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Abstract 
Uemura [1] discovered a mapping formula that transforms and maps the 
state of nature into fuzzy events with a membership function that expresses 
the degree of attribution. In decision theory in no-data problems, sequential 
Bayesian inference is an example of this mapping formula, and Hori et al. [2] 
made the mapping formula multidimensional, introduced the concept of 
time, to Markov (decision) processes in fuzzy events under ergodic condi-
tions, and derived stochastic differential equations in fuzzy events, although 
in reverse. In this paper, we focus on type 2 fuzzy. First, assuming that Type 2 
Fuzzy Events are transformed and mapped onto the state of nature by a qua-
dratic mapping formula that simultaneously considers longitudinal and trans-
verse ambiguity, the joint stochastic differential equation representing these 
two ambiguities can be applied to possibility principal factor analysis if the 
weights of the equations are orthogonal. This indicates that the type 2 fuzzy is 
a two-dimensional possibility multivariate error model with longitudinal and 
transverse directions. Also, when the weights are oblique, it is a general pos-
sibility oblique factor analysis. Therefore, an example of type 2 fuzzy system 
theory is the possibility factor analysis. Furthermore, we show the initial and 
stopping condition on possibility factor rotation, on the base of possibility 
theory. 
 

Keywords 
Type 2 Fuzzy Events, Quadratic Mapping Formula, Stochastic Differential 
Equation in Fuzzy Event, Possibility Principal Factor Analysis, Possibility  
Oblique Factor Analysis, Initial and Stopping Condition 

 

1. Introduction 

Okuda et al. [3] constructed the decision rule under the fuzzy environment; how-
ever, this is an example of Bayes Decision Rule. Otherwise, Uemura [1] [4] [5] 
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and Hori et al. [2] constructed another decision making on vague events. This 
decision-making is a special case for Bayes Decision Theory in No Data problem. 
In this paper, we obtain a mention of the system theory to possibility factor rota-
tion according to the type 2 vague events. 

Uemura [1] found a mapping formula that maps and transforms the state of 
nature in no information problem, (a no-data problem), in which no observable 
information can be observed in Bayesian statistics, to a fuzzy event by a member-
ship function representing its degree of attribution. Note that the no-data prob-
lem can be attributed to Bayesian statistics, where the causality law between the 
state of nature and the observed information is uniform. Now, the fuzzy in this 
paper is sometimes called Vague to distinguish it from the Fuzziness of Zadeh 
[6]. Therefore, the extension of our study is named Vague Sets and Theory (Hori, 
Takemura, and Matsumoto [2]). Zadeh’s fuzzy deals with vertical ambiguity, e.g., 
possibility interval type regression modeling, while our Vague deals with hori-
zontal ambiguity, e.g., α-level cut of fuzzy sets. Also, Zadeh’s modeling is con-
ceptually very close to the interval-type modeling of subjective Bayesian theory, 
and the rotation based on our quadratic mapping formula is very relevant for 
factor analysis or independent component analysis (Hori [7]). First, Uemura [1] 
defined a mapping function from the state of nature for fuzzy events. Next, Hori 
et al. [2] showed that this definition is a formula. When the formula for the 
mapping function for fuzzy events is adapted to the theory of utility functions 
and developed into a decision-making method based on the utility function in 
fuzzy events, it can be applied to the case of the two-choice question (Uemura 
[1]). This is because a nondiscriminatory state in decision withholding arises, 
and Hori et al. [2] imposed an ergodic condition between the previous and next 
nondiscriminatory states and developed it into a Markov (decision) process in 
fuzzy events and derived a stochastic differential equation of it in fuzzy events. 
In this paper, Type 2 Fuzzy Events in which both horizontal and vertical ambi-
guity are considered at the same time, are discussed. Here, the quadratic map-
ping formula transforms a non-mapping function by relating it to two mapping 
functions and provides an orthogonal rotation to the function after the quadratic 
transformation. For Type 2 Fuzzy Events, orthogonal rotations from 0 to 180 
degrees can be interpreted as cases where the longitudinal possibility error mod-
el and the transverse necessity error model are considered. The orthogonal rota-
tion from 180 to 360 degrees can be interpreted as the case where the longitu-
dinal necessity error model and the transverse possibility error model are taken 
into account. Here, what is measured by the possibility and necessity measures 
can be regarded as a kind of information content, and the possibility main factor 
rotation is provided to increase this information content. Note that Type 2 Fuzzy 
Events are attributed to a multidimensional possibility multivariable error model 
that takes into account the possibility and necessity of the longitudinal variable 
error model and the transverse variable error model. Furthermore, we show the 
initial and stopping conditions on possibility general factor rotation. 
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2. Mapping Formulas in Fuzzy Events 

Uemura [1] defined the formula for mapping a function ( )f x  by ( )1g x  as a 
formula (1). However, the definition is provided as a system theory, while as an 
example of application, a two-choice question is provided with respect to deter-
minism. Later, it is shown that this definition is a formula (Hori, Takemura, and 
Matsumoto [2]) 

( ) ( ) ( )( )1
1 1SUPy f x g x g f y−

= =                     (1) 

The stochastic differential equation for a fuzzy event that represents the tran-
sition of the nondiscriminatory state regarding the decision withholding in the 
two-choice question based on the state of nature in sequential Bayesian inference 
is formulated as in Equation (2), and the Markov process in the fuzzy event is 
obtained as its solution as in Equation (3). The pole of the S-Markov process in 
the fuzzy event is the mapping formula for the fuzzy event in Equation (1). Here, 
ergodic conditions between each natural state are assumed. In addition, the 
monotonicity of the function f is a condition because it requires the existence of 
the first rank of the inverse function 1f −  (Hori, Takemura, and Matsumoto 
[2]). 

( )( ) ( )( )1 1d , ,
d t t t t t
F b t f y t f y W
t

σ− −= + ⋅                 (2) 

It is assumed that b is the mean term, σ the variance term, and W the error 
term in the equation of state for normal events. 

( )( )( )1 1
1,t tF L t g f y− −=                       (3) 

Here, L is the transition matrix of the Markov process of normal events. 
Although this formula is subject to strict condition between Ergodic Condi-

tions and monotonicity conditions of the function f, in natural states, it is able to 
be applied to the Go-Reserved Judgement Problem in the no-data problem, and 
is applicable to fuzzy stochastic differential equations for the transition of non-
discriminatory states concerning decision withholding in sequential Bayesian 
inference.  

3. A Simultaneous Stochastic Differential Equation for Type  
2 Fuzzy Events 

Hori [7] [8] formulated the quadratic mapping formula as in Equation (4). 

( )
( )( )

( ) ( )( )( )
1

1

1 1
2 2 1SUPy f x

Z g f y

g Z g g f y
−

− −
=
=

=                   (4) 

Here, Equation (4) is a quadratic mapping formula that maps Equation (1), once 
again, by ( )2g x . The special property of the quadratic mapping formula is that 
it inverts 180 degrees when the mapped functions are equivalent, as in Equation 
(5). This indicates that this is a type of principal factor analysis. In statistical 
principal factor analysis, a 180-degree rotation requires two rotations of every 90 
degrees. However, note that the quadratic mapping formula reverses 180 degrees 
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in one rotation. 

( ) ( ) ( )1
1 2if theng g x f y−⋅ = ⋅ =                 (5) 

In this paper, the concept of time t into this quadratic mapping formula and 
derive a type 2 Markov process and its simultaneous fuzzy stochastic differential 
equation, albeit inverse. 

First, if the transition matrix is L, the Markov process tD  is formulated as 
follows. (Takahashi [9]) 

( ),t tD L t x=                            (6) 

The type 1 fuzzy Markov process, which introduces the concept of fuzzy events, 
is derived in Equation (7), and the type 2 fuzzy Markov process is derived in 
Equation (8). 

( )( )1
1,t tF L t g x−=                         (7) 

( )( )( )
( )( )

( )( )( )( )( )
1

1

1
2

,

1 1 1 1
2 1

SUP ,

, ,

t
t t

F t
y L t g f x

t

F L t g x

L t L t g g f y

−

−

=

− − − −

=

=
                (8) 

Here, the Markov process in Equation (8) is derived from the following simulta-
neous fuzzy stochastic differential equations. 

Equation (9) represents the change in the x-axis direction, and Equation (10) 
represents the change in the y-axis direction. tx  is a fuzzy variable in the hori-
zontal direction and follows the fuzzy stochastic differential equation in Equa-
tion (9), and tZ  is a fuzzy variable in the vertical direction and follows the fuzzy 
stochastic differential equation in Equation (11). 

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 1
1 1 1 1 1

2 2 2 2 2

d , , (9)
d
d , , (10)
d

t t t t t t t

t t t t t t t

Z m t g f Z t g f Z W
t
x m t g f x t g f x W
t

σ

σ

− − = + ⋅

 = + ⋅


 

Here, ( )t t tZ f x= , so Equation (10) is equivalent to Equation (11). 

( )( ) ( )( )2 2 2 2 2
d , ,
d t t t t t
Z m t g Z t g Z W
t

σ= + ⋅                (11) 

In the simultaneous fuzzy stochastic differential Equations (9) and (10), when 
the sum of the weights of each equation is 1, the type 2 Markov process of 
Equation (8) is derived. This means that the fuzzy event is a direct sum, which is 
closely related to the main factor analysis in Section 5. 

4. Type 2 Possibility Principal Factor Rotation 

Type 2 Fuzzy Events simultaneously encompass a two-dimensional necessity va-
riable error model that considers longitudinal and transverse possibility errors. 
The 180-degree orthogonal rotation is the case of Equation (5), where possibility 
theory is applied to these possibility variable error models. Note that since both 
longitudinal and transverse fuzzy variables are considered, possibility theory is 
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able to be applied. In this paper, particular attention to the measure of the size 
relationship of the fuzzy set is paid. Here, the possibility measure (POS) and the 
necessity measure (NES) are defined as followed (D. Dubois and H. Parade [10]). 
In addition, M and N are assumed to be Orthogonal Fuzzy Events with ortho-
gonal degrees of attribution. 

( ) ( ) ( )( )POS SUP min ,M NU V
M N U Vµ µ

≥
≥               (12) 

( ) ( ) ( )( )POS SUPinf min ,M NV UU
M N U Vµ µ

≥
>             (13) 

( ) ( ) ( )( )NES inf SUP max 1 ,M NU V U
M N U Vµ µ

≤
≥ −          (14) 

( ) ( ) ( )( )NES 1 SUP min ,M NU V
M N U Vµ µ

≥
> −           (15) 

The possibility principal factor rotation matrix for type 2 fuzzy is as follows: 

( ) ( )
( ) ( )

1

1

POS NES
NES POS

t t

t t

x M N M N x
Z M N M N Z

+

+

 ≥ >   
=     > ≥    

          (16) 

In particular, note that in (16), when the possibility measure is 1, it is the 
identity matrix, and when the necessity measure is 1, it is the inversion matrix. 
Therefore, the possibility main factor rotation matrix in Equation (16) indicates 
that the sum of the weights of Equation (9) and (10) in the simultaneous fuzzy 
stochastic differential equation is 1 (Hori [7] [11]). 

5. Initial and Stopping Condition in Type 2 Possibility  
Principal Factor Rotation 

The initial condition and stopping condition for a normal Markov process are 
shown in [12]. Since we deal with horizontal ambiguity, we introduce the con-
cept of quadratic possibility theory to the rotation according to a complex Mar-
kov process. The initial and stopping condition are shown in Equation (17), (18) 
and (19), (20), respectively. Where the rotation can start from (18) satisfying the 
initial condition (17). And the rotation can stop under (20) satisfying the stop-
ping condition (19). 

1) ( ) ( )10 20 10 20, ,t t t tF F Z Z=                                        (17) 
2) ( ) ( )( ) ( ) ( )( )1 2 1 2 0 1 0 2 0 1 0 2 0POS , , | POS , ,t t t t t t t tF F Z Z x DF x DF x DZ x DZ x≥ ≤ ≥  
3) ( ) ( )( ) ( ) ( )( )1 2 1 2 0 1 0 2 0 1 0 2 0NES , , | NES , ,t t t t t t t tF F Z Z x DF x DF x DZ x DZ x≥ ≥ ≥  
Where ( ) ( )1 0 2 0 1 2, ,t t t tDF x DF x DX DZ=  
(Starting State) ( ) ( )10 20t t

F F⋅ = ⋅                                   (18) 
1) ( )0 0 1,2ti tiF Z i= =  
2) ( ) ( ) ( )0 0 0POS | POS 1,2it it i xi xiF Z x DF DZ i≥ ≤ ≥ =  
3) ( ) ( ) ( )0 0 0NES | NES 1,2it it i i iF Z x DFx DZx i≥ ≥ ≥ =  
Where ( )0 0 1,2i iDFx DZx i= =  
Where 0i tF  and ( )0 1,2i tDF i =  represents 2 complex events, and the qua-

dratic possibility theory is applied. If the mapping function is equivalent, they 
invert 180-degree, and the initial condition and stopping condition is reversed. 
Note that the complex event become also one in a simulation like this. 
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1) ( ) ( )1 0 2 0 1 0 2 0, ,t t t tF F Z Z=                                       (19) 
2) ( ) ( )( ) ( ) ( )( )1 0 2 0 1 2 10 20 10 20POS , , POS , ,t t t tF F Z Z DF DF DZ DZ≥ ≤ ≥  
3) ( ) ( )( ) ( ) ( )( )1 2 1 2 10 20 10 20NES , , NES , ,t t t tF F Z Z DF DF DZ DZ≥ ≥ ≥  
Where ( ) ( )10 20 10 20, ,DF DF DZ DZ=  
(Stopping State) ( ) ( )10 20t t

F F⋅ = ⋅                                  (20) 
1) ( )0 0 1,2ti tiF Z i= =  
2) ( ) ( ) ( )0 0POS POS 1,2it it i iF Z DF DZ i≥ ≤ ≥ =  
3) ( ) ( ) ( )0 0NES NES 1,2it it i iF Z DF DZ i≥ ≥ ≥ =  
Where 0 0i iDF DZ=  

6. Type 2 Possibility Oblique Factor Rotation 

Assume that the fuzzy variables in the x-axis direction and the fuzzy variables in 
the y-axis direction are transformed into fuzzy events N and M on the natural 
state S by the membership functions ( )N Sµ  and ( )M Sµ  Note that the mem-
bership functions ( )N Sµ  and ( )M Sµ  are derived by the quadratic mapping 
formula as follows 

( ) ( )( )( )1 1
1N N MS f xµ − −= Π Π                   (21) 

( ) ( )( )( )1 1
2M M NS f yµ − −= Π Π                   (22) 

NΠ  and MΠ  are the prior possibility distributions of the fuzzy variables N 
along the x-axis and M along the y-axis. The system functions are ( )1x f S=  
and ( )2y f S= , respectively.  

After the transformation, fuzzy event N and fuzzy event M that are not direct 
sums, as shown in the image in Figure 1 (Uemura [4]), are discussed. Note that 
the sum of the membership functions representing the degree of attribution of 
fuzzy event N and fuzzy event M to the state of nature is less than or equal to 1. 
Therefore, the nondiscriminatory event Fe is automatically derived as follows. In 
decision theory, when the sum of the membership functions is less than or equal 
to 1, it is better to use the probability of the fuzzy event, and when the sum is 
greater than 1, it is better to use the probability measure of the fuzzy event (Ue-
mura [13]). 

Suppose that the possibility distribution ( )1, ,FK K nΠ =   of two or more 
non-orthogonal Fuzzy Events is pre-set by Equation (21) and (22). 

 

 
Figure 1. Indifferent event. 

0
S

ＭＮ
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In this section, we consider the general case where ( )1 1n
Fkk S

=
Π ≤∑  S S∀ ∈ . 

Here, we introduce the concept of Indifferent Event Fe in order to avoid the risk 
of decision-making arising from the lack of information in Fuzzy Events. The 
possibility distribution of this Indifferent Event can be automatically derived by 
the following equation. 

( ) ( )1
eF FkkS SΠ = − Π∑                       (23) 

In this paper, we pick up the fuzzy variables in the x-axis direction and the 
fuzzy variables in the y-axis direction. Note that we consider only two fuzzy events 
such that N = F1 and M = F2. 

The Indifferent Event Fe is divided into zones of the state of nature to make 
sense of it. In Zone { }0 20X s= ≤ < , it is completely N, In Zone  

{ }20 45a s= ≤ < , it is a conditional Indifferent Event known to be a fuzzy event 
N In Zone { }45 70b s= ≤ < , it is an Indifferent Event that is neither fuzzy event 
N nor fuzzy even M. However, the relationship between the magnitude of fuzzy 
event N. and fuzzy event M. Zone { }70 80c s= ≤ <  is a conditional Indifferent 
Event that is known to be fuzzy event M. Zone { }80 100Y s= ≤ ≤  is completely 
M. Here, each zone has different characteristics, so it is necessary to analyze each 
zone individually. However, decomposing and recomposing the system is very 
risky. In this decision problem, N, M and Fe are orthogonal sum events, so there 
is no need to decompose and recompose the system. 

The fuzzy event N is derived from the stochastic differential Equation (9) 
along the x-axis, while the fuzzy event M is derived from the stochastic differen-
tial Equation (10) along the y-axis. With respect to the weights W1 and W2 of 
those simultaneous stochastic differential equations, if the two fuzzy events are 
in direct sum, that is, if the sum of the weights of each differential Equation (9) 
and (10) is orthogonal (W1 + W2 = 1), then it is a possible principal factor analy-
sis (Hori [7] [11]). On the other hand, if the sum of the weights is less than 1 
(W1 + W2 < 1), it is a possibility oblique factor analysis. In the following, for each 
zone, we focus on the indicator of the fuzzy set size relationship in possibility 
theory and derive the possibility factor rotation matrix MMi according to the de-
finition of the probability measure that represents the size relationship of the 
fuzzy set. 

1) Possibility factor rotation matrix in Zoon X: 

1 0
0 1xMM  

=  
 

                         (24) 

2) Possibility factor rotation matrix in Zone a: 

( ) ( )
( ) ( )1

POS NES
NES POS

e e

e e

N F N F
MM

N F N F
 ≥ >

=  > ≥ 
              (25) 

3) Possibility factor rotation matrix in Zone b: 

( ) ( )
( ) ( )2

POS NES
NES POS

e e

e e

F N F M
MM

F M F N
 ≥ >

=  > ≥ 
             (26) 
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4) Possibility factor rotation matrix in Zone c: 

( ) ( )
( ) ( )3

POS NES
NES POS

e e

e e

F M F N
MM

F N F M
 ≥ >

=  > ≥ 
             (27) 

5) Possibility factor rotation matrix in Zone d: 

( ) ( )
( ) ( )4

POS NES
NES POS

e e

e e

M F M F
MM

M F M F
 ≥ >

=  > ≥ 
             (28) 

6) Possibility factor rotation matrix in Zoon Y: 

0 1
1 0yMM  

=  
 

                        (29) 

The information content iI  in each zone is given by Equation (30). The final 
possibility oblique factor rotation MM is the weighted sum of the information 
content in each zone, the possibility factor matrix elements in each zone, and 
Equation (31). 

( ) ( ) ( )log 1,2,3,max 4
e ei S F i F iI S S iµ µ= × =            (30) 

4
1 i iiMM MM I
=

= ×∑                       (31) 

7. Initial and Stopping Condition on Type 2 Possibility  
Oblique Factor Rotation 

In this section, we consider the possibility oblique factor rotation after the initial 
observation X0. At first, in zone X and zone Y, the initial and stopping condition 
can be derived from the normal Markov process (Takahashi [12]). Second, N 
and Fe is direct sum in zone a. Furthermore, M and Fe is direct sum in zone d. In 
this case, these rotations are as well as the possibility principal rotations. At last, 
the initial and stopping conditions in zone b and zone c are derived from Equation 
(32) and (33). Note that the type2 fuzzy event N can rotate as same as the type2 
fuzzy event M, because changing M to N in Equation (32) and (33) is similar to 
the original version. 

(Initial Condition)  
1) ( ) ( )0 0 10 20, ,t t t tM N Z Z=                                       (32) 
2) ( ) ( )( ) ( ) ( )( )2 1 2 0 3 0 0 0 0POS , , | POS , ,t et t t t et t tI M F Z Z x I M X F X M X N X≥ ≤ ≥  
3) ( ) ( )( ) ( ) ( )( )2 1 2 0 3 0 0NES , , | NES , ,t et t t t et t tI N F Z Z x I N F M X N X≥ ≥ ≥  
(Stopping Condition)  
1) ( ) ( )0 0 10 20, ,t t t tM N Z Z=                                       (33) 
2) ( ) ( )( ) ( ) ( )( )2 1 2 3POS , , POS , ,t et t t t et t tI M F Z Z I M F M N≥ ≥ ≥  
3) ( ) ( )( ) ( ) ( )( )2 1 2 3NES , , NES , ,t et t t t et t tI N F Z Z I N F M N≥ ≤ ≥  
The starting and stopping state are obtained in zone b as follows:  
(Stating State) ( ) ( )10 20t t

M M⋅ = ⋅                                  (34) 
1) ( )0 0 1,2ti eiM F i= =  
2) ( ) ( ) ( )2 0 3 0POS | POS 1,2ti eti ti etiI M F X I N F i≥ ≤ ≥ =   
3) ( ) ( ) ( )2 0 3 0NES | NES 1,2ti eti ti etiI M F X I N F i≥ ≥ ≥ =   
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(Stopping State) ( ) ( )10 20t t
M M⋅ = ⋅                                 (35) 

1) ( )0 0 1,2ti eiM F i= =  
2) ( ) ( ) ( )2 3POS POS 1,2ti eti ti etiI M F I N F i≥ ≤ ≥ =   
3) ( ) ( ) ( )2 3NES NES 1,2ti eti ti etiI M F I N F i≥ ≥ ≥ =   
The starting and stopping state are obtained in zone c as follows: 
(Starting State) ( ) ( )10 20t t

N N⋅ = ⋅                                  (36) 
1) ( )0 0 1,2ti eiN F i= =  
2) ( ) ( ) ( )2 0 3 0POS | POS 1,2ti eti ti etiI N F X I M F i≥ ≤ ≥ =   
3) ( ) ( ) ( )2 0 3 0NES | NES 1,2ti eti ti etiI N F X I M F i≥ ≥ ≥ =   
(Stopping State) ( ) ( )10 20t t

N N⋅ = ⋅                                 (37) 
1) ( )0 0 1,2ti eiN F i= =  
2) ( ) ( ) ( )2 3POS POS 1,2ti eti ti etiI N N I M F i =≥≤≥   
3) ( ) ( ) ( )2 3NES NES 1,2ti eti ti etiI N N I M F i =≥ ≥ ≥   

8. Approach Forward to Type 2 Possibility Factor Analysis 

In this section, we mention the decision making rule for the possibility factor 
analysis such that can make a decision rotating the possibility factor rotation in 
the decision making problem. In the every zone shown by the imaging Figure 1, 
we propose the simple decision rule after the possibility factor rotating. In Equa-
tion (38), (39) and (40), D1 and D2 are the decisions. And ( )1 1|x U S D= ,  

( )2 2|y U S D= , are utility functions. ( )N Sµ  is the type 2 membership function 
in x-axis. ( )M Sµ  is the type 2 membership function in y-axis. And ( )Sπ  is 
the possibility prior distribution. Note that the decision maker can obtain these 
utility functions by the lot method after deciding his type (Risk Aversion, Risk 
Neutral, Risk Proneness). 

1) Zone x, y (Integral Transfer (maximizing Expected Utility))           (38) 

( ) ( ) ( )( )1
1 1 1| dNE D S U x D Sπ µ −= ×∫  

( ) ( ) ( )( )1
2 2 2| dME D S U y D Sπ µ −= ×∫  

2) Zone a, d (max-product method)                               (39)  

( ) ( ) ( )( )1
1 1 1max |s ND S U x Dπ π µ −= ×  

( ) ( ) ( )( )1
2 2 2max |s MD S U y Dπ π µ −= ×  

3) Zone b, c (min-max principal)                                 (40) 

( ) ( ) ( )( )( )1
1 1 1min max , |S ND S U x Dπ µ −∧ =  

( ) ( ) ( )( )( )1
2 2 2min max , |S MD S U y Dπ µ −∧ =

 
Here, in Equations (38), (39) and (40), after we pick up the bigger measure in the 
every zone, we can decide the individual optimal decision with these measures. 
Otherwise, because type 2 fuzzy event M, N and Fe are the direct sum, we can 
select the total optimal decision by the max the weighted sum of the information 
content (30). Note that we may need to obtain the individual optimal decision in 
the every zone. (Uemura, Inaida [11]). 
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9. Conclusion 

In this paper, we mentioned that Type 2 Fuzzy for no-data problems is derived 
from simultaneous stochastic differential equations in fuzzy events and is closely 
related to artificial intelligence in multi-input nonlinear factor analysis. The 
Type 2 Fuzzy Event is a multidimensional possibility variable error model that 
simultaneously considers longitudinal and transverse errors introducing the 
concepts of possibility and necessity, and it is application to main factor analysis 
based on possibility theory is described. Focusing on the oblique rotation of 
general factor analysis, the possibility and inevitability measures were defined so 
that the sum of these measures does not satisfy 1, and the oblique factor rotation 
matrix was derived by automatically subtracting the sum from 1 for indiscrimi-
nate fuzzy events to obtain the possibility and inevitability measures for indi-
scriminate fuzzy events. If the sum of the weights of the simultaneous stochastic 
differential equation between the longitudinal and transverse fuzzy variables is 
greater than 1, no indiscriminate event occurs. For this reason, after normalizing 
the membership function, the possibility principal factor analysis is applied. Al-
though determinism was not discussed in this paper, it has been proposed that 
sequential Bayesian inference be employed in cases involving nondiscriminatory 
events by adding the action of decision withholding (Uemura [1] [4]), because of 
the information risk of nondiscriminatory events. At last, Japanese call Japanese 
original traditional decision-making from this world to the other world around 
another world by the type 2 KIDOU (in Japanese) (Hori [14]). Our proposing 
theory can apply to deriver the sea wave from the sea wave equation. Specially, 
when the sea wave equation is regarded as Normal Possibility Process (i.e. Gauss 
Process), we can obtain the sea wave that is Gauss Process (Uemura [9]). Japa-
nese can regard this sea wave process as Sea Goddess/God decision making (Ho-
ri [14]). 
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Abstract 
Deep holes are very important in the decoding of generalized RS codes, and 
deep holes of RS codes have been widely studied, but there are few works on 
constructing general linear codes based on deep holes. Therefore, we consider 
constructing binary linear codes by combining deep holes with binary BCH 
codes. In this article, we consider the 2-error-correcting binary primitive BCH 
codes and the extended codes to construct new binary linear codes by combin-
ing them with deep holes, respectively. Furthermore, three classes of binary li-
near codes are constructed, and then we determine the parameters and the 
weight distributions of these new binary linear codes. 
 
Keywords 
Linear Codes, MacWilliams Equations, Weight Distribution, Dual Codes, 
Deep Holes, Covering Radius 

 

1. Introduction 

Let q  be the finite field with q elements, where q is an odd prime. An [ ], ,n k d  
linear code   is a k-dimensional subspace of the vector space n

q  with mini-
mum distance d, where 1 k n≤ ≤ . The weight of code x is denoted by ( )wt x . 
The dual code of  , denoted by ⊥ , is defined by  

{ }| 0, for all .n
qx xc c⊥ = ∈ = ∈   

Clearly, ( ) ( )dim dim n⊥+ =  . 
For the linear code   with length n, the number of codewords of weight i de-

notes ( )iA   with 0 i n≤ ≤ . The weight enumerator of   is defined by  
2 3

1 2 31 ,n
nl z l z l z l z+ + + + ⋅⋅ ⋅ +  

and the sequence ( )1 21, , , , nl l l  is said to be the weight distribution of  . If 
the number of non-zeros in the sequence is t, then we say that the linear code is 
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a t-weight code. The weight distributions of linear codes not only give the im-
portant information of linear codes in practice and theory, but also reflect the 
error-correcting ability of linear codes and the probability of error information 
occurring during transmission. In general, it is not effortless to determine the 
weight distributions of linear codes.  

The coset of  , denoted by Q, is defined by  

{ }| ,n
qQ x c c= + ∈ ⊂   

where x Q∈  is a vector fixed for the given representation. The weight of Q is 
the smallest Hamming weight of the codewords of Q. 

For any vector (codeword) n
qu∈ , the error distance to code   of a received 

codeword u is defined by  

( ) ( ){ }, min , | ,d u d u c c= ∈   

where the minimum Hamming distance between vectors u and c is defined to 
be  

( ) { }, | ,1 .i id u c i u c i n= ≠ ≤ ≤  

The maximum error distance is defined by  

( ) ( ){ }max , | ,n
qd u uρ = ∈   

where ρ  is called the covering radius of the linear code  . If the error dis-
tance to code   of a received word n

qu∈  reaches the covering radius of li-
near code  , the vector u is called the deep hole. 

Deep holes have been widely studied in RS codes, and the deep holes of stan-
dard RS codes are given in [1]. In addition, Zhang et al. also gave deep holes for 
several classes of special codes in [2] [3] [4]. Therefore, most scholars are keen 
on studying the deep holes of some special codes. However, there is little work 
on constructing general linear codes from deep holes. Thus, we further consider 
the use of deep holes to construct some binary linear codes.  

Around the 1960s, BCH codes were proposed by Hocquenghem [5] and Bose 
and Ray-Chaudhuri [6], and the error-correcting codes were studied by Gorens-
tein and Zierler [7] over finite fields. In 1960, Gorenstein et al. [8] showed that 
the covering radius of binary 2-error-correcting BCH codes was 3, and further, 
the covering radius of the extended codes was 4. The study of 2-error-correcting 
BCH codes is very thorough, including covering radius, weight distribution, co-
set weight distribution and so on. The covering radius of the 2-error-correcting 
binary primitive BCH codes is known. From the definition of deep holes, we know 
that the deep holes of these BCH codes exist. Since linear codes play an impor-
tant role in the fields of data storage, information security and secret sharing, the 
construction of linear codes is one of the important contents in the current cryp-
tography and coding research. Therefore, it is very meaningful to construct binary 
linear codes. 

In this paper, our main work is to construct some binary linear codes by com-
bining deep holes with BCH codes. Furthermore, we can determine the parame-
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ters and the weight distributions of the binary linear codes. Finally, some exam-
ples are presented by Magma experiments, which support the weight distributions 
of these binary linear codes. These experimental results coincide with the theo-
retical results. 

The rest of this paper is outlined as follows. Section 2 states some notations and 
results about narrow-sense binary primitive BCH codes and linear codes. In Sec-
tion 3, three classes of binary linear codes are constructed and their parameters 
are determined. In Section 4, the weight distributions of these binary linear codes 
are obtained. Finally, the conclusion of this paper is given. 

2. Preliminaries 

In this section, we state some basic facts and known results about linear codes 
and narrow-sense binary primitive BCH codes. 

2.1. The Weight Distributions of the Linear Code and Its Dual  
Code 

For an [ ],n k  linear code   over q , and denote its dual by ⊥ . The weight 
distribution of   can be uniquely determined by the weight distribution of ⊥  
and vice versa. This linear relationship is crucial for investigating and calculating 
weight distribution, and we call it the MacWilliams identity. 

Let jA  and jA⊥  be the number of codewords of weight j in   and ⊥ , 
respectively. The MacWilliams identity is defined by  

[ ]
0 0

, for all 0, .
n j j

k j
i i

i i

n i n i
A q A j n

j n j

−
⊥ −

= =

− −   
= ∈   −   

∑ ∑             (1) 

Equivalently, we have 
{ }

( ) ( ) ( )
min ,

0 0
1 ! , 1 for 0,

n rn rj t jr k t
j j

j j t j

n j
j A A t S r t q q r

n t
−⊥ −

= = =

 −  
= − − ≥  −  

∑ ∑ ∑    (2) 

and it is more convenient for us to calculate. But it involves the Stirling numbers 
( ),S r t  of the second kind, where ( ),S r t  is defined by  

( ) ( )
0

1, 1 for , 0.
!

t t i r

i

t
S r t i r t

it
−

=

 
= − ≥ 

 
∑                 (3) 

In particular, ( ), 0S r t =  if r t<  and ( ), 1S r r = . 
In binary codes, from (2), we deduce  

{ }
( ) ( )

min ,

0 0 1
1 1 2 for 0.

n rn r tj t ir r k t
j j

j j t j i

t n j
A j A i r

i n t
−⊥ −

= = = =

   −   
= − − ≥     −      

∑ ∑ ∑ ∑    (4) 

From (2), the first four Pless power moments are listed as follows ([9], p. 259): 

( )

( ) ( ) ( )

0

1
1

0

2 2
1 2

0

;

;

1 1 2 2 2 2 ;

n
k

j
j

n
k

j
j

n
k

j
j

A q

jA q qn n A

j A q q n qn n qn q n A A

=

− ⊥

=

− ⊥ ⊥

=

=

= − −

 = − − + − − − + + 

∑

∑

∑
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( ) ( )

( )
( )

3 3 2 2 2 2

0

2 2 2 2 2 2
1

2 3

1 2 3 3 2

3 3 6 12 6 3 9 6

6 2 6 .

n
k

j
j

j A q q n q n qn qn q n n

q n q n qn qn q q n n A

qn q n A A

−

=

⊥

⊥ ⊥

= − − + − + − +

− − − + + − + − +

+ − − + − 

∑

 

2.2. Cyclic Codes and Narrow-Sense BCH Codes 

An [ ], ,n k d  linear code   over the finite field q , it is said to be cyclic if the 
codeword ( )1 0 2, , ,n nc c c− − ∈   implies ( )0 1 1, , , nc c c c −= ∈  . For each vector 
( )0 1 1, , , n

n qc c c − ∈  , define [ ] ( )2 1
0 1 2 1 1n n

n qc c x c x c x x x−
−+ + + + ∈ −  , any 

code   corresponds to a subset of quotient ring [ ] ( )1n
q x x − . Note that a 

linear code   is cyclic if and only if the corresponding subset is an ideal of the 
quotient ring [ ] ( )1n

q x x − . Besides, every ideal of [ ] ( )1n
q x x −  is princip-

al. Thus, every code   can be expressed as ( )g x= , where ( )g x  is monic 
and has the smallest degree. ( )g x  is said the generator polynomial, and 
( ) ( ) ( )1nh x x g x= −  is referred to as the check polynomial of  . 
Let 1mn q= − , where m is an integer with 1m > . Let α  be a primitive ele-

ment of *
mq

 . In addition, let ( )im x  be the minimal polynomial of iα  with 
1 2mi q≤ ≤ −  over q . For any 2 nη≤ ≤ , define 

( ) ( ) ( ) ( ) ( )( )1 2 1, , , , , ,q mg x lcm m x m x m xηη −=   

where lcm  denotes the least common multiple of these minimal polynomials. 
Let ( ), ,q m η  denote the cyclic code with generator polynomial ( ) ( ), ,q mg xη , 

then we know ( ) ( ) ( ), , , ,q m q mg xη η= . The set ( ), ,q m η  is described as a nar-
row-sense primitive BCH code with design distance η . An [ ], ,n k d  linear  

code   is said e-error-correcting if 1
2

de − =   
. 

Let E denote the 2-error-correcting binary primitive BCH codes, and denote 
its dual by E⊥ . The code E is an 2 1, 2 2 1,5m m

En k m = − = − −   linear code, 
for 3m ≥ . The code E has parity-check matrix EH  defined by  

( )

2 1

3 13 6

1
.

1

n

E n
H

α α α

α α α

−

−

 
=  
  





 

The code E consists of all binary codewords ( )0 1 1 2, , , n
nx x x x −= ∈   such 

that 0EH xΤ = . The extended code of B denote Ê  and denote its duals by Ê⊥ . 
A vector r of Ê  is ( )0 1 1, , , , nr x x x x∝ −=   where 1

0
n

iix x−
∝ =
=∑ . The code Ê  

has parameters ˆ2 , 2 2 1,6m m
EN k m = = − −   for 3m ≥ . The parity-check ma-

trix ÊH  is defined by  

( )

2 1
ˆ

3 13 6

1 1 1 1 1
0 1 ,

0 1

n
E

n

H α α α

α α α

−

−

 
 

=  
 
 







 

where α  is an element of order 2 1mn = −  in 2
n . The code Ê  consists of 

all binary codewords ( )0 1 1 2, , , , N
nr x x x x∝ −= ∈   such that ˆ 0EH rΤ = . 
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2.3. The Weight Distributions of 2-Error-Correcting Binary  
Primitive BCH Codes and the Extended Codes 

In this subsection, we introduce the weight distributions of the 2-error-correcting 
binary narrow-sense BCH codes and of their extensions, whose length are re-
spectively 2 1m −  and 2m . 

The code E⊥  is an ( )1 212 1,2 ,2 2 mm mn m −− = − −   linear code in [10], for 
odd 3m ≥ . The code E⊥  is a binary linear code with the weight distribution in 
Table 1.  

The code Ê⊥  is an 1 22 ,2 1,2 2m m mN m − = + −   linear code in ([11], Table 
16.5), for odd 3m ≥ . The code Ê⊥  is a binary linear code with the weight dis-
tribution in Table 2. 

The code Ê⊥  is an ( )1 212 ,2 1,2 2 mm mN m −− = + −   linear code, for even 
4m ≥ . The code Ê⊥  is a binary linear code with the weight distribution in Ta-

ble 3.  
Lemma 1. ([9], Lemma 7.5.1) Let   be an [ ],n k  linear code over q . 

Suppose u is a vector in n
q  but not in  . The linear code is generated by   

and u, which is an [ ], 1n k +  linear code. Let D be this linear code, then we have  

( ) ( ) ( )\ 1 for 0 .j jA u C A D C q j n+ = − ≤ ≤  

 
Table 1. The weight distribution of E⊥ , for odd 3m ≥ . 

Weights The number of codewords 

0 1 

( ) ( )1 2 1 2n n+ − +  ( ) ( )( )1 4 1 8n n n+ + +  

( )1 2n +  ( )( )1 2 1n n + +  

( ) ( )1 2 1 2n n+ + +  ( ) ( )( )1 4 1 8n n n+ − +  

 
Table 2. The weight distribution of Ê⊥ , for odd 3m ≥ . 

Weights The number of codewords 

0, N 1 

2 2N N−  ( )1 2N N −  

2N  ( ) ( )1 2N N N− +  

2 2N N+  ( )1 2N N −  

 
Table 3. The weight distribution of Ê⊥ , for even 4m ≥ . 

Weights The number of codewords 

0, N 1 

2N N±  ( )1 12N N −  

2N  ( ) ( )1 4 2N N− +  

2 4N N±  ( )2 1 3N N −  
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In binary codes, it is clear that we have  

( ) ( )\ for 0 .j jA u C A D C j n+ = ≤ ≤  

In other words, we have  

( ) ( ) ( ) for 0 .j j jA u C A D A C j n+ = − ≤ ≤  

Theorem 2. ([9], Th. 7.3.1) Let T be a set { }1,2,3, ,d  with T d= . The 
weight distribution of   and ⊥  are determined by 1 2 1, , , dA A A⊥ ⊥ ⊥

−  and the 

iA  with i T∉ .  
It is very convenient for us to calculate the weight distribution. The following 

corollary can be deduced from Theorem 2.  
Corollary 3. Let   be an [ ], ,n k d  linear code over q , and denote its dual 

by ⊥ . Then the dual code ⊥  is a linear code of length n and dimension 
n k− . Let T be a set { }1,2,3, ,d  with T d=  and 1 2 1 0dA A A −= = = = , so 
the weight distribution of ⊥  is uniquely determined. If r d< , (4) is equiva-
lent to  

( )
0 0 1

1 2 for 0 .
n r d d ir r n k d

j
j d i

d n
A j i r d

i d
−⊥ − −

= = =

    
= − ≤ <    

    
∑ ∑ ∑         (5) 

It is very convenient to calculate the weight distribution of the dual code ⊥ . 
If r d≥ , we use (4). 

Theorem 4. ([9], Th. 1.4.5) Let   be an [ ], ,n k d  linear code over q , then 
we have  

• ( ) ( ) ( ) ( )0 1 2
k

nA A A A q+ + + + =    .  
• ( )0 1A = , and ( ) ( ) ( )1 2 1 0dA A A −= = = =   .  
• If   is a binary code, which contains the codeword 11 1= 1 . We know 
( ) ( )j n jA A −=   for 0 j n≤ ≤ .  

Thus, for a 2-ary linear code  , if   contains the codeword 11 1= 1 , 
then the weight distribution of   is symmetric. 

3. The Parameters of Three Classes of Binary Linear Codes 

In this chapter, we construct three classes of binary linear codes based on deep 
holes, then determine the parameters of these binary linear codes. 

Let   be an [ ], ,n k d  linear code over the finite field q , let u be a deep 
hole of the linear code  , then we construct general linear code  

{ }| ,u qc u cλ λ= + ∈ ∈  . We consider binary BCH codes combined with deep 
holes to construct general linear codes.  

Three classes of binary linear codes are constructed by deep holes combined 
with the 2-error-correcting binary primitive BCH code and their extended codes, 
respectively. 

Lemma 5. The code E is an 2 1, 2 2 1,5m m
En k m = − = − −   linear code. 

Suppose u is a deep hole of the code E, and construct general binary linear code 
{ }2| ,uE c u c Eλ λ= + ∈ ∈ . Then the code uE  is an 2 1,2 2 ,3m mn m = − −   

linear code, and the dual code uE⊥  is an ( )1 212 1, 2 1,2 2 mm m m
En K −− = − = − −   
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linear code, where m is odd and 3m ≥ .  
Proof. Let 1 2, , ,

Ekα α α  be a basis for a Ek -dimensional subspace of n
q , 

and the code E is a vector space ( )1 2, , ,
Ekspan α α α . Since the covering radius 

of code E is 3, from the definition of deep hole, the maximum error distance 
( ), 3d u E = . Moreover, the minimum distance of E is 5, it is easy to know that 

u E∉ . The binary linear code uE  is constructed, we have  

and .u uu E E E∈ ⊂  

Furthermore, we obtain  

( ) ( ), , 3,ud u E d u E= =  

so the minimum distance of the linear code uE  is 3. The binary code uE  is the 
vector space ( )1 2, , , ,

Ekspan uα α α . Since u E∉ , so the dimension of the li-
near code uE  is 1Ek + . Namely, the code uE  has parameters  

2 1,2 2 ,3m mn m = − −  . 
Let set ( ){ }0 | 0iS i A E⊥= > ≠  for 0 i n< ≤ . As uE E⊥ ⊥⊂ , we get  

( ) 0 for 0i uA E i⊥ = ≠  

and i S∉ . We denote the minimum Hamming distance of the code uE⊥  by 
d ⊥ , from the weight distribution in Table 1, we have  

( )1 212 2 for odd 3.mmd m−⊥ −= − ≥  

Then the dual code uE⊥  has parameters ( )1 212 1, 2 1,2 2 mm m
En K m −− = − = − −  , 

for odd 3m ≥ . Therefore, the parameters of the code uE  and of its dual code 

uE⊥  are determined separately.   
We similarly construct several classes of binary linear codes and determine 

their parameters. The proof is similar to that of Lemma 5 and is omitted here. 
These binary linear codes are as follows. 

Lemma 6. The code Ê  is an ˆ2 , 2 2 1,6m m
EN k m = = − −   linear code. Sup-

pose u is a deep hole of the code Ê . We construct general binary linear code 

{ }2
ˆ ˆ| ,uE c u c Eλ λ= + ∈ ∈ . Then the code ˆ

uE  is an 2 ,2 2 ,4m mN m = −   li-
near code, and the dual code ˆ

uE⊥  is an ( )1 21
ˆ2 , 2 ,2 2 mm m m
EN K −− = = −   linear 

code, where m is odd and 3m ≥ .  
Lemma 7. The code Ê  is an ˆ2 , 2 2 1,6m m

EN k m = = − −   linear code, 
suppose 1u  is a deep hole of the code Ê . We construct general binary linear 
code { }1 1 2

ˆ ˆ| ,uE c u c Eλ λ= + ∈ ∈ . Then the code 
1

ˆ
uE  has parameters  

2 ,2 2 ,4m mN m = −  , and the dual code 
1

ˆ
uE⊥  has parameters  

1 2
ˆ2 , 2 ,2 2m m m m
EN K − = = −  , for even 4m ≥ .  

4. The Weight Distributions of Three Classes of Binary  
Linear Codes 

In this part, we determine the weight distributions of these binary linear codes. 
From the general linear code { }| ,u qc u cλ λ= + ∈ ∈  , the weight distribu-
tions of these binary linear codes are related to the coset weight distributions of 
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BCH codes. The coset weight distributions of BCH codes have been studied in 
the literature [12] [13]. 

To facilitate the computation of the weight distribution of the dual code, the 
following lemma can be deduced. 

Lemma 8. Let   be an [ ], ,n k d  linear code, and denote its dual by ⊥ . 
Then ( ) ( ) ( )1 2 1 0dA A A −= = = =    and ( )0 1A = . Thus by Corollary 3, 
the weight distribution of ⊥  can be determined by the first d Pless power 
moments, we obtain  

( )
( )
( )( )
( )
( )( )

1

2 2

3 3 2

4 4 2

5 5 2 3 2

6 6 4

0

0

1

1

1
3

0

0

2 ,

2 ,

2 1 ,

2 3 ,

2 1 5 2 ,

2 10 15 10 ,

2 1 14 31 46 16 ,

,

n n k
i

n n k
i

n n k
i

n n k
i

n n

i

i

i

i

i

i

i

k
i

n n k
i

n n k
i

A

iA n

i A n n

i A n n

i A n n n n

i A n n n n

i A n n n n n n

⊥ −

⊥ − −

⊥ − −

⊥ − −

⊥ − −

⊥ −

=

−

⊥ − −

=

=

=

=

=

=

 =

 =

 = +

 = +


= + + −

 = + + −

 = + + + − +



∑
∑
∑
∑
∑
∑
∑


        (6) 

where iA⊥  is the number of codewords of weight i in ⊥ . 
Theorem 9. The binary code uE  is an 2 1,2 2 ,3m mn m = − −   linear code, 

and the dual code uE⊥  is an ( )1 212 1, 2 1,2 2 mm m
En K m −− = − = − −   linear code, 

where m is odd and 3m ≥ . Moreover, the weight distribution of uE⊥  is shown 
in Table 4.  

Proof. Let ( ){ }0 | 0
ii wU w A E⊥= > ≠ , as uE E⊥ ⊥⊂ , we have ( ) 0

iw uA E⊥ =  if 
0iw ≠  and iw U∉ . From Table 1, it is easily seen that the minimum weight 

distribution of uE⊥  is at least 3. Thus, there are three nonzero weights of uE⊥  
as follows:  

( ) ( ) ( ) ( ) ( )1 2 31 2 1 2, 1 2, 1 2 1 2.w n n w n w n n= + − + = + = + + +  

So the weight of the code uE⊥  contains { }1 2 3, ,w w w . Let 
iwA⊥  be the total 

number of codewords with weight iw  in uE⊥ . In addition, let ( )i i uA A E=  
and ( )i i uA A E⊥ ⊥= , where 0 i n≤ ≤ . For binary linear codes, then the first three 
Pless power moments from Lemma 8, we obtain  

( )

3

3 1

3 22

1

1

1

2 1,

2 ,

2 1 ,

E
j

E
j

E
j

K
w

K
j w

K
j w

j

j

j

A

w A n

w A n n

=

=

−
=

⊥

−⊥

⊥

 = −

 =


= +

∑
∑
∑

                  (7) 

where 2 12 2EK m−=  and 2 1mn = − . 
By solving this system of equations, we obtain the results in Table 4. The 

proof is complete.   
Two examples are presented by Magma experiments, which support Theorem 

9.  
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Table 4. The weight distribution of uE⊥ , for odd 3m ≥ . 

Weights The number of codewords 

0 1 

( ) ( )1 2 1 2n n+ − +  ( ) ( ) ( )( )1 1 2 1 2 4n n n− + + +  

( ) ( )1 2 1 2n n+ + +  ( ) ( ) ( )( )1 1 2 1 2 4n n n− + − +  

( )1 2n +  ( )23 8 3 8n n+ −  

 
Example 1. Let 3m =  and let the deep hole vector ( )1,1,1,0, ,0u =  , the 

binary code uE  has parameters [ ]7,2,3 . In Theorem 9, the code uE⊥  is a 
[ ]7,5,2  binary linear code with the weight enumerator 2 4 61 9 19 3z z z+ + + .  

Example 2. Let 5m =  and let the deep hole vector ( )1,1,1,0, ,0u =  , the 
binary linear code uE  has parameters [ ]31,22,3 . In Theorem 9, the code uE⊥  
is a [ ]31,9,12  binary linear code with the weight enumerator  

12 16 201 150 271 90z z z+ + + .  
Theorem 10. The binary code ˆ

uE  is an 2 ,2 2 ,4m mN m = −   linear code, 
and the dual code ˆ

uE⊥  is an ( )1 21
ˆ2 , 2 ,2 2 mm m
EN K m −− = = −   linear code, 

where m is odd and 3m ≥ . Moreover, the weight distribution of ˆ
uE⊥  is shown 

in Table 5.  
Proof. Let ( ){ }1

ˆ0 | 0
jj wU w A E⊥= > ≠ , as ˆ ˆ

uE E⊥ ⊥⊂ , we have ( )ˆ 0
jw uA E⊥ =  

if 0jw ≠  and 1jw U∉ . From Table 2, it is easily seen that the minimum weight 
distribution of ˆ

uE⊥  is at least 4. Therefore, we know that the code ˆ
uE⊥  has the 

following four nonzero weights:  

1 2 3 42 2, 2, 2 2, .w N N w N w N N w N= − = = + =  
The weight of the code ˆ

uE⊥  contains { }1 2 3 4, , ,w w w w . Let 
jwA⊥  be the total 

number of codewords with Hamming weight jw  in ˆ
uE⊥ , and let ( )ˆ

i i uA A E=  
and ( )ˆ

i i uA A E⊥ ⊥=  for 0 i N≤ ≤ . Since Ê  is even and contains the codeword 
1 111 1=  . From Theorem 4, we have 

j jw N wA A⊥ ⊥
−=  and 0 1NA A⊥ ⊥= =  for 

1jw U∈ . For the binary linear code, then the first and the third Pless power 
moments from Lemma 8, we obtain  

( )

ˆ

ˆ
1

4 22

1
4 2 1,

2 1 ,

E
j

E
j

K
w

K
j w

j

j

A

w A N N

⊥

−⊥

=

=

 = −


= +

∑
∑

                 (8) 

where ˆ 22 2EK m=  and 2mN = . 
By solving this system of equations, we obtain the results in Table 5. The proof 

is complete.   
Two examples are presented by Magma experiments, which support Theorem 

10.  
Example 3. Let 3m =  and let the deep hole vector ( )1,1,1,1,0, ,0u =  , the 

binary linear code ˆ
uE  has parameters [ ]8,2,4 . In Theorem 10, the code ˆ

uE⊥  
is a [ ]8,6,2  binary linear code with the weight enumerator  

2 4 6 81 12 38 12z z z z+ + + + .  
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Table 5. The weight distribution of ˆ
uE⊥ , for odd 3m ≥ . 

Weights The number of codewords 

0, N 1 

2 2N N−  2 4 2N N−  

2 2N N+  2 4 2N N−  

2N  2 2 2N N+ −  
 

Example 4 Let 5m =  and let the deep hole vector ( )1,1,1,0,1,0, ,0u =  , 
the binary linear code ˆ

uE  has parameters [ ]32,22,4 . In Theorem 10, the code 
ˆ

uE⊥  is a [ ]32,10,12  binary linear code with the weight enumerator  
12 16 20 321 240 542 240z z z z+ + + + .  

Theorem 11. The binary code 
1

ˆ
uE  is an 2 ,2 2 ,4m mN m = −   linear code, 

and the dual code 
1

ˆ
uE⊥  is an 1 2

ˆ2 , 2 ,2 2m m m
EN K m − = = −  , where m is even 

and 4m ≥ . Moreover, the weight distribution of 
1

ˆ
uE⊥  is shown in Table 6.  

Proof. Let ( ){ }2
ˆ0 | 0

ii wU w A E⊥= > ≠ , as 
1

ˆ ˆ
uE E⊥ ⊥⊂ , we have ( )1

ˆ 0
iw uA E⊥ =  

if 0iw ≠  and 2iw U∉ . From Table 3, it is easily seen that the minimum weight 
distribution of 

1
ˆ

uE⊥  is at least 6. Thus, there are six nonzero weights of 
1

ˆ
uE⊥  as 

follows:  

1 2 32 , 2 4, 2,w N N w N N w N= − = − =  

4 5 62 4, 2 , .w N N w N N w N= + = − =  

The weight of the code 
1

ˆ
uE⊥  contains { }1 2 3 4 5 6, , , , ,w w w w w w . Let 

iwA⊥  be the 
total number of codewords with Hamming weight iw  in 

1
ˆ

uE⊥ , and let 

( )1
ˆ

i i uA A E=  and ( )1
ˆ

i i uA A E⊥ ⊥=  for 0 i N≤ ≤ . Since Ê  is even and contains 
the code word 1 111 1= ⋅⋅ ⋅ . From theorem 4, we know that 

j jw N wA A⊥ ⊥
−=  and 

0 1NA A⊥ ⊥= =  for 2jw U∈ . For this binary linear code, then the first, the third 
and the fifth Pless power moments from Lemma 8 and Corollary 3, we obtain  

( )

( )( )( )

ˆ

ˆ

ˆ

6

6 22

6 2

1

44

1

41

2 1,

2 1 ,

2 1 5 2 24 ,

E
j

E
j

E
j

K
w

K
j w

K
jj w

j

j

A

w A N N

w A N N N N A

⊥

−⊥

−

=

=

=
⊥

 = −

 = +

 = + + − +

∑
∑
∑

         (9) 

where ˆ 22 2EK m=  and 2mN = . Since 
1

ˆ
uE  has parameters 2 ,2 2 ,4m mN m = −  , 

the minimum Hamming distance is 4, so 1 2 3 0A A A= = = . We need to deter-
mine the number of codewords of weight 4 in 

1
ˆ

uE . Since 1u  is a vector in 2
N  

but not in Ê . From Lemma 1, we have  

( ) ( ) ( )14 4 4 1
ˆ ˆ ˆ .uA E A E A E u= + +  

The minimum distance of Ê  is 6, thus we have ( )4
ˆ 0A E = , so  

( ) ( )14 4 1
ˆ ˆ .uA E A E u= +  

The number of codewords of weight 4 in the coset 1Ê u+  is determined in 
the literature ([13], Remark 4), then we obtain  
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Table 6. The weight distribution of 
1

ˆ
uE⊥ , for even 4m ≥ . 

Weights The number of codewords 

0, N 1 

2N N±  ( )2 4 24N N−  

2N  2 4 2N N+ −  

2 4N N±  ( )2 3N N−  

 

( ) ( )4 1
ˆ 4 24.A E u N N+ = −  

Thus, we have  

( ) ( )
14

ˆ 4 24.uA E N N= −  

By solving this system of equations, we obtain the results in Table 6. The proof 
is complete.   

Two examples are presented by Magma experiments, which support Theorem 
11.  

Example 5. Let 4m =  and let the deep hole vector ( )1 1,1,1,0,1,0, ,0u =  , 
the binary linear code 

1
ˆ

uE  has parameters [ ]16,8,4 . In Theorem 11, the code 

1
ˆ

uE⊥  is a [ ]16,8,4  binary linear code with the weight enumerator  
4 6 8 10 12 161 8 80 78 80 8z z z z z z+ + + + + + .  

Example 6. Let 6m =  and let the deep hole vector ( )1 1,1,1,0,1,0, ,0u =  , 
the binary linear code 

1
ˆ

uE  has parameters [ ]64,48,4 . In Theorem 11, the code 

1
ˆ

uE⊥  is a [ ]64,12,24  binary linear code with the weight enumerator  
24 28 32 36 40 641 160 1344 1086 1344 160z z z z z z+ + + + + + .  

5. Concluding Remarks 

In this paper, we consider binary 2-error-correcting BCH codes combined with 
deep holes to construct general linear codes { }2| ,u c u cλ λ= + ∈ ∈  , where u 
is a deep hole of the codes  . Therefore, we not only construct three classes of 
binary linear codes, but also determine the parameters and the weight distribu-
tions of these binary linear codes. Furthermore, we wish to construct more gen-
eral linear codes related to deep holes. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Wu, R.J. and Hong, S.F. (2012) On Deep Holes of Standard Reed-Solomon Codes. 

Science China Mathematics, 55, 2447-2455.  
https://doi.org/10.1007/s11425-012-4499-3  

[2] Zhang, J., Fu, F.W. and Liao, Q.Y. (2013) Deep Holes of Generalized Reed-Solomon 
Codes. Scientia Sinica Mathematica, 43, 727-740. (In Chinese)  

https://doi.org/10.4236/am.2023.1410040
https://doi.org/10.1007/s11425-012-4499-3


Y. Yang, W. W. Qiu 
 

 

DOI: 10.4236/am.2023.1410040 695 Applied Mathematics 
 

https://doi.org/10.1360/012012-30  

[3] Zhang, J., Wan, D.Q. and Kaipa, K. (2019) Deep Holes of Projective Reed-Solomon 
Codes. IEEE Transactions on Information Theory, 66, 2392-2401.  
https://doi.org/10.1109/TIT.2019.2940962  

[4] Zhang, J. and Wan, D.Q. (2023) On Deep Holes of Elliptic Curve Codes. IEEE Trans-
actions on Information Theory, 69, 4498-4506.  
https://doi.org/10.1109/TIT.2023.3257320  

[5] Hocquenghem, A. (1959) Codes correcteurs d’rreurs. Chiffres (Paris), 2, 147-156.  

[6] Bose, R.C. and Ray-Chaudhuri, D.K. (1960) On a Class of Error Correcting Binary 
Group Codes. Information and Control, 3, 68-79.  
https://doi.org/10.1016/S0019-9958(60)90287-4  

[7] Gorenstein, D. and Zierler, N. (1961) A Class of Error-Correcting Codes in pm Sym-
bols. Journal of the Society for Industrial and Applied Mathematics, 9, 207-214.  
https://doi.org/10.1137/0109020  

[8] Gorenstein, D., Peterson, W.W. and Zierler, N. (1960) Two-Error Correcting Bose- 
Chaudhuri Codes Are Quasi-Perfect. Information and Control, 3, 291-294.  
https://doi.org/10.1016/S0019-9958(60)90877-9  

[9] Huffman, W.C. and Pless, V. (2003) Fundamentals of Error-Correcting Codes. Cam-
bridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511807077  

[10] MacWilliams, F.J. and Sloane, N.J.A. (1977) The Theory of Error-Correcting Codes 
(I and II). North-Holland Publishing Company, Amsterdam. 

[11] Berlekamp, E.R. (1968) Algebraic Coding Theory. McGraw-Hill, New York. 

[12] Assmus, E. and Mattson, H. (1978) The Weight-Distribution of a Coset of a Linear 
Code (Corresp.). IEEE Transactions on Information Theory, 24, 497-497.  
https://doi.org/10.1109/TIT.1978.1055903  

[13] Charpin, P. (1994) Weight Distributions of Cosets of Two-Error-Correcting Binary 
BCH Codes, Extended or Not. IEEE Transactions on Information Theory, 40, 1425- 
1442. https://doi.org/10.1109/18.333859  

 
 
 

https://doi.org/10.4236/am.2023.1410040
https://doi.org/10.1360/012012-30
https://doi.org/10.1109/TIT.2019.2940962
https://doi.org/10.1109/TIT.2023.3257320
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.1137/0109020
https://doi.org/10.1016/S0019-9958(60)90877-9
https://doi.org/10.1017/CBO9780511807077
https://doi.org/10.1109/TIT.1978.1055903
https://doi.org/10.1109/18.333859


Applied Mathematics, 2023, 14, 696-703 
https://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2023.1410041  Oct. 16, 2023 696 Applied Mathematics 
 

 
 
 

Probability Theory Predicts That Winning 
Streak Is a Shortcut for the Underdog Team to 
Win the World Series 

Motohisa Osaka 

Department of Basic Science, Nippon Veterinary and Life Science University, Tokyo, Japan 

 
 
 

Abstract 
It is common for two teams or two players to play a game in which the first 
one to win a majority of the initially determined number of matches wins the 
championship. We will explore the probabilistic conditions under which a 
team (or player) that is considered weak may win the championship over a 
team (or player) that is considered strong, or a game may go all the way to the 
end, creating excitement among fans. It is unlikely to occur if the initially es-
timated probability remains constant when the weaker one wins each game 
against the stronger one. The purpose of this study is to identify probabilisti-
cally what conditions are necessary to increase the probability of such an out-
come. We examine probabilistically by quantifying momentum gains to see if 
momentum gains by a weaker team (or player) winning a series of games 
would increase the likelihood of such an outcome occurring. If the weaker 
one gains momentum by winning a series of games and the probability of 
winning the next game is greater than the initial probability, we can see that 
such a result will occur in this study. Especially when the number of games is 
limited to seven, the initial probability that a weaker one will beat a stronger 
one in each game must be 0.35 or higher in order to win the championship 
and excite the fans by having the game go all the way to the end. 
 

Keywords 
Game, Sports, Underdog, World Series, Upset Championship 

 

1. Introduction 

Baseball is a very popular sport in the United States. In particular, the World Se-
ries, which determines the best team of the year, is the most exciting event of the 
year. The team that wins four games first wins the championship. According to Na-
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hin, the World Series has been decided in an average of 5.8 games under this cur-
rent rule [1]. The most exciting pattern of this event is when a team with a weak 
record wins the championship, or (more likely) when the game goes down to the 
last game. This can be generalized not only to baseball, but also to other sports, 
such as when two winning teams play each other and the team that wins the ma-
jority of the games decided first is declared the winner. The probability that the 
weaker team will win each game against the stronger team will be less than 0.5, but 
it is clear that the greater the number of games played, the further away from the 
championship. So what conditions are necessary for a team that is considered 
weak to increase its chances of winning the championship? The first condition is 
that the probability that a team considered weak will beat a strong team is not 
constant, but varies depending on the situation. This could happen, for example, 
when a weaker team beats a stronger team once and gains momentum to show 
unexpected strength in the next match. In this case, it is assumed that the proba-
bility of the weaker team beating the stronger team is several times greater than the 
initial probability. Even such a probability theory problem that cannot be formu-
lated can be programmed and solved by numerical computation [2]-[8]. 

The two objectives of this study are: 1) to determine the number of games in 
which the weaker team (or player) has the highest probability of winning the 
majority of all games when the probability of the weaker one beating the strong-
er one is constant, and 2) to determine the relationship between the probability 
of the weaker one winning the championship and the number of games in which 
it wins the majority of the games, when the initial probability p is A (>1) times 
larger in case, it wins a series of games. 

2. Methods 

To calculate the probability P of the weaker team W (a team with a weak record 
is hereafter referred to as the weaker team) winning the championship, the de-
tails are set as follows. The probability p of the weak team is assumed to be in the 
range 0 < p < 0.5. The maximum number of games N is assumed to be an odd 
number, and the team that wins the majority of these games, i.e. (n + 1)/2 
games, first, is assumed to be the winner. The game ends at the moment the 
winning team is determined, even if the maximum number of games has not 
been reached. 

First, calculate P when p is constant. When W is determined to win the cham-
pionship, the winner of the last match is W. 

( ) ( )1 1 . Then 1 2
N n MM

n M
P p p

n
M N

m
p−−

=

 
= − ≡ + 

 
∑          (1) 

P was computed with N = 3, 5, 7, …, 11, and p = 0.1, 0.15, 0.25, …, 0.4. 
Next, calculate P when p varies with the situation. Assume that p is A (>1) 

times larger when W wins a series of games. A team with a strong record is he-
reafter denoted as the strong team S. 

The following specific example shows how to calculate the probability that W 
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will win. Example 1) Suppose N = 7 and the final result of winning or losing the 
game is SWWWSW: the probability of W winning in the second game is p, the 
probability of winning in the third game is p × A, the probability of winning in 
the fourth game is p × A × A, and the probability of winning in the sixth game is 
equal to p × A × A in the fourth game since the fifth game was lost. p × A × A is 
0.95 if p × A × A is greater than 1. Hence the probability of SWWWSW occur-
ring is (1 – p) × p × (p × A) × (p × A × A) × (1 – p × A × A) × (p × A × A). 

Example 2) Suppose N = 7 and the final result of winning or losing the game 
is WWWSSW: the probability of W winning in the second game is p × A, and 
the probability of winning in the third game is p × A × A. In this case, if p × A × 
A ≥ 1, p × A × A is replaced by 0.95. The probability of losing in the fourth game 
and the fifth game is 0.05, and the probability of winning in the sixth game is 
0.95. Hence the probability of WWWSSW occurring is p × (p × A) × 0.95 × 0.05 
× 0.05 × 0.95. 

Finally, P is computed with N = 3, 5, 7, …, 11, p = 0.1, 0.15, 0.25, …, 0.4, and 
A = 1.25, 1.5, 2. P was obtained by programming and numerical computation. 

3. Results 

1) A case of A = 1 corresponds to the case where p does not depend on the 
outcome of every match. The probability of W winning always decreases as the 
number of games increases (Figure 1). Moreover, P is always less than p. 

 

 
Figure 1. 3D plot in case A = 1. 
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2) The following results are for the case where p increases A-fold when W wins 
consecutively. 

a) A case of A = 1.25 (Figure 2) 
When p ≤ 0.35, P decreases as the number of matches N increases; when p = 

0.4, P is almost constant, and P < p. 
b) A case of A = 1.5 (Figure 3) 
When p ≤ 0.25, P decreases as the number of matches N increases, and P < p. 

When p = 0.3, P is almost constant. When p ≥ 0.35, P increases as the number of 
matches N increases, and P > p. Especially, when p = 0.4 and N = 7, P = 0.475. 

c) A case of A = 2 (Figure 4 & Figure 5) 
When p ≤ 0.15, P decreases as the number of matches N increases, and P < p. 

When p = 0.25, P is almost constant. When p ≥ 0.3, P increases as the number of 
matches N increases, and P > p. Especially, when p = 0.35 and N = 7, P = 0.437, 
and when p = 0.4 and N = 7, P = 0.4833. 

4. Discussion 

The rest of the public as well as baseball fans will be excited during the season 
when a weaker team W wins the World Series against a stronger team S, or when 
the game goes down to the last minute with no one knowing which way the 
game will go. Such exciting championship games are not limited to baseball. For  

 

 
Figure 2. 3D plot in case A = 1.25. 

https://doi.org/10.4236/am.2023.1410041


M. Osaka 
 

 

DOI: 10.4236/am.2023.1410041 700 Applied Mathematics 
 

 
Figure 3. 3D plot in case A = 1.5. 

 

 
Figure 4. 3D plot in case A = 2. 
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Figure 5. 2D plot in case A = 2. 

 
example, in the championship game of the Japanese chess title, the first four 
winners out of seven games are awarded the title. When p does not depend on 
the outcome of every match, however, we find that such things are much less 
likely to happen. Moreover, as the number of games N increases, it becomes 
more and more difficult for such a thing to happen. Therefore, the answer to the 
first objective of this study is that if the probability p per game of the weaker 
team W is constant, the team with a smaller number of games N initially deter-
mined still has a chance to win the championship. 

The answer to the second objective of this study is as follows: 1) when A = 
1.25 and p ≤ 0.35, the probability P of W winning decreases with the number of 
games regardless of the value of p; 2) when A = 1.5 and p ≥ 0.35, P increases 
with the number of games, and P > p; 3) when A = 2 and p ≥ 0.3, P increases 
with the number of games, and P > p, and 4) when A = 1.5, p = 0.4, and N = 7, P 
= 0.475, and when A = 2, p = 0.35, and N = 7, P = 0.437. Hence, even if p = 0.35, 
we would expect W to win or have a close and exciting game. If p < 0.3, it will 
still be difficult to win the championship even if the winning streak gains mo-
mentum. 

The question is how to interpret this A in the real world. If the supposedly 
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weaker team (or player) wins again, it will probably gain momentum and have a 
greater chance of beating the supposedly stronger team in the next game, or the 
supposedly stronger team (or player) will lose confidence and have a greater 
chance of losing in the next game. In this study, the degree to which the weaker 
team (or player) gains momentum is expressed as A. The number of games in-
itially determined for the World Series and the Japanese chess title decisive matches 
is N = 7, and the results of this study can be interpreted as follows: comparing 
the cases p = 0.35 and p = 0.4, a consecutive win at p = 0.35 would give the team 
more momentum than at p = 0.4. As a result, the value of P when p = 0.35 and A 
= 2 is almost comparable to the value of P when p = 0.4 and A = 1.5. In other 
words, these results suggest that the lower the initial probability of a weaker 
team (or player) to win, the more momentum it will gain when it wins again 
against a stronger team (or player). From the opposite perspective, a stronger 
team (or player) will be further away from the championship if it loses a series of 
games. The difficulty in quantifying the degree to which the weaker team (or play-
er) gains momentum is a limitation of this study. 

5. Conclusion 

The results of this study apply to all cases where two teams (or players) play 
multiple games and the first one to win the majority of the determined number 
of games wins the championship. In order for a weaker team (or player) to win a 
majority of the games against a stronger team (or player), or for a game to go all 
the way to the end, the shortcut is to increase the probability of winning by win-
ning a series of games. Especially when the number of games is limited to seven, 
the initial probability that a weaker team (or player) will beat a stronger team (or 
player) in each game must be 0.35 or higher in order to win the championship 
and excite the fans by having the game go all the way to the end. 
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Abstract 
We discuss formulas and techniques for finding maximum-likelihood esti-
mators of parameters of autoregressive (with particular emphasis on Markov 
and Yule) models, computing their asymptotic variance-covariance matrix and 
displaying the resulting confidence regions; Monte Carlo simulation is then 
used to establish the accuracy of the corresponding level of confidence. The 
results indicate that a direct application of the Central Limit Theorem yields 
errors too large to be acceptable; instead, we recommend using a technique 
based directly on the natural logarithm of the likelihood function, verifying 
its substantially higher accuracy. Our study is then extended to the case of es-
timating only a subset of a model’s parameters, when the remaining ones 
(called nuisance) are of no interest to us. 
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1. Introduction 

The mth-order autoregressive models (see [1]) are flexible enough to describe a 
large assortment of stationary time-series data, thus enabling us to make reasona-
bly reliable predictions of future observations. This rests on our ability to accu-
rately estimate parameters of these models, based on a given set of past observa-
tions (see [2]); we also need to establish the model’s smallest order capable of 
achieving adequate agreement with available data. 

We start by reviewing basic formulas for constructing the likelihood function 
(LF) of any such model, whose maximization then results in maximum-likelihood 
(ML) estimates (these are the actual numerical values thus obtained) of the mod-

How to cite this paper: Vrbik, J. (2023) 
Constructing Confidence Regions for Auto-
regressive-Model Parameters. Applied Ma-
thematics, 14, 704-717. 
https://doi.org/10.4236/am.2023.1410042 
 
Received: August 28, 2023 
Accepted: October 28, 2023 
Published: October 31, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2023.1410042
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2023.1410042
http://creativecommons.org/licenses/by/4.0/


J. Vrbik 
 

 

DOI: 10.4236/am.2023.1410042 705 Applied Mathematics 
 

el’s parameters (note that the same MLEs, seen as random variables, i.e. func-
tions of yet-to-be taken observations, are called estimators). We then proceed 
with an asymptotic theory of the estimators’ sampling distribution (see [3]), 
and a way of constructing an accurate confidence interval (region) for one (or 
more) of the parameters; this requires abandoning the direct approach suggested 
by Central Limit Theorem and using the sampling distribution of ln LF  instead. 
We also design tests to decide whether it is possible to reduce the number of 
the model’s parameters without adversely affecting its predictive power. Final-
ly, we modify the technique to cover the possibility of estimating only a subset 
of the model’s parameters while ignoring the rest (known as nuisance para-
meters). 

2. Autoregressive Model 

In this model, the ith observation (denoted iX ) is generated by a linear combi-
nation of the last m observations and an extra term iε , independent of these 
and Normally distributed with the mean of zero and standard deviation σ  
( ( )0,σ  in our notation), i.e. by 

( ) ( ) ( )1 1 2 2i i i m i m iX X X Xµ α µ α µ α µ ε− − −= + − + − + + − +       (1) 

where m is a small integer. When 1m =  or 2, the model is called Markov or 
Yule respectively; in all other cases, we refer to it as the AR(m) model. We study 
it in its stationary mode only, meaning that the process has equilibrated before 
we start observing it (this implies, among other things, that all iX  have the 
same Normal distribution). The value of the µ  parameter is arbitrary, σ  is 
positive, while the α  values must meet (for the process to be stationary) three 
specific inequalities, introduced shortly (see [4]). 

Note that, after standardizing the iX  by  

: i
i

XZ µ
σ
−

=                         (2) 

(1) simplifies to 

1 1 2 2i i i m i m iZ Z Z Zα α α ε− − −= + + + +                 (3) 

where ( )0,1iε ∈  . 

2.1. Variance and Serial Correlation 

One can readily establish that the joint distribution of all the iX  ( 1,2, ,i n=  ) 
random variables is multivariate Normal with the same mean of μ and a com-
mon variance which equals to 2σ  further multiplied by a function (5) of the α 
parameters. The (serial) correlation coefficient between iX  and i kX +  is the 
same regardless of the value of i (this follows from being stationary); we denote 
it kρ  (note that k kρ ρ− = ). 

To find the first m values of ρ , we need to solve the following set of linear 
equations (a routine exercise) 

1
for 1

m

k j k j
j

k mρ α ρ −
=

= ≤ ≤∑                    (4) 
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with the understanding that 0 1ρ = , while the common variance is 

1

1
1 m

k k k

V
α ρ

=

=
−∑

                      (5) 

The remaining ρ  values (we need to go up to 1nρ − ) then follow from the 
following recurrence formula  

1
when

m

k j k j
j

k mρ α ρ −
=

= >∑                   (6) 

while the ( )th,k   element of the (n by n) variance-covariance (VC) matrix (which 
we denote by  ) of the iX ’s equals to 2

kVσ ρ − . 
Note that   ,k Vρ  and   remain the same for the iZ  sequence, while σ is 

then equal to 1.  
These formulas are all well established in existing (and extensive) literature; it 

should suffice to quote [5] as our reference. 

2.2. ML Estimation 

To construct the corresponding multivariate probability density function (PDF), 
which becomes the likelihood function (denoted LF) when the iX ’s are re-
placed by actual observations, we need the inverse of   and also its determi-
nant. There is a general formula for elements of the inverse; getting the deter-
minant is more difficult (note that symbolic computation on large matrices is 
practically impossible). Nevertheless, there is a way of bypassing this problem 
(see [6]) by finding the PDF of 1 2, , , mZ Z Z , 1 2, , ,m m nε ε ε+ +  

  first (a simple 
exercise, since symbolic inversion and determinant computation of an m by m 
matrix becomes feasible) and then transforming it to get the PDF of the original 
set (equally simple: substitute (2) and divide by nσ ); this yields ln LF  of the X  

sequence (while ignoring the constant ( )ln 2
2
n

− π  term), namely 

( ) ( ) ( )
2

1 1
, 1 1 1, ln det

ln
2 2

m n m
i j i j i ji j i m ji j

Z Z Z Z
n

α
σ

− −
−= = + =

+ −
− − +
∑ ∑ ∑ 

  (7) 

where   is now the VC matrix of only the first m terms of the iZ  sequence; 
the second sum is the standard Normal PDF of the ε  subsequence, after solv-
ing (3) for iε  and substituting. 

As an example, we select (rather arbitrarily) 3m = , 50µ = , 0.6σ = , 1 2.7α = , 

2 2.52α = −  and 3 0.81α =  and generate a random sequence of 300 consecutive 
and equilibrated observations using the corresponding AR(3) model of (1), and 
the following Mathematica code. 

 

 
 

The first line generates a sequence of 100n +  independent values from the 
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( )0,0.6  distribution—the iε  of (1); the second line (and its continuation) 
converts them to the iX  of the same formula, using 3m = . The extra 100 ob-
servations were needed to allow the process to equilibrate (the first 100 iX ’s are 
then deleted); the last line displays the resulting AR(3) sequence in Figure 1. 

Using the generated sequence as data from an AR(3) model whose five para-
meters are unknown and to be estimated, we proceed to 

• solve (4) for the first 3 (m in general) ρ’s, 
• compute V using (5), 
• and the corresponding inverse of the   matrix (denoted A), 
• standardize the observation in the manner of (2), 

• build the 2
n

−  multiple of (7) while excluding its last term (the result is 

called L). 
This is done (one line for each bullet) by the following continuation of the 

previous computer program: 
 

 
 

In addition to computing L we have also printed V, as its denominator pro-
vides a useful set of if-and-only-if conditions for the process to be stationary (all 
of its three factors must be positive). 

Now, we need to either maximize ln LF  (a difficult task), or make each of its 
derivatives (with respect to every parameter) equal to zero and solve the corres-
ponding set of normal equations; the latter approach is easier, faster and more 
accurate; it involves the following steps: 

• compute the five ( 2 m+  in general) derivatives of L (the first two lines of 
the code below); multiply each by σ2, thus making them free of σ (with the ex-
ception of the σ derivative which, when multiplied by σ3 becomes linear in σ2); 
denote the results dμ, dσ and dα (the last being a set of m expressions), 

 

 
Figure 1. Randomly generated data based on AR(3) model. 
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• similarly (line three), differentiate the extra 
( )1ln det
n

−
 term of (7) with 

respect to each α parameter, denoting the answer dV (a collection of m functions 
of only the α parameters), 

• set the initial value of μ to 1
n

ii X n
=∑ , of σ (arbitrarily) and of each α to 0, 

and start the following iteration (performed by Mathematica’s routine ite): 
• solve 

d dV
µ α

α =                             (8) 

for a new, updated set of α values (the second line of ite; its first line is only prepa-
ratory—note its continuation) where d

µ
α  implies that dα is evaluated using the 

current value of μ, while dV
α  is similarly evaluated using the current set of α val-

ues; the corresponding equations for the new α’s are thus linear and easy to solve, 
• solve 

0d
α

µ =                              (9) 

to get a new value of μ, where the evaluation is now done using the updated α’s 
(third line of ite); the equation is linear in μ and thus trivial to solve, 

• finally, solve  

, 0d
µ α

σ =                            (10) 

for σ, where the evaluation is done using the new values of both μ and α (fourth 
line of ite; the final line just combines the updated values of μ, σ and α’s into a 
single output); the equation is linear in σ2 (its positive root yields the updated σ), 

• repeat the iteration till the new values of the five parameters no longer change 
(a total of five iterations normally suffice to reach an adequate accuracy); this is 
done by the last line of the subsequent code, which also returns the resulting ML 
estimates.  

To do this, we need to further extend the previous Mathematica code by: 
 

 
 

thus obtaining the ML estimates of μ, σ and the three α’s (in that order). 
An interesting observation: the last term of L (whose numerator is a sum of 

squares of differences between predicted and actual values of the Z sequence) 
always results in 1 when evaluated using the ML estimates returned by sol; this 
can serve as a verification of the program working correctly. 
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2.3. Asymptotic Distribution 

The general version of central limit theorem (CLT) tells us that the sampling 
distribution of ML estimators is approximately Normal, with the asymptotic 
means equal to the parameters’ true values. To get the distribution’s VC matrix, 
we utilize the theory of Fisher information matrix and 

• divide ln LF−  by n, getting 

1 1
2

2

0 1 0

1ln
2

n n km m
i i

m k
i i i k

j j j k
j k j

Z Z Z
n n

σ α α α= =

− −
+

+
= = =

+ +∑ ∑∑ ∑ ∑           (11) 

where 0 1α = − ; this follows from (7), 
• find the matrix of second derivatives (with respect to each pair of parameters) 

of this expression, 
• find the expected value (indicated by  ) of each element of this matrix, re-

membering that 

( ) ( )0 and ,i i i k kZ Z Z Vρ+= =                  (12) 

• take the corresponding n →∞  limit, 
• invert the resulting matrix, 
• and further divide by n.  
Leaving out further details, this yields the following results: ML estimators of 

μ and σ are, asymptotically (i.e. when n is large) independent of each other and 
of the α estimators, with standard deviation given by 

1

and
21 m

kk

n
n

σ σ
α

=
−∑

                     (13) 

respectively, while the α part of the asymptotic VC matrix is 

( )
( )

22
2 1 21

2
1 2 2

2
3 1 2 3 2 1 3

2 2 2
1 2 3 1 2 3 1 2 3

2
2 1 3 1 2 3 3

1 11 , / and
1 1

1
1 /

1

n
n

n

α α αα
α α α

α α α α α α α
α α α α α α α α α
α α α α α α α

 − − −−
 − − − 

 − − − − −
 − − + − − − − 
 − − − − − 

           (14) 

in the case of Markov ( 1m = ), Yule ( 2m = ) and AR(3) model, respectively. 
Note that each VC matrix is both symmetric and slant-symmetric (i.e. the same 
when flipped with respect to either diagonal). They have been found by the first 
line of the following Mathematica code (by specifying the value of m first). 

When executed at the end of the last program (where m was already set to 3), 
the second line establishes the standard error (using (13) and (14), with parame-
ter estimates replacing their true values) of each of the previously computed ML 
estimates; note that they are all within two standard errors of their true values. 
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Using these results, we can then compute the standard error of the expected 
value of the next (yet to happen) observation, established based on (1), the last m 
observations, and our estimates of μ and the α’s. 

3. Confidence Regions 

To construct a confidence region (CR) for true values of all 2m +  parameters 
of an AR(m) model, we could directly use their asymptotic Normal distribution 
of the previous section (see [7] [8] and [9]). Nevertheless, it is more accurate (in 
terms of establishing the correct level of confidence), and also notably easier, to 
utilize the theorem which states that  

true2 ln 2 lnMLELF LF−                     (15) 

has, to a good approximation, the chi-squared distribution with 2m +  degrees 
of freedom (notation: 2

2mχ + ). Here, the first term of (15) involves the maximum 
value of ln LF  achieved by the ML estimates, while the second term assumes 
evaluating the same ln LF  using the true values of the parameters. The proof of 
a similar statement can be found in [10]; the necessary modifications are quite 
simple and need not be elaborated on. The theorem’s accuracy is demonstrated 
in Figure 2, which compares the empirical histogram of 105 randomly generated 
values of (15) to the PDF of 2

3χ , using a Markov model with 10µ = , 1.7σ = , 

1 0.9α =  and 300n = . 
Even though the agreement is not quite perfect (it quickly improves with in-

creasing n), both the accuracy and simplicity of this approach greatly outweigh 
those of CLT (Figure 6 demonstrates the error of the basic Normal approxima-
tion: it is far less accurate than what we see in Figure 1). 

Utilizing this asymptotic distribution, we then make (15) equal to a selected 
critical value of 2

3χ ; solution to this equation yields the CR boundaries. To 
show how it is done in the case of the above Markov model, we run the program 
of our original example while changing its first three lines to 

 

 
 

This returns a set of data displayed in Figure 3 (the individual observations 
have been connected) and, after executing the program’s next two segments, also 
the corresponding three ML estimates (saved in sol). 

Computing L and res by the previous routines, and adding the following two 
lines of code (the first evaluating (15), the second doing the plotting) 

 

 
 

produces the desired CR, displayed in Figure 4 (in Mathematica, it can be rotated 
and observed from any direction). 
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Figure 2. Empirical and theoretical distribution of (15). 

 

 
Figure 3. Randomly generated data from Markov model. 

 

 
Figure 4. 95% confidence region for Markov-model parameters. 

3.1. Nuisance Parameters 

We have already shown that the three ML estimators of Markov-model parame-
ters are asymptotically independent; this enables us to find a confidence interval 
(CI) for any one of these (we call it the pivotal parameter) by treating the other 
two as nuisance parameters (see [11]). The reference indicates that changing (15) 
to 
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mixed2 ln 2 lnMLELF LF−                     (16) 

where “mixed” implies using ML estimates for the nuisance parameters and the 
true value of the pivotal one) makes (16) into a 2

1χ  type of random variable. 
Using parameters of the Markov example of the last section, we display, in 

Figure 5, the empirical and theoretical PDF of (16), while considering μ and σ to 
be nuisance parameters and 1α  the pivotal one; the agreement is nearly perfect. 

Let us contrast this result with similar comparison of the actual (empirical) 
distribution of the ML estimator of 1α  with its asymptotic (CLT-based) limit 
(Normal, with the mean of 0.9 and variance, based on (14), of ( )21 0.9 300− ), 
which is displayed in Figure 6. This time the error of the approximation is clearly 
inacceptable; using it for constructing CI for the true value of 1α  is not rec-
ommended.  

 

 
Figure 5. Empirical and asymptotic PDF of (16); nuisance parameters are μ and σ, m = 1. 

 

 
Figure 6. Empirical distribution of α1, versus its Normal approximation. 
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To accurately compute boundaries of a CI for 1α , we must thus return to (16) 
and utilize its fast convergence to 2

1χ  distribution. First, we find ML estimates 
of all parameters (already done in previous section), then add the following two 
lines of code (the first line evaluating (16), the second one making it equal to the 
80% critical value of 2

1χ  and solving this equation for 1α ): 
 

 
 

We then claim, with an 80% confidence, that the true value of 1α  lies be-
tween the resulting two roots. 

Note that the theory allows us to designate any set of parameters as pivotal 
(the rest are then the nuisance parameters); when the two sets of estimators are 
asymptotically independent, the distribution of (16) is approximately 2

pχ , where 
p is the number of pivotals. As soon as there is a non-zero correlation between 
the two groups, the distribution of (16) becomes substantially more complicated 
and, in the case of AR(m) models, practically impossible to deal with. The tech-
nique can thus be applied only to situations when all α parameters are either all 
pivotal or all nuisance, as demonstrated by our next example. 

This time, we generate data from Yule model with 10µ = , 2σ = , 1 1.75α = , 

2 0.9α = − , using 100n = , by the usual 
 

 
 

which produces the sequence of Figure 7. 
We then run the common part of the program to find the four ML estimates, 

saving them under the name res. Executing the following two extra lines (the 
first line evaluating (16), the second one making it equal to the 95% critical value 
of 2

2χ , solving for 1α  and 2α , and displaying the resulting contour): 
 

 
 

we get the 90% CR of Figure 8 for the true values of 1α  and 2α , while consi-
dering μ and σ as nuisance parameters. 

This is based on our previous assertion that the distribution of (16) is, in this 
case, approximately 2

2χ ; to check the accuracy of this statement, we display the 
empirical version of this distribution (using the same Yule model and 105 se-
quences of 100 consecutive observations) together with the PDF of 2

2χ  in Fig-
ure 9; the agreement is again practically perfect. 
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Figure 7. Randomly generated data from Yule model. 

 

 
Figure 8. 90% confidence region for α1 and α2. 

 

 
Figure 9. Empirical and theoretical PDF of (16); nuisance parameters are μ and σ, m = 2. 
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3.2. Establishing Model’s Order 

Until now, we always assumed that the value of m (the order of the model) is 
known; this may normally not be the case, so the question is: how do we test 
whether an AR(m) model has the correct number of α parameters to be an ade-
quate representation of a given set of consecutive observations? The obvious idea 
is to see if, by extending the model by an extra 1mα +  parameter, the correspond-
ing increase in the maximum value of the ln LF  function is statistically signifi-
cant. This can be easily tested by using an extension of the last theorem: when 
the data does follow an AR(m) model, the following difference  

12 ln 2 lnm mLF LF
+

−                       (17) 

(where the subscript indicates the number of α parameters used to maximize 
ln LF ) has 2

1χ  distribution. 
We verify this by yet another Monte-Carlo simulation of 105 sequences gener-

ated from the AR(3) model of our first example, displaying empirical histogram 
of the resulting (17) values, together with the PDF of 2

1χ , in Figure 10. The 
agreement indicates that the latter distribution is again an excellent approxima-
tion of the former. 

Returning to the original example; we have already computed ML estimates of 
the five parameters, which are easily converted into the corresponding value of 
ln FL . We then need to use the same data and run the same program with 4m = , 
similarly converting the resulting six estimates to a new (always higher) value of 
ln LF . Evaluating (17) and substituting the result into the CDF of 2

1χ  (we let the 
reader come up with the corresponding code) yields 0.111; this, being less than 
95%, tells us that the data is adequately described by the original AR(3) model. 

 

 
Figure 10. Empirical and asymptotic PDF of (17); m = 3. 
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On the other hand, trying to fit a Yule model ( 2m = ) to the same data yields 
substantially higher difference between 2ln LF  and 3ln LF , resulting (using 
the same example) in a CDF value indistinguishable from 1 (the corresponding 
P-value is of the order of 10−61), indicating that no Yule model can properly de-
scribe this data. 

We mention in passing that, to test the same 3 0α =  hypothesis, we could 
resort to a less sophisticated approach of using the asymptotic distribution of the  

ML estimator of 3α  (Normal, with the mean of 0 and variance equal to 1
n

,  

under the null hypothesis), getting a similarly small P-value of 10−40; this test is 
not only less accurate (the Normal approximation has a large error, as we have 
seen) but also less sensitive than the one based on (17). 

4. Conclusions 

In this article, we have provided a variety of techniques for estimating parame-
ters of an AR(m) model, including construction of confidence intervals/regions 
and testing various hypotheses regarding parameter values and the model’s or-
der. We have used Monte Carlo simulation extensively to find empirical distri-
butions of various sample statistics and explore the accuracy of each proposed 
approximation. This led us to conclude that the traditional use of CLT and of the 
corresponding Normal distribution is to be discouraged due to the resulting large 
errors. On the other hand, utilizing differences between various ln LF  functions 
and the corresponding 2χ  distribution yielded very accurate results even with 
relatively small sets of past observations. 

There are several directions to pursue in terms of potential future research, 
e.g.: investigating how flexible AR(m) models are to describe, to a sufficient ac-
curacy, general stationary stochastic processes (such as moving averages) that do 
not necessarily originate from (1); after all, real data do not exactly follow any 
mathematical model—these function only as useful approximations. Another 
possible extension of the current research would be to similarly deal with ARMA 
models; here, one would need to find some practical way of inverting (and find-
ing determinants) of large symbolic matrices, essential for computing the cor-
responding ln LF  function. 
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