ( )2 0e c d e cd′ ′− + + > . Solving the equation as above, we obtain that 
e d′ >  or e c′ < . However, by cd d e′ ′= , 1 d e′ ′≤ ≤ , 1 c d≤ ≤ , we obtain that 
c d e d′ ′≤ ≤ ≤  or d c d e′ ′≤ ≤ ≤ , which in contradict with e d′ >  or e c′ < . 
Thus, G and 4 1G rK′ ∪  are not cospectral. 

Case 2. Assume that G and 5 1G wK′ ∪  are cospectral. Therefore, G and  

5 1G wK′ ∪  have the same vertices and coefficients of their characteristic poly-
nomials. By Lemma 2.4 (iii) and (v), we have  

 
3 3
3 3

2

d e a d e w
d e a d e ed

s d d e a d e ad ae ed aed

′ ′+ + = + + + +
 ′ ′+ + = + + + +
 ′ ′ ′+ + = + + + + + +

 

Solving the equation system as above, we have  

 
2

w ed
d e ad ae ed aed
d e a d e ed

=
 ′ ′ = + + +
 ′ ′+ = + + +

 

By d e ad ae ed aed′ ′ = + + + , we obtain that ( )d ad ae ed aed e′ ′= + + + . 
Taking ( )d ad ae ed aed e′ ′= + + +  into 2d e a d e ed′ ′+ = + + + , we obtain 
that ( )2 0e a d e de e ad ae de aed′ ′− + + + + + + + = . If w ed=  and  

( )2 0e a d e de e ad ae de aed′ ′− + + + + + + + =  has positive integer solution are 
satisfied at the same time, then G and 5 1G wK′ ∪  are cospectral. On the con-
trary, G and 5 1G wK′ ∪  are not cospectral. 

Then, assume that ( )3 1,1,1, ,G o d e′ ′  and ( )3 1,1,1, ,G o d e′′ ′′  are cospectral 
and let d d e e′′ ′ ′ ′′< ≤ < . Therefore, they have the same vertices and coefficients 
of their characteristic polynomials. By Lemma 2.4 (iii), we have  

 
3 3d e d e
d e d e d e d e

′ ′ ′′ ′′+ + = + +
 ′ ′ ′ ′ ′′ ′′ ′′ ′′+ + = + +

 

Solving the equation system as above, we obtain that d e d e′ ′ ′′ ′′+ = + ,  
d e d e′ ′ ′′ ′′= . By d e d e′ ′ ′′ ′′= , we have d d e e′ ′′ ′′ ′= . Taking d d e e′ ′′ ′′ ′=  into 
d e d e′ ′ ′′ ′′+ = + , we have ( )2 0e d e e d e′ ′′ ′′ ′ ′′ ′′− + + = . Solving the equation as 
above, we obtain that e d′ ′′=  or e e′ ′′= . If e d′ ′′= , d e′ ′′< . Then we have  
d e d e′ ′ ′′ ′′+ < + , which in contradict with d e d e′ ′ ′′ ′′+ = + ; When e e′ ′′= ,  
d d′ ′′> . Then we have d e d e′ ′ ′′ ′′+ > + , which in contradict with  
d e d e′ ′ ′′ ′′+ = + . Thus, ( )3 1,1,1, ,G o d e′ ′  and ( )3 1,1,1, ,G o d e′′ ′′  are not cos-
pectral. 

In conclusion, we obtain that G is DS if and only if w ed≠  or  
( )2 0e a d e de e ad ae de aed′ ′− + + + + + + + =  has no positive integer solution.  

□ 
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Figure 2. G and H. 

 
Corollary 4.3. Let 3G G′=  where 1a b c= = =  in 3G′  and 5 1H G kK′= ∪  

where 1b c d e f= = = = =  in 5G′ . They are cospectral if and only if 1k =  and 
( )2 3 3 1 0e a e a′ ′− + + + =  has positive integer solution, where the graphs ,G H  

are depicted in Figure 2.  
Proof. By Theorem 4.2, we can obtain it obviously.                    □ 

5. Conclusion 

In this paper, we give the expressions of the spectral radius and energy of all graphs 
with rank 4. At the same time, we investigate some graph ( )1 2 9, , ,G N G G G∈   
is DS and find some cospectral graphs. 
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Abstract 
As a branch of applied mathematics, coding theory plays an important role. 
Among them, cyclic codes have attracted much attention because of their 
good algebraic structure and easy analysis performance. In this paper, we will 
study one class of cyclic codes over 3 . Given the length and dimension, we 
show that it is optimal by proving its minimum distance is equal to 4, ac-
cording to the Sphere Packing bound. 
 

Keywords 
Cyclic Code, Minimal Distance, Sphere Packing Bound 

 

1. Introduction 

Information transmission is an important means of human communication, and 
with the development of technology, coding theory has also been established. In 
the information age, cyberspace security is a very important issue, and crypto-
graphy and encoding play important roles in it. Coding theory is a technique for 
encoding information. During the process of transmitting information, it is in-
evitable that information may be distorted due to some reasons. In this process, 
information cannot correct errors on its own. Therefore, a self-correcting code 
space has been studied, which is called the error-correcting-codes. 

Among error-correction-codes, linear codes are widely studied due to their 
excellent algebraic structure and other characteristics, and cyclic codes are the 
most important among them. Due to their excellent algebraic structure and cyc-
lic properties, they can be easily studied and obtained through algebraic methods, 
and are widely used in various information security systems. 

Let mp
  be a finite field with mp  elements, where p is a prime. A linear 

code   with parameters [ ], ,n k d  over p  is a linear subspace of m
n
p

 , which 
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has the length n, dimension k and minimum Hamming distance d. We say the 
linear code   is a cyclic code if for any codewords ( )0 1 1, , , nc c c c −= ∈  , the 
cyclic shift of the codeword ( )1 0 2, , ,n nc c c− − ∈  . Now we use the polynomial 
ring [ ]p x  and the quotient ring [ ] ( )1n

p x x −  to describe the cyclic code. 
We define a linear code as a cyclic code if for any codeword ( )f x ∈ , which 
can be identified with a polynomial  

[ ] ( )2 1
0 1 2 1 1 ,n n

n pc c x c x c x x x−
−+ + + ⋅ ⋅ ⋅ + ∈ −  

the codeword ( )xf x ∈ . So we can easily know that an nonempty set   in 
n
p  is a cyclic code if and only if   is a principal ring in n

p . We denote any 
cyclic code   as ( )g x= , and ( )g x  is called the generator polynomial of 
 . 

The study of cyclic codes has been the focus of attention in recent years. Be-
cause of its excellent characteristics, it has been widely used in lots of fields. We 
always hope that a cyclic code has better error correction ability. The error cor-
rection ability is closely related to the minimum distance. The larger minimum 
distance it has, the better error correction ability it gets. Therefore, we are very 
interested in the minimum distance of a code. 

Let 3p = , we consider the cyclic code ( ),u v  over the finite field 3 . Ding 
and Helleseth [1] state the theory of the APN monomials and used some of these 
to construct many classes of optimal ternary cyclic codes in 2013. In 2019, by 
giving a new ternary power mapping, Yan and Han [2] considered a related op-
timal ternary cyclic code which ( )1, 3 3 4mu v= = −  in some conditions. Zha 
and Hu [3] proved some new classes of optimal ternary cyclic codes with mini-
mum distance 4 for some given parameters v, 1u =  in 2020. For the given 

( )3 1 2mu = + , Ding and Zhou [4] studied the cyclic code is optimal when 
( )3 1 2sv = +  in some conditions. Similarly, Fan, Zhou and Li [5] proved that  

the cyclic code 
( )1 23 1,2 3 1

2

m
m− + ⋅ + 

 

  is optimal when m is odd in 2016. They also  

discussed the weight distribution of the dual of this code. In 2020, Liu, Cao and 
Lu [6] studied the code ( )2,v , which is constructed by using monomials 2x  
and vx . For ( ) ( )3 1 2 2 3 1m kv = − + + , ( )2,v  is optimal by choosing suitable m 
and k. Recently, by choosing proper u and v, Zha, Hu, Liu and Cao [7] show  
that 

3 1 3 1,
2 2

m m
v

 + − + 
 

  and ( )1,v  have the same optimality. 

In previous studies, there are not many studies on cyclic codes with parameter  

( ),u v , 
3 1

2

m

u +
= . In this paper, we study the cyclic code ( ),u v  with the para-

meters which is 13 1 3 7,
2 8

m m+ + + 
 
 

 . We show that the minimum distance of this cyclic  

code is equal to 4 for the given 3 1mn = −  and 3 1 2mk m= − − , according to the 
Sphere Packing bound. It is optimal. Therefore, in the coding theory, we can ob-
tain a new class of ternary cyclic codes whose minimum distance can reach the 
theoretical maximum for the given length and dimension. It can achieve the best 
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error correction effect and ensure that the information is not distorted as much 
as possible in the transmission process. These cyclic codes will have important 
applications in radar, satellite communications and other communication fields. 

2. Preliminaries 

● The notation we use in this paper 
(1) p is prime, and is an odd. Let 3p = . 
(2) , , ,s r m k  are positive integers, m is odd. 
(3) Let SQ be the set of square in 

3m , NSQ be the set of the nonsquare in 

3m . 

(4) In 
3m , we have 

3 1
2

m

α α
+

=  if SQα ∈  and 
3 1

2

m

α α
+

= −  if NSQα ∈ .  

● The p-cyclotomic cosets modulo n, 1mn p= −  
We define the p-cyclotomic coset modulo n containing j as  

{ }2 1, , , , k
jC j pj p j p j−= ⋅ ⋅ ⋅   

and k is the smallest positive integer such that ( )kp j j modn≡ . In this paper, let 
3p = . The cyclic code of length 3 1mn = − . The dimension of this code ( ),u v  is 

determined by k, where vk C= . The dimension of ( ),u v  is equal to ( )n m k− + . 
We now consider the case that 1v C∉  and k m= , so the dimension is equal to 
3 1 2m m− − .  

Theorem 2.1. [8] (Sphere Packing Bound) ( ),pA n d  is the maximum num-
ber of codewords in a code over p  of length n and minimum distance at least 
d, or we use kp  to represent it. Then 

( )
( )0

,
1

n

p
it

i

pA n d
n

p
i=

≤
 

− 
 

∑
 

where ( )1 2t d = −  . 
We can see that by using Sphere Packing Bound, we can get a bound of the 

minimum distance of a cyclic code. Taking the cyclic code to be studied in this 
paper as an example, let 3p = , and when 3 1mn = − , 3 1 2mk m= − − , the min-
imum distance of this cyclic codes can be obtained no more than 4. We obtain 
the upper bound of the minimum distance of this cyclic code. Therefore, we only 
need to prove that the minimum distance of this cyclic code can reach this upper 
bound, and it can be shown that it is optimal. 

The distance d between two codewords ,c c ∈  is defined to be the number 
of coordinates in which ,c c  are different. The minimum distance of a code   
is the smallest distance between distinct codewords. The weight wt(c) of a code-
word c is the number of the nonzero coordinates in c. It has ( ) ( ),d c c wt c c= −  
[9]. If   is a linear code, the minimum distance equal to the minimum weight 
of the nonzero codewords of  . The parity check matrices of a code is a ma-
trices H which satisfied  

T 0Hc =  
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c∈ . The parity check matrices of a code are the generator matrices of its dual 
code. From the definition of dual codes, the parity check matrices of the code 

( ),u v  is define as 

( )

( )

3 12

3 12

m

m

uu u

vv v

π π π

π π π

−

−

 
 
  
 





 

π  is a generator of 
3m
∗ . 

If a linear code   has minimum distance d, there exist two distinct code-
words ,c c ∈ , T 0Hc = , T 0Hc = , satisfied 

1 1 2 2

1 1 2 2

0

0

u u u
d d

v v v
d d

c x c x c x

c x c x c x

 + + + =


+ + + =

  


  


 

,j jc c  is the coordinates of the codeword ,c c , respectively. i j jc c c= − , 

j jc c≠ , j
ix π= , 1 3 1mj≤ ≤ − , 1,2, ,i d=  . 

If the code has minimum distance d, the equations above has solution, if the 
code has not minimum distance d, the equations above has not solution. So we 
can discuss the solution of the equations to find if the code has the codeword of 
weight d. According to the minimum distance 4d ≤  given by the sphere pack-
ing bound, we can prove that 4d = .  

Lemma 2.2. Let ( )3 1 2mu = + , v be an odd, 1v C∉ , and v vC m= = . 
Cyclic code ( ),u v  has parameters 3 1,3 1 2 ,4m m m − − −   if and only if the fol-
lowing equations: 

( )1 1 vvx x+ = ± +                           (1) 

( )1 1 vvx x+ = ± −                           (2) 

( )1 1 vvx x− = ± −                           (3) 

and the equation 

( )1 1 vvx x− = ± +                           (4) 

have no solution in { }3
\ 0,1m . 

Proof. It is clear that the distance of the code cannot be 1. The code ( ),u v  has 
a codeword of Hamming weight 2 if and only if there exist two elements 

1 2 3,c c ∗∈  and two distinct elements 1 2 3
, mx x ∗∈  such that 

1 1 2 2

1 1 2 2

0

0

u u

v v

c x c x

c x c x

 + =


+ =
 

Case 1: 1 2 1c c= =  If 1x SQ∈ , 2x SQ∈ , the first equation becomes to  

1 2 0x x+ = , which is impossible because 1 2,x x  are all SQ. If 1x NSQ∈ ,  

2x NSQ∈ , the first equation becomes to 1 2x x= − , let 2
1x a= − , then we have 

2
2a x− = − , 2

2a x=  but 2x  is a NSQ, which is also impossible. If 1x SQ∈ ,  

2x NSQ∈  or 1x NSQ∈ , 2x SQ∈ , the first equation becomes to 1 2x x= , which 
is also a contradiction..  

Case 2: 1 21, 1c c= = −  If 1x SQ∈ , 2x SQ∈  or 1x NSQ∈ , 2x NSQ∈ , the first 
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equation becomes to 1 2x x= , which is a contradiction. If 1x SQ∈ , 2x NSQ∈  
or 1x NSQ∈ , 2x SQ∈ , the first equation becomes to 1 2x x= − . Taking it into 
the second equation we will get 12 0x = , which is a contradiction. 

Thus it does not have a codeword of Hamming weight 2.  
The code ( ),u v  has a codeword of Hamming weight 3 if and only if there ex-

ist three elements 1 2 3 3, ,c c c ∗∈  and three distinct elements 1 2 3 3
, , mx x x ∗∈  

such that 

1 1 2 2 3 3

1 1 2 2 3 3

0
0

u u u

v v v

c x c x c x
c x c x c x
 + + =


+ + =
                      (5) 

Case 1: 1 2 3 1c c c= = = . In this case, let 1 2 1 2 3 1,y x x y x x= = . It follows from 
(5) that  

 1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + + =


+ + =
                        (6) 

{ }1 2, 0,1y y ∉ . If 1 2,y y SQ∈  or 1 2,y SQ y NSQ∈ ∈ , (6) becomes to  

( )1 11 1 vvy y+ = ± +  

If 1 2,y y NSQ∈  or 1 2,y NSQ y SQ∈ ∈ , (6) becomes to  

( )1 11 1 vvy y+ = ± −  

Case 2: 1 2 31, 1c c c= = = − . Similarly, we arrive at  

 1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + − =


+ − =
                        (7) 

{ }1 2, 0,1y y ∉ . If 1 2,y y SQ∈  or 1 2,y SQ y NSQ∈ ∈ , (7) becomes to  

( )1 11 1 vvy y− = ± −   

If 1 2,y y NSQ∈  or 1 2,y NSQ y SQ∈ ∈ , (7) becomes to  

( )1 11 1 vvy y− = ± +  

So if the four equations have no solutions in 
3m
∗ , we get 4d ≥ , according to 

the Sphere Packing bound, the minimal distance of any linear code with length 
3 1m −  and the dimension 3 1 2m m− −  should be less than or equal 4. Hence 

4d = .                                                          □ 
The following Lemma will be used in the sequel of the proof. 
Lemma 2.3. [10] Let ( )f x  be a irreducible polynomial with degree r over 

p . If ( )f x  has a root in mp
 , then |r m .  

3. A Class of Optimal Ternary Cyclic Codes 

In this section, we construct a class of optimal ternary cyclic codes ( ),u v  with 
parameters 3 1,3 1 2 ,4m m m − − −  .  

Theorem 3.1. Let m is odd, 3m ≥ , ( )3 1 2mu = + , ( )13 7 8mv += + .  
( )3 mod 4m ≡ , 9 ,  5m m  . The cyclic code ( ),u v  is an optimal ternary cyclic 

code with parameters 3 1,3 1 2 ,4m m m − − −  .  

https://doi.org/10.4236/am.2023.1411046


W. W. Qiu 
 

 

DOI: 10.4236/am.2023.1411046 769 Applied Mathematics 
 

Proof. It is easy to prove that the minimal distance of the code 2d ≥ . By 
lemma 2.2 we can know that it does not have a codeword of Hamming weight 2, 
which means 3d ≥ . Now we prove that the minimal distance of the code 

4d = . 
Now, we prove that the code has no codewords of Hamming weight 3. It has a 

codeword of Hamming weight 3 if and only if there exist three elements  

1 2 3 3, ,c c c ∗∈  and three distinct elements 1 2 3 3
, , mx x x ∗∈  such that  

 1 1 2 2 3 3

1 1 2 2 3 3

0
0

u u u

v v v

c x c x c x
c x c x c x
 + + =


+ + =
                       (8) 

Case 1: 1 2 3 1c c c= = = . In this case, let 1 2 1y x x= , 2 3 1y x x=  It follows 
from (8) that 

1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + + =


+ + =
                         (9) 

{ }1 2, 0,1y y ∉ . 

Now we consider the following four cases. 
Case 1.1: When 1 2,y y SQ∈ , (9) follows to  

 1 2

1 2

1 0
1 0v v

y y
y y
+ + =

 + + =
                       (10) 

The Equation (10) leads to  

( )1 11 1 vvy y+ = +   

Let 2
1y a= , Then we have  

( )
1 13 7 3 7

24 81 1
m m

a a
+ ++ +

+ = +   

By taking the eight power of both sides of the equation, we can get  

( )
1

1
8

3 7 3 7241 1
m

m

a a
+

++
+ 

 + = +
 
 

  

If a SQ∈ , let 2a t= , and if t also SQ∈ , we have  

( )
1

1
8

3 73 74 21 1
m

m

t t
+

+ +
+  

 + = +
 
 

 

It becomes to  

( ) ( )10 84 51 1t t+ = +  

Expand it, we can get  
36 35 30 25 20 15 10 5 42 2 2 0t t t t t t t t t+ + + + + + + + =  

Because 0t ≠ , we have  
32 31 26 21 16 11 62 2 2 1 0t t t t t t t t+ + + + + + + + =  

It can be factorized over 3  by Magma to  
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( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

− + − + + + − + − + + + −

× − − − + − =
 

if 1t = , it means 1 1y = , is impossible, and by lemma 2.3, we get it has no root 
in { }3

\ 0,1m .  
If a SQ∈ , let 2a t= , and if t NSQ∈ , we have  

( ) ( )10 84 51 1t t+ = −  

By following the same steps, we get  
32 31 26 21 16 11 6 1 0t t t t t t t t− − − − − − − + =  

It can be factorized over 3  by Magma to  

( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

+ + + + − − − − + − + + +

× + + − + + =
 

By the same reason, it has no root in { }3
\ 0,1m .  

If a NSQ∈ , 2a t= −  and t SQ∈  or t NSQ∈ , it is similar to the above case, 
we omit it here.  

Case 1.2: When 1 2,y NSQ y NSQ∈ ∈ , (8) follows to  

1 2

1 2

1 0
1 0v v

y y
y y
+ + =

 + + =
                       (11) 

The Equation (11) leads to  

( )1 11 1 vvy y+ = − −   

Let 2
1y a= − , Then we have  

( )
1 13 7 3 7

24 81 1
m m

a a
+ ++ +

− = − +   

By taking the eight power of both sides of the equation, we can get  

( )
1

1
8

3 7 3 7241 1
m

m

a a
+

++
+ 

 − = +
 
 

  

If a SQ∈ , let 2a t= , and if t also SQ∈ , by the similar steps, we directly ob-
tain  

( ) ( )10 84 51 1t t+ = −  

As before, with the help of Magma, we get the same equation  

( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

+ + + + − − − − + − + + +

× + + − + + =
 

if 1t = − , it means 1 1y = − , but 1 1y = −  is not the solution of ( )1 11 1 vvy y+ = − − , 
and by lemma 2.3, we get it has no root in { }3

\ 0,1m   
If a SQ∈ , let 2a t= , and if t NSQ∈ , we have  
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( ) ( )10 84 51 1t t+ = +  

By following the same steps, we get  

( ) ( )( )( )( )
( )

2 2 5 2 5 4 3 9 6 4 3

9 8 6 5 3

1 1 1 1 1

1 0

t t t t t t t t t t t t t

t t t t t

− + − + + + − + − + + + −

× − − − + − =
 

By the same reason as before, it has no root in { }3
\ 0,1m . 

If a NSQ∈ , 2a t= −  and t SQ∈  or t NSQ∈ , it is similar to the above case, 
we omit it here.  

Case 1.3: When 1 2,y NSQ y SQ∈ ∈ . It is similar as before, we omit it here.  
Case 1.4: When 1 2,y SQ y NSQ∈ ∈ . It is similar as before, we omit it here.  
Case 2: 1 2 31, 1c c c= = = − . By the similar calculation as Case 1, we can prove 

that the equation  

1 2

1 2

1 0
1 0

u u

v v

y y
y y

 + − =


+ − =
                       (12) 

also has no solution in { }3
\ 0,1m . We omit the details of the proof. 

By the Lemma 2.2, we have finished the proof.                        □ 
Example 
Let 3m = , ( )3 1 2mu = + , ( )13 7 8mv += + . Let α  be the generator of 

3m
∗  

with 3 2 1 0α α+ + = . Then ( ),u v  is a ternary cyclic code with parameters [26, 
20, 4] and generator polynomial 6 5 4 32 2x x x x+ + + + .  

4. Conclusions 

In this paper, based on the Sphere Packing Bound, we show that for the fixed 
length and dimension, with the help of factorization by Magma, by discussing 
the solutions of some correlative equations on 

3m , the ternary cyclic code  
13 1 3 7,

2 8

m m+ + + 
 
 

  has the minimum distance 4, according to the Sphere Packing 

bound. It is optimal. 
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