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Abstract 
In this study, a revised version of some numerical methods for a class of 
hybrid integro-differential equations with weakly singular kernels (Abel types) 
is presented. These equations were developed from a class of integro-differential 
equations of first kind originating from an aeroelasticity problem. By mani-
pulating the bounds of initial conditions with random variations, this study 
numerically demonstrated the well-posedness properties of the equations. 
Finally, an assumption of separating variables, allowed for linear splines to 
be chosen as a basis and for the differentiation and integration of the inte-
gro-differential part to be interchanged; hence, a numerical scheme was con-
structed. 
 

Keywords 
Well-Posedness, Hybrid, Weakly Singular, Integro-Differential Equations 

 

1. Introduction 

The aeroelastic dynamical model is governed by a class of integro-differential 
equations with weakly singular kernels [1]. In [2], Burns and Ito examined the 
well-posedness of the first kind equations in weighted product L2-spaces with 
singular kernels as weights. In this study, we numerically investigated the well- 
posedness property of hybrid equations. For hybrid type equations, especially for 
the integro-differential parts, we followed the works in previous studies [3] [4]. 
For the derivative parts, we revised the results outlined in [5] with second order 
accuracy difference methods for different boundary conditions. Thereafter, we 
introduced randomly perturbed noises with different bounds in the initial con-
ditions, and compared the corresponding solutions to solutions without initial 
perturbations. By setting reasonable tolerance of deviation, we successfully dem-
onstrated the well-posedness property. This paper is organized as follows: Sec-
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tion 1 introduces dynamical systems, Section 2 explains the development of the 
numerical methods, Section 3 presents examples with numerical results and Sec-
tion 4 summarizes the study. 

2. Dynamical Systems 

Let us consider weakly singular integro-differential equations of hybrid types 
with the general normalized form 

( ) ( ) ( ) ( )d, , , 0,
d t tG x t x D x L x f t t

t
+ + = >               (1) 

and initial condition ( ) ( )x s sϕ= , for 0s ≤ .  
Here, ( ), ,G x t x  is a function of state, time and time derivative of state. The 

other terms are such that  

( ) ( ) ( )0

1
dtD x g s x t s s

−
= +∫ ,                   (2) 

and  

( ) ( ) ( )0

1
dtL x b s x t s s

−
= +∫ .                    (3) 

The kernel ( )g s  belongs to a weakly singular type. In particular, the Abel 
type ( ) pg s s −=  is considered, where 0 1p< < . The kernel ( )b s  is assumed 
to be a smooth function for 1 0s− ≤ ≤ .  

3. Numerical Methods 

To develop the numerical algorithms, we separately discretize two variables. For 
the first variable, [ ]1,0s∈ −  is discretized as 1 1 01 0n nτ τ τ τ−− = < < < < = . 
For the second variable [ ]0,1t∈ , the nodes are 0 1, , , mT T T , with  

0 10 1mT T T= < < < = . The typical equations we study are  

( ) ( )( ) ( ) ( ) ( ) ( )0

1

0

1

d, , d d
d

pG x t t x t s x t s s b s x t s s f t
t

−

− −
+ + + + =∫ ∫ .     (4) 

Because the derivative is respect to t, we interchange the differentiation and inte-

gration of the second term and then apply the property ( ) ( )d d
d d

x t s x t s
t s

+ = + . If 

we assume that ( ) ( ),t s x t sκ = + , then  

( ) ( ), ,t s t s
t s

κ κ∂ ∂
=

∂ ∂
.                        (5) 

Next, suppose that ( ) ( ) ( )1, i i
n
it s a t sκ β
=

= ∑ , with the basis ( )i sβ ,  
1,2, , 1i n= − , defined as: 

( )

( ) [ ]

( ) [ ]

1 1
1

1 1

1 , , ,

1 , , ,

0, otherwise,

i i i
i

i
i i i

i

s s

s s s

τ τ τ
δ

β
τ τ τ

δ

+ +
+

− −

 − ∈
=  − ∈



                (6) 
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where 1 0i i iδ τ τ−= − > , 1, ,i n=  . In particular, ( ) ( )0 0
0 1

1s sβ τ
τ τ

= −
−

, 

[ ]1 0,s τ τ∈  and ( ) ( )1
1

1
n n

n n

s sβ τ
τ τ −

−

= −
−

, [ ]1,n ns τ τ −∈ . 

The semi-discretized form of Equation (4) becomes 

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

0 0 01

0

0

0

1

d, , d
d

d .

np
i ii

i ii
n

G a t t a t s a t s s
s

b s a t s s f t

β

β

−

=−

=−

 +  
 

+ =

∫

∫

∑

∑



          (7) 

With the piecewise linear property of ( )i sβ , the second term of Equation 

(7) can be further partitioned into ( ) ( ) ( )0 0 1 1 n nc a t c a t c a t+ + + , where kc , 
0,1, ,k n=  , depending on lτ , 0,1, ,l n=  . Analogously, the third term of 

Equation (7) can be discretized as ( ) ( ) ( )0 0 1 1 n nd a t d a t d a t+ + + , and kd ,  
0,1, ,k n=  , also depending on lτ , 0,1, ,l n=  . 

For a fully-discretized form, with a second-order finite difference approx-
imating the derivative term, Equation (7) becomes the following 

For 1, , 2k m= − ,  

( )
2 1

0 0 0
0 0 0

4 3
, ,

2

k k k
k k k k k

i i i ii i
k

n na a a
G a T a c a d f T

+ +

= =

 − + −
+ + = 

∆ 
∑ ∑ ,           (8) 

for 1k m= − , ( )
2

1 1 1 1 10 0
0 0 0

1

, ,
2

m m
m m m m m

i i i ii i
m

n na a
G a T a c a d f T

−
− − − − −

= =
−

 −
+ + = 

∆ 
∑ ∑ , 

and for k m= , ( )
1 2

0 0 0
0 0 0

3 4
, ,

2

m m m
m m m m mn n

i i i ii i
m

a a a
G a T a c a d f T

− −

= =

 − +
+ + = 

∆ 
∑ ∑ , 

with 1 0k k
k T T −∆ = − > , 1, ,k m=  . 

To identify 0
ka , 1, ,k m=  , and apply uniform discretization in both t and s, 

we use the transit property 1
1

j j
i ia a −

−=  and assume m n= . Therefore, we have 

0
j j i

ia a −= , for j i> . For j i≤ , 0
la , 0,1, , 1l n= − , can be determined by 

the initial condition. 
Without loss of generality, we use the special form ( ) ( )( ) ( ) ( ), ,G x t t x t x t x t= −   

and construct an n n×  linear system =Ax b  for the system of algebraic equa-
tions, where  

0 0

1 1 0 0

3 3 0 0

2 2 2 2 0 0

1 1 3 3 2 2 1 1 0 0

3 2 11 0
2 2

3 21 0 0
2

3 2 11
2 2

11
2

1 2 31
2 2

n n

n n

n n
n n

c d

c d c d

A
c d c d

c d c d c d

c d c d c d c d c d

− −

− −

− −
×

− − − − ∆ ∆ ∆ 
 − − − − ∆ ∆
 
 

=  −
− − − − 

∆ ∆ ∆ 
 

− − − − ∆ 
 − − − + − − − − −  ∆ ∆ ∆

 



     

 

 



,  
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1
0

0 1

n
n

a

a
×

 
 

=  
 
 

x   and 

( ) [ ] [ ] [ ]

( ) [ ] [ ]
( ) [ ]

1 0 0 0
0 1 1 1 2 2 1

1 0 0
0 1 1 1

0
0 1

n n n

n
n n n n

n
n n n

f T a c d a c d a c d

f T a c d a c d

f T a c d

−

−
− −

×

 − − − − − − −
 
 
 =

− − − − − 
 

− −  

b







. 

4. Examples 

In this section, we apply the methods derived from Section 2 to calculate the 
percentages of computed solutions that satisfy the infinity norm criteria. Com-
puted solutions are obtained by randomly perturbations in each node of the ini-
tial condition but bounded within [ ],ε ε− . The numbers in the tables indicate 
the percentages of successes satisfying the bounded criteria in each case. For n = 
1000, the number of nodes and number of test cases, three results are provided 
for comparison.  

In all cases, 0.5p = . The bounded criterion of infinity norm between the 
computed and exact solutions is 0.1.  

The following examples mainly show that for the hybrid type integro-diffe- 
rential equations, percentages of satisfying the infinity norm criteria between 
computed solutions and exact solution ( )x t  are increasing by decreasing the 
perturbation bounds of initial conditions. 

Example 1. 

( ) ( ) ( ) ( )2 2 251, , 2 7 , .
3

b s s s f t t t x t tφ= = = − + − =  

Table 1 contains percentages that satisfy the infinity norm criteria.  
Example 2. 

( ) ( ) ( ) ( )71, , 2 , .
2

b s s s f t t x t tφ= = = − + =   

Table 2 contains percentages that satisfy the infinity norm criteria.  
Example 3. 

( ) ( ) ( ) ( )
2

0.51, 0, 1 2 , .
2
tb s s f t t t x t tφ= = = + − − =   

Table 3 contains percentages that satisfy the infinity norm criteria.  
Example 4. 

( ) ( ) ( ) ( )8, , , .
2 3
tb s s s s f t x t tφ= = = − + =   

Table 4 contains percentages that satisfy the infinity norm criteria.  
Example 5. 

( ) ( ) ( ) ( )
3

0.5, 0, 1 2 , .
6
tb s s s f t t t x t tφ= = = + − + =   

Table 5 contains percentages that satisfy the infinity norm criteria.  
Example 6. 
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( ) ( ) ( ) ( )
2 3 4

2 0.5 1.51 7 8, , 2 , .
12 3 3 2 6 12

t t tb s s s s f t t t t x t tφ= = = − + + − + + − =   

Table 6 contains percentages that satisfy the infinity norm criteria.  
 

Table 1. Results of Example 1. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 77% 100% 100% 
n = 100 0% 0% 70% 100% 100% 

n = 1000 0% 0% 90% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 

 
Table 2. Results of Example 2. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 69% 100% 100% 
n = 100 0% 0% 78% 100% 100% 

n = 1000 0% 0% 100% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 
n = 1000 0% 0% 100% 100% 100% 

 
Table 3. Results of Example 3. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 68% 100% 100% 

n = 100 0% 0% 57% 100% 100% 

n = 1000 0% 0% 100% 100% 100% 

n = 1000 0% 0% 100% 100% 100% 

n = 1000 0% 0% 99.9% 100% 100% 

 
Table 4. Results of Example 4. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 0% 99% 100% 
n = 100 0% 0% 0% 99% 100% 

n = 1000 0% 0% 92.5% 100% 100% 
n = 1000 0% 0% 90.8% 100% 100% 
n = 1000 0% 0% 92% 99.9% 100% 

 
Table 5. Results of Example 5. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 0% 100% 100% 
n = 100 0% 0% 0% 100% 100% 

n = 1000 0% 0% 91.9% 100% 100% 
n = 1000 0% 0% 91.8% 100% 100% 
n = 1000 0% 0% 92.1% 100% 100% 
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Table 6. Results of Example 6. 

ε 0.05 0.005 0.0005 0.00005 0.000005 

n = 100 0% 0% 0% 100% 100% 

n = 100 0% 0% 0% 99% 100% 

n = 1000 0% 0% 92% 99% 100% 

n = 1000 0% 0% 92.4% 100% 100% 

n = 1000 0% 0% 92.4% 100% 100% 

5. Conclusion 

In this study, we investigated the well-posedness property of a class of hybrid 
integro-differential Equations by revising the numerical methods outlined in a 
previous study [5]. From the numerical examples, when the bounds ε of pertur-
bation of the initial conditions approach 0, the percentages of the associated so-
lutions fall into the envelopes of 0.1 bounded criteria compared with solutions 
without perturbation, which increase instead. 
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Abstract 
Utilizing the translation operator to represent Bernoulli polynomials and power 
sums as polynomials of Sheffer-type, we obtain concisely almost all their 
known properties as so as many new ones, especially new recursion relations 
for calculating Bernoulli polynomials and numbers, new formulae for ob-
taining power sums of entire and complex numbers. Then by the change of 
arguments from z into ( )1Z z z= −  and n into λ  which is the 1st order 
power sum we obtain the Faulhaber formula for powers sums in term of 
polynomials in λ  having coefficients depending on Z. Practically we give 
tables for calculating in easiest possible manners, the Bernoulli numbers, po-
lynomials, the general powers sums. 
 

Keywords 
Bernoulli Numbers, Bernoulli Polynomials, Powers Sums, Zeta Function, 
Faulhaber Conjecture 

 

1. Introduction 

In many branches of mathematics the problem of Bernoulli numbers related to 
the millenary problem of power sums is probably the most studied since the 
publication of the book Ars Conjectandi by Euler in 1738 [1] as we can see on 
the net and, specially, in a didactical thesis of Coen [2], the explicative work of 
Raugh [3], Beardon [4], the bibliography of thousands of articles on Bernoulli 
numbers realized by Dilcher, Shula, Slavutskii [5], etc.  

Concerning Bernoulli polynomials ( )mB z , classically defined from a gene-
rating function, there had not so much properties, the most remarkable is its re-
presentation by a hyper-differential operator, the Hurwitz expansion of them 
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into Fourier series, the Roman formula for ( )mB nz , the Euler-McLaurin for-
mula, etc. 

As for the power sums on real and complex numbers, including the famous 
Faulhaber conjecture, there has no valuable formula linking them with Bernoulli 
polynomials until only some years ago [6].  

Regarding the situation, we would like to perform a selection of as many as 
possible known and new interesting properties of Bernoulli polynomials then of 
Bernoulli numbers in a coherent way, i.e., by only one approach, which utilizes 
principally operator calculus lying on the couple of operators position and deri-
vation, similar as the couple ,r ∇

  in quantum mechanics.  
In Section 2, we will treat the problem of Bernoulli polynomials, from their 

representation by a hyper-differential operator to almost all of their algebraic 
properties to the fact that ( )mB n  is equal to the primitive of the power sums of 
natural integers. Afterward we show that the formula giving Bernoulli polyno-
mials of a sum of two arguments ( )mB z y+  leads to two new recurrence re-
lations for obtaining ( )mB z . We also give another approach for calculating 
without integrations, the Fourier series of Bernoulli polynomials and the Ber-
noulli series of functions, the relation of ( )mB z  with the Euler zeta function. 
Afterward we show an up-to-date procedure for obtaining ( )mB z  from and 
only from ( )1mB z−  leading to the rapid establishment of Table of Bernoulli 
polynomials and numbers. Finally, we show a new way for obtaining Fourier se-
ries of Bernoulli polynomials, Euler zeta function, and vice-versa, the series of 
functions in term of a set of Bernoulli polynomials.  

In Section 3, we treat the problem of Bernoulli numbers mB , from its initial 
definition by Jakob Bernoulli in 1713 who related them by conjecture with the 
power sums on natural numbers. By comparison of this relation with the pre-
ceding formula linking ( )mB n  with power sums, we may identify mB  with 

( )0mB  then calculate mB  by a simple matrix method side-by-side with the 
method, more powerful, link with l, coming from the special recurrence formula 
coming from ( )mB z y+ .  

In Section 4, we prove by utilizing the translation operator e za∂ , coming from 
the Newtonian binomial, that the power sums on complex numbers are simply 
related to those on natural numbers. On the other hand, we prove that they are 
also related very simply to Bernoulli polynomials, from that we get again the re-
currence relation between Bernoulli polynomials. 

Section 5 is devoted to the Faulhaber problem regarding power sums on com-
plex numbers. Here we show that power sums on complex numbers may be cal-
culated from sums of entire numbers somehow by writing ( )2mB z  in function 
of the new argument ( )1Z z z= − . 

2. Bernoulli Polynomials  
2.1. Definition and Principal Properties 

In 1738, Euler introduced the Bernoulli polynomials ( )mB z  via the generating 
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function [1]  

( )
0

1e
!e 1

zt m
mt

m

t B z t
m

∞

=

=
−

∑                   (2.1) 

which directly gives by identification 

( )0 1B z = , ( )1
1
2

B z z= − , ( )2
10
6

B =              (2.2) 

Utilizing the translation operator e za∂  coming from the Newtonian binomial 

( )
0 0

e
!

z
km mm ak m k k m m

z
k k

m ax a a x x x
k k

∂−

= =

 
+ = = ∂ = 

 
∑ ∑          (2.3) 

and having the property  

( ) ( )e za f x f x a∂ = +  

( )1e e e e ez t ztz t tz+∂ = =                      (2.4) 

e e
e 1e 1z

tz tzz
t

t
∂

∂
=

−−
                    (2.5) 

we directly find from (2.1) that ( )mB z  is the transform of mz  via a differential 
operator 

( ) , 0
1z

mz
mB z z m

e∂
∂

= >
−

                   (2.6) 

From (2.6) we get the famous known formulae  

( ) ( )1m mB z mB z−′ =                      (2.7) 

( ) ( ) ( ) ( ) 11 e 1z m m
m m m zB z B z B z z mz∂ −+ − = − = ∂ =        (2.8) 

( ) ( ) 11 0m m mB B δ− =                     (2.9) 

and the following formula which gives einxz  as series of Bernoulli polynomials.  

( )
0

e e
! e 1e 1z

m
m tz tzz

t
m

t B z t
m

∞

∂
=

∂
= =

−−
∑               (2.10) 

From (2.8) we get the formula given by Roman [7] 

( )
1

1 1
0

1
mN

m m
n

z z zB N B m n
y y y

−

+ +
=

     
+ − = + +     

     
∑          (2.11) 

From (2.10) we get the formulae on relations of Bernoulli polynomials versus 
trigonometric functions, especially the Castellanos formula [8] 

( ) ( )
2

2 0 cos 1
! sin

m
m

m

ix B x x
m x

∞

=

= −∑                  (2.12) 

The formulae (2.7) and (2.8) give the important formulae 

( ) ( ) ( )( )1
1 10

1d 1 0m m m mB z z B B
m

δ− = − =∫              (2.13) 
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( ) ( ) ( )( )11 10 0 1 1 mm m
m mB n B m n −− −− = + + + −           (2.14) 

and the Taylor expansion 

( ) ( ) ( ) ( ) ( ) ( )0
k m

m m m k

m
B z B a z a B a z a B a

k −
 

= + + − + + − 
 

   

which may be put under symbolic form 

 ( ) ( )( ):
m

mB z a B a z+ = +                   (2.15) 

where undefined symbols ( )kB a  are to be replaced with ( )kB a . 
Exploring now the inter-relations between Bernoulli polynomials.  
From (2.4) and (2.7) we get the complementary of (2.15) 

( ) ( ) ( )

( ) ( ) ( )

( )( )

0

0

e 1
! !

: , 0 1

z
k m

a k m
m m m

k m
m m k

m

a aB z a B z B z
k m

m
B z B z a B z a

k

B z a

∂

−

 
+ = = + + ∂ + + ∂ 

 
 

= + + + + 
 

= + =

 

       (2.16) 

From (2.13)  

( ) ( ) ( )1 1 1
00 0

d d d
z m m

m mz
B y y B z y y z B y y z

+
= + = =∫ ∫ ∫  

( )1

0
d 0m

mB y y =∫  

( ) ( )
0

d 0 1 1
n mm m

mB y y n= + + + −∫                (2.17) 

i.e.,  
“The sum of powers of order m of n first entire numbers from 0 to ( )1n − , 

denoted by ( )mS n , is equal to the simple primitive (without constant of inte-
gration) of the Bernoulli polynomial ( )mB n ” and vice-versa, 

“The Bernoulli polynomial ( )mB n  is equal to the derivative of the power 
sums ( )mS n ” 

As for ( )mB z−  we see that 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 e
1 e e 1

1 1 : 1 1

z
z z

m m mz z
m

mm m
m

B z z z

B z B z

∂
−∂ ∂

−∂ ∂
− = − = −

− −

= − + = − +
          (2.18) 

which leads to  

( )1 11
2 2

m
m mB z B z   − + = − +   
   

                 (2.19) 

i.e., to the theorem 
“The graph of a Bernoulli polynomial is symmetric with respect to the axis 

1
2

z =  if m is pair and anti-symmetric if m is impair”. 

Joint (2.19) with (2.9) we get the famous property [1] 
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( ) ( )2 1 2 1 0
11 0
2m m mB B δ+ += − =                  (2.20) 

Now, by replacing in (2.6) z with z
n

 so that z∂  is with zn∂  we get  

( ) ( )( )12e 1 e 1 1 e e ez zz z z

m m
z z

m n n

n nz z zB
n n n∂ − ∂∂ ∂ ∂

∂ ∂     = =     −     − + + + +

 

and the formula 

( )
1

1

0

n
m

m m
k

z kB n B z
n

−
−

=

+  = 
 

∑                  (2.21) 

saying that 

( )mB z  is 1mn −  times the sum of ,m
z kB k n

n
+  < 

 
 

For examples: 

( )1 12
2 2

m
m m m

z zB z B B− +   = +   
   

 

( ) ( )2
2 1 2 1 2 1

1 2 0 3 1 1
3 3

m
m m mB B B−
+ + +
   + = = −   
   

 

By replacing in (2.6) z with nz and z∂  with 1
zn

∂  we find again the formula 

given by Raabe [9] in 1851 

( ) ( )1 1 1m
m m m m

nB nz n B z B z B z
n n

−  −    = + + + + +    
    

  (2.22) 

saying that 

“ ( )mB nz  is 1mn −  times the sum of ,m
kB z k n
n

 + < 
 

.” 

For examples 

( ) ( )1 12 2
2

m
m m mB z B z B z−   = + +  

  
 

( ) ( )11 2 1 0
2

m
m mB B−  = − 
 

 

( ) ( )1 1 1 1
1 23
3 3

B z B z B z B z   = + + + +   
   

 

( ) ( )( ) 1 25 0 1 1
5 5

mm
m m mB B B−     = + − +    

    
 

2.2. Bernoulli Polynomials of Sum of Two Arguments 

From the following property of operators that we characterize fundamental [10] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1! 2!z z z zf g z g z f g z f g z f′ ′ ′′ ′′∂ ≡ ∂ + ∂ + ∂ +    (2.23) 

we get 
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( )
( )

( )
( )

1 2

2

e1
e 1 e 1 e 1 e 1

e1
e 1 e 1

z

z z z z

z

z z

m m mz z z
m

m mz
m

B z zz z z z

zB z z z

∂

+ ∂ ∂ ∂ ∂

∂

∂ ∂

 
∂ ∂ ∂ = = + − − − − − 

∂
= + −

− −

 

( ) ( ) ( )
( )

2

1 2

e

e 1

z

z

mz
z m z m mB z zB z B z z

∂

+
∂

∂
∂ = ∂ + −

−
 

( ) ( ) ( ) ( )1 e
e 1

z
z

z
m z m mm B z z B z B z∂

∂

∂
− = ∂ −

−
 

Now, because 

( ) ( ) ( )z y z yf z y f z y f z y+∂ + = ∂ + = ∂ +             (2.24) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

1

1 e
e 1

: 1

y

y

y
m m m

m
m

m B z y m z y B z y B z y

m z y B z y B z B y

∂
− ∂

−

∂
− + = + + − +

−

= + + − + +

   (2.25) 

The above recurrence formula is to be compare with that given by Weisstein 
[11] without proof where there seems has a little mistake 

( ) ( ) ( ) ( ) ( ) ( )( )11 1 :
m

m mm B z y m z y B z y B z B y−− + + + − + = +  

From (2.25) and knowing that ( ) ( ) ( )1 1 0k
k kB B= −  we obtain another type 

of recurrence formula for Bernoulli polynomials 

( ) ( ) ( ) ( ) ( )( )11 1
m

m mm B z mzB z B z B−− = − +            (2.26) 

( ) ( ) ( ) ( ) ( ) ( )1 1
2

1 1 0
m k

m m k m k
k

m
B z B z B z B B z

km− −
=

 
= − −  

 
∑       (2.27) 

For examples, with ( )1
1
2

B z z= − , ( )2
10
6

B = , 

( ) ( ) ( ) ( ) ( )
2

2
2 1 1 2 0

1 1 1 10
2 2 12 6

B z B z B z B B z z z z = − = − − = − + 
 

 

( ) ( ) ( ) ( ) ( )3 1 2 2 1

2 3 2

1 3 0
3

1 1 1 3 1
2 6 6 2 2

B z B z B z B B z

z z z z z z

= −

  = − − + − = − +  
  

 

( ) ( ) ( ) ( ) ( )( )4 1 3 2 4
1 0
4

B z B z B z B z B= − +
 

2.3. The Fourier Series of Bernoulli Polynomials. Euler Zeta  
Function. Powers of pi  

By successive integrations by parts and utilizing the formula (2.13) for , 1n m ≥  
we get, knowing (2.9),  
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( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 1
10 0

1 1
1 1 100

11
1 0

1

1d d
1

1 d
1 1

! !1
!

! !1 0
!

n m n m

n m n m

n
m n

n
m n

B z B z z B z B z z
m

nB z B z B z B z z
m m

n m B z B z
m n
n m B

m n

+

+ − +

−
+

−
+

′=
+

= −
+ +

= −
+

= −
+

∫ ∫

∫
      (2.28) 

Because of the factor ( ) 11 n−−  we may conclude that 
( )2 1 0 0nB + =  for 0n >  and ( )2 2 0nB +  has opposite sign with respect to 

( )2 0nB . 
The same method also gives  

 

( ) ( )( )

( )

( )

1 12 2
0 0

1 2
1 10

1e d e d
2

1 e d
2 2

!
2

ik z ik z
m m

i kz
m m

m

B z z B z z
ik

m B z z
ik ik

m
ik

δ

π π− −

−
−

π

′
π

π π

−
=

− −
=

π

−

= = −

∫ ∫

∫



      (2.29) 

which provides us the following formula on Fourier series of ( )mB z  proven by 
Hurwitz in 1890 by another method [10] 

( ) ( )( ) ( )
1 2 2 2
0

, 0 , 0

! 1e d e e , 0 1
2

ik z i kz i kz
m m m

Z k k
m

k Z k

mB z B z z z
ki

π π
∞

π
∞

−

∈ ≠ ∈ ≠

= = − ≤
π

≤∑ ∑∫  (2.30) 

2.4. Bernoulli Series of Functions 

Let ( )f z  be a periodic function defined on an interval a z b≤ <  and has the 
period P b a= − . For expanding ( )f z  into a Fourier series of exponentials 

( ) ( )
2

e
zi n
P

n Z
f z c n

π

∈

= ∑ , a z b a P≤ < = +            (2.31) 

we firstly write  

( ) ( ) ( )0 02 2d de e
z zi n i n nb b
P P

a a
n Z

z zf z c n
P P

− −− −

∈

π π
= ∑∫ ∫  

and see that the second member is equal uniquely to ( )0c n  so that 

( ) ( )02

0
1 e d

zi nb
P

a
c n f z z

P

− − π
= ∫                 (2.32) 

The Fourier series of a function, if it exists, is then 

( ) ( )
2 21 e e d

z zi n i nb
P P

a
n Z

f z f z z
P

−∞ π−

∈

π
= ∑ ∫              (2.33) 

To avoid integrations in the calculation, we may utilize the method of integra-
tions by parts and get 

( ) ( )
21 e d

zi nb
P

a
c n f z z

P

− π−
= ∫  
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( ) ( ) ( ) ( )
2 2 2

e e e d
2 2

b a zi n i n i nb
P P P

a

P PPc n f b f a f z z
i n i n

−
−− − −π π π−

 −
π π

′ = − +
 
 

∫  

( ) ( ) ( ) ( ) ( ) ( )
1

2 2

0
e e 0

2

k b ai n i nk kP P

k

PPc n f b f a k
i n

−
π

+∞ − π−−

=

       π   
= − − −∑  

so that we may write down the Fourier series formula  

( ) ( ) ( ) ( )
1

2

0 , 0

1 1d e
2

k z ab i nb k P
a ak n Z n

Pf z f z z f z
P P i n

−− + −∞

= ∈

π

≠

 = −  π 
 

∑ ∑∫    (2.34) 

In the case 0 1z≤ < , jointed the preceding formula written under the form 

( ) ( ) ( ) ( )
1

11 2
0 0, 0 0

1d e
2

k
k i nz

n Z n k
f z f z z f z

i n
π

+∞ −−

∈ ≠ =

 = −  π 
∑ ∑∫  

with the Hurwitz formula we get the new and precious formula on expansion of 
derivable functions into series of Bernoulli polynomials 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
10

0

1d 1 0
1 !

k k
k

k
f z f z z f f B z

k

∞

+
=

 = + −  +∑∫      (2.35) 

or 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
1

1 11 1 2
0 0 00 1

0

1d e
1 ! 2

kN
k kk i nz

k n Z k N
n

B z
f z f z z f z f z

k i n

+∞
+

= ∈ = +
≠

π = + −  +  π∑ ∑ ∑∫ (2.36) 

For examples, under matrix form 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )
( )
( )

( )

11 1 1 1 1
0 0 00 0

1

2
2

3

1
1!1 1
2!1
3!1 2

!1 1 1 1

1 2
1 3

!

m

m
m

f z f z f z f z f zf z
B z
B zz
B zz

B z mz m m m m m

−    ′ ′′                               =                        + − 

∫ 





    



 (2.37) 

to be compared with  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

1 21 1 1 1 1
0 0 00 00

22

0
32 2

0

2

0

1
e 2

1 1 e 2
1

e 21 2

1 1 1 1

1 2
1 3

!
e 2

i nzm

n

i nz

n

i nz

n

m
mi nz

n

i nf z f z f z f z f zf z

i n
z
z i n

z m m m m m
i n

π−

≠

π

≠

π

≠

π

≠


  π   ′ ′′                      π    =    π              + −  π


∑∫
∑

∑

∑





    



















 (2.38) 

Formula (2.36) leads also to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
10

0

10 d 1 0 0
1 !

k k
k

k
f f z z f f B

k

∞

+
=

 = + −  +∑∫      (2.39) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1
1

11 0
1 !

k k
k

k
f z f f B z

k

∞

+
=

 ′ = −  +∑           (2.40) 

As first interesting applications 

( ) ( ) ( )
( )

1

0
e 1 1 0 1

1 !
kz

k

B z
e e z

k

∞
+

=

= − + − ≤ <
+∑  

( )
( )

1

0

02
1 1 !

k

k

Be
e k

∞
+

=

−
= −

− +∑                      (2.41) 

By (2.36) we also obtain a precious recurrence formula of Bernoulli polyno-
mials  

( )1

0
1

d 0 1
1

m
km m

k

B zm
z z z z

k k=

 
= + ≤ < − 

∑∫           (2.42) 

i.e., under matrix form 

( )
( )
( )
( )

1
1

2 1
2

3 1
3

4 1
4

1 12
1 2 23
1 3 3 34
1 4 6 4 45

z B z
z B z
z B z
z B z

−

−

−

−

      
      
      
      = +
      
      

          









     




          (2.43) 

which may be resolved for ( )mB z  and ( )0mB  my matrix calculus. 

2.5. Obtaining ( )mB z  from ( )mB z1−  and Table of Bernoulli  
Polynomials 

Integrating two times as followed the Hurwitz formula on Fourier series of Ber-
noulli polynomials we get 

( ) ( ) ( )
1 1

2
10

0 0

1 1 1d ! e 1 !
2 1 2

m m
x i nz

m m
n Z n Z
n n

B z z m B z m
i n m i n

+ +∞ ∞

+
∈ ∈
≠

π

≠

 
 π π 

 = − − = +  + 
∑ ∑∫

 

( )
1

1

0 0

0

1d d !
2

m
z

m
n Z
n

z B x x m
i n

+∞

∈
≠

π
 =  
 

∑∫ ∫  

( ) ( ) ( ) ( ) ( )1
1 0 0 0

1 d 1 d d
z z

m m mB z m B x x m z B x x+ = + − +∫ ∫ ∫        (2.44) 

i.e.,  
( )1mB z+  is equal to ( )1m +  times the primitive of ( )mB z  minus the double 

primitive of ( )mB z  calculated for 1z = . The second term is so equal to  
( ) ( ) ( )0 1 1m

m mB B= − .                                           (2.45) 
This new algorithm for obtaining ( )1mB z+  from ( )mB z  and ( )0mB  is 

very easy to perform and may be utilized to establish Table of Bernoulli polyno-
mials.  

For examples: 

( )0 1B x =  
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( )
2

1
1

1
2 2x

xB x x x
=

= − = −  

( )
2 3 2

2
2

1

12 2
2 2 6 4 6

x

x x x xB x x x
=

   
= − − − = − +   

   
 

( )
3 2

3 2
3

1 1 1 33 3
3 2 6 12 6 12 2 2
x x x xB x x x

   = − + − − + = − +   
  

 

( )
4 3 2

4 3 2
4

1 1 1 14 4 2
4 2 4 20 8 12 30
x x xB x x x x

   = − + − − + = − + −   
  

 

( )
5 4 3

5 4 3
5

5 5 15
5 2 3 30 2 3 6
x x x xB x x x x x

 
= − + − = − + − 

 
 

( )
6 5 4 2

6

4 2
6 5

5 1 1 5 16 6
6 2 12 12 6.7 2.4 12.4 12.3

5 13
2 2 42

x x x xB x

x xx x

   = − + − + − + −   
  

= − + − +

 

( )
7 6 5 3 5 3

7 6
7

7 7 77 0
7 2 2 6 42 2 2 6 6
x x x x x x x xB x x x

 
= − + − + + = − + − + 

 
 

( )
8 7 6 4 2

8

8 7 6 4 2

7 7 1 1 7 7 18 8
8 2 12 24 12 8.9 2.8 8.6 24.5 12.3

14 7 2 14
3 3 3 30

x x x x xB x

x x x x x

   = − + − + − − + − +   
  

= − + − + −

 

( )
9 8 7 5 3

9

8 5
9 7 3

2 7 29 0
9 2 3 15 9 30

9 21 36 2
2 5 10

x x x x x xB x

x x xx x x

 
= − + − + − + 

 

= − + − + −

 

This method for establishing a table of Bernoulli polynomials is extremely 
easier if we utilize the list of fifty Bernoulli numbers ( )0mB  conscientiously es-
tablished by Coen [2]. For examples 

( ) 10 9 8 6 4 2
10

15 3 55 7 5
2 2 66

B x x x x x x x= − + − + − +  

( ) 11 10 9 7 5 3
11

11 55 11 511 11
2 6 2 6

B x x x x x x x x= − + − + − +  

( ) 12 11 10 8 6 4 2
12

33 33 6916 11 22 5
2 2 2730

B x x x x x x x x= − + − + − + −    (2.46) 

2.6. Bernoulli Polynomials and Euler Zeta Function 

From the Hurwitz formula 

( )
( )

2

, 0

1 1 1 e 0 1
! 2

i nz
k k

n Z
k

n
B z z

k ni

∞

∈ ≠

π= − ≤
π

≤∑  

we get the Euler zeta function one may find references in Coen [2] and Raugh 
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[3]  

( ) ( ) ( ) ( ) ( )1 2
22

1

1 12 1 2 0
2 !2

m m
mm

k
m B

mk
ζ

∞
+

=

π= = −∑          (2.47) 

as so as  

( ) ( ) ( )
( )

1
2

2

12

2 !2 12 1 cos 2m m
m

km

m
kz

B z k

∞
+

=

π − π= ∑            (2.48) 

( ) ( ) ( )
( )

2 1 1
2 1

12 1

2 1 !2 12 1 sin 2m
m

km

m m
kz

B z k

∞
+

+
=+

+π
+

= − π∑          (2.49) 

Moreover, by taking 1 1 1 1 1 20, , , , , , ,1
8 6 4 3 2 3

z =  in these formulae we get the 

known property 

( ) ( ) ( )
2 1

2 1 2 1

0

10 1 2 1 ! 0 for 0
2

m

m m
k Z
k

B B m m
i k

+∞

+ +
∈
≠

 
 π

= =


= − + >∑    (2.50) 

and the powers of pi. 
For examples 

( ) ( ) ( )
( )

( )1
2

12

2

1 2
2 !2 1

2 1
k

m
m m

km

m
B k

∞
+

=

−
= −π ∑              (2.51) 

( ) ( )
( ) ( )1

22 1 2 1
12

2 2 ! 11 1
2 1 2

mm k
mm m

km

m
kB

∞
+

− −
=

= − −
−

π ∑          (2.52) 

( ) ( ) ( )
( ) 12

2 1
2

2 !2 12 1 cos
31 6

m

km

m
m

m k
B k

∞
+

=

π π  


=


− ∑           (2.53) 

( ) ( ) ( )
( )

1
2

2
1

1

1

2 1 1 4
2 1 !2 12 1 sin

2
m

m
k

m

m

m k
B k

∞
+

+
=

+

+

π+  = −  


π


∑         (2.54) 

and 
1 1 1 1

4 1 3 5 7
= − + −

π
+  

2

2 2 2

1 1 11
4 2 3 4

= − +
π 

 −
 

+  

2
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 136
2 2 2 2 2 21 2 3 4 5 6 7 8

   = − − − + + + − +   
   

π   

3
3 3 3

1 1 132 1
3 5 7

 = − + − + 


π


  

etc. 

3. Bernoulli Numbers  
3.1. Definition and Properties 

In 1713, according to Jacob Bernoulli (1655-1705), was published the list of ten 
first sums of powers of entire numbers [3]  
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1 2m m m mn n= + + +∑                     (3.1) 

in terms of the numbers kB  which are conjectured to be the same for all m  

( ) 1

0

11 1 .
1

m km m k
k

k

m
n B n

km
+ −

=

+ 
= −  +  

∑ ∑              (3.2) 

Afterward, the kB  were baptized Bernoulli numbers. 
By comparison of the relation coming from (3.2)  

( ) ( ) ( )

( ) ( )

0

1 2
0 1 2

!1 :
! !

1
1

2

m k mm m k
n k

k

mm m m
m

mn B n B n
m k k

m m
B n mB n B n B

−

=

− −

∂ = − = −
−

−
= − + + + −

∑ ∑



    (3.3) 

with the formula coming from (2.16), (2.17) 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

1 1

1 2
0 1 2

1 : 0

0 1 0 0 0
2

mm m m m m
n n m n

m m m
m

n n B n n B n mn

m
B n m B n B n B

− −

− −

∂ + + + ∂ = + ∂ = + +

 
= + + + + + 

 





  (3.4) 

we get, combining with (2.20), 

( )0 0 0B B=  

( )1 1
10 1
2

B B= − − = −  

( )2 2 0m mB B=  

( ) ( )2 1 2 1 2 1 0
10 1
2m m m mB B B δ+ + += − = =  

 ( )0m mB B=                        (3.5) 

i.e. 
“The Bernoulli numbers mB  are equal to the values at origin of the Bernoulli 

polynomial ( )mB z ”.  

3.2. Obtaining Bernoulli Numbers 

The above formula (3.5) and the recurrence formula for Bernoulli polynomials 
(2.43) corresponding to 0z =  

( )
1

010
11

m
km

k

Bm
km k=

 
= +  −+  

∑                  (3.6) 

lead to that for Bernoulli numbers 

31 2
0

1 0, 0
0 1 2 11 1 2 3

mm m m mB BB BB m
mm m

       
+ + + + + = >       −+        

  (3.7) 

which, knowing ( )0 0 1mB B= = , gives 1 2 4, , , , mB B B B  according to following 
Table 1. 

This matrix equation may be resolved by doing linear combinations over lines 
from the second one in order to replace them with lines containing only some 
non-zero numbers. 
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Table 1. Matrix equation for calculating Bm. 

0

1

2

3

1

1
11 2
01 3 3
01 4 6 4
0

1 0
1 2 1 m

B
B
B
B

m m m
B

m −

 
    
    
    
    
    

=    
    
         
         −          
    

 

 

 

 

 

      

 

  

 

      

 

 
For instance, for calculating successively { }0 1 2 4 6 18, , , , , ,B B B B B B  we may util-

ize the matrix equation (Table 2). 
We remark that the last line of this matrix has replaced  
19

, 0,1,2,4,6,8,10,12,14,16,18i
i

   =  
   

. 

The results are  

0 1B = , 0 12 0B B+ = , 1 23 0B B+ = , 2 45 0B B+ = , 2 67 0B B− + =  

2 8
9 9 0
5

B B+ = . 2 105 11 0B B+ = , 1 2 12
613 13 0

105
B B B− + = , 

1 1435 15 0B B+ = , 1 3 16240 17 17 0B B B+ + =  

1 4 18 18
438672052 775 19 0

798
B B B B− + = = +             (3.8) 

Another method, maybe more interesting, for establishing table of Bernoulli 
numbers is obtained from the formula (2.27). It is  

( ) 2 2 2 2 2 4 4 2 2 2

2 2 2
1 2 , 1

2 4 2m m m m

m m m
m B B B B B B B m− − −

     
− − = + + + >     

     
  

or, symbolically, 

( ) ( )1 : m
mm B B B− = −                      (3.9) 

For examples 

( ) ( )2
2 0 2 1 11 2 : 2 2B B B B B B B− = − = −  

3 1 2 2 14 : 3 3 0B B B B B− = − + =  

4 2 2 2 2 4

4 15 6
2 30

B B B B B B  −
− = = ⇒ = 

 
 

6 4 2 4 2 6

6 1 17 2 30
4 6 42

B B B B B B 
− = = = − ⇒ = 

 
 

8 6 2 4 4 8

8 19 8 7
4 30

B B B B B B 
− = × × + ⇒ = − 

 
 

10 8 2 6 4 10

10 511 10 9 2
6 66

B B B B B B 
− = × × + ⇒ = 
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Table 2. Simplified matrix equation for calculating Bm. 

0

1

2

4

6

8

10

12

14

16

18

11
01 2
00 1 3
00 0 1 5

0 0 1 0 7
0 0 9 5 0 0 9
0 0 5 0 0 0 11

610 3 0 0 0 0 13
105

0 35 0 0 0 0 0 0 15
0 240 0 17 0 0 0 0 0 17
0 2052 0 0 775 0 0 0 0 0 19

B
B
B
B
B
B
B

B
B
B
B

    
  
  
  
  
  −   
   =  −   
  −   
  
  
  
  
   −  



0
0
0

0
0
0
0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

12 10 2 8 4 6 6 12

12 12 69113 12 11 2
8 6 2730

B B B B B B B B   
− = × × + + ⇒ = −   

   
 

14 12 2 10 4 8 6 14

14 14 715 14 13 2 2
10 8 6

B B B B B B B B   
− = × × + + ⇒ =   

   
 

16 14 2 12 4 8 8 16

16 16 361717 16 15 2
10 8 510

B B B B B B B B   
− = × × + + ⇒ = −   

   
 

18 16 2 14 4 12 6 10 8

18 18 18
19 18 17 2 2 2

14 12 10
B B B B B B B B B     

− = × × + + +     
     

 

18
43867

798
B = , 20

174611
330

B = − , etc.            (3.10) 

We see that 18B  is a sum over only four terms 16 2 14 4 12 6 10 8, , ,B B B B B B B B ; 

20B  is over five, 40B  over ten, 50B  over twelve terms. 

3.3. Obtaining Bernoulli Polynomials and Power Sums from  
Bernoulli Numbers 

From the formula (2.15) 

( ) ( )( ):
m

mB z a B a z+ = +  

we get the symbolic Lucas formula  

( ) ( ): m
mB z B z= +                      (3.11) 

for calculating Bernoulli polynomials ( )mB z  from the set of Bernoulli num-
bers. 

For examples 

( ) ( ) 0
1 0 1

1:
2

B z B z B z B z z= + = + = −  

( ) ( )2 2 2
2 0 1 2

1: 2
6

B z B z B z B z B z z= + = + + = − +  
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( ) ( )3 3 2 3 2
3 0 1 2 3

3 1: 3 3
2 2

B z B z B z B z B z B z z z= + = + + + = − +  

As for the power sums ( )mS n  we begin by calculating the formula coming 
from (2.17) 

( ) ( ) ( ): m
n m mS n B n B n∂ = = +                  (3.12) 

then take the primitives of both members. 
For examples 

( ) ( ) ( ) ( ) ( )
2

1 1 1 1
10 1 1
2 2 2n

n nS n B n S n n B n n ∂ = ⇒ = + + + − = = − = − 
 ∫ ∫  

( ) ( ) ( )
3 2

22 2 2
2 2

10 1 1
6 3 2 6

n n nS n n B n n n = + + + − = = − + = − + 
 ∫ ∫

 

( ) ( ) ( )224 3 2
3 2

3 3

13
2 2 4 2 4 4

n nn n n nS n B n n n
− = = − + = − + = 

 ∫ ∫  

3.4. Bernoulli Numbers and the Euler-McLaurin Formula 

From the formula for expansion of derivable functions into series of Bernoulli 
polynomials 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
10

0

1d 1 0
1 !

k k
k

k
f z f z z f f B z

k

∞

+
=

 = + −  +∑∫  which leads, for pe-

riodic functions ( )mB z  identical to ( )mB z  in the interval ( )0,1 , to  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1

0

1d 1
1 !

m k k
km

k
f z m f z z f m f m B z

k

∞+

+
=

 + = + + −  +∑∫  (3.13) 

we get the formula  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

11 1

0

1
1

0
d 1

1 !

1
d

!

rm k k k
m

k

r
m r

rm

B
f m f z z f m f m

k

f z B z z
r

−+ +

=

+
+

 = + + −  +

−
+

∑∫

∫

     (3.14) 

analogue to the Euler-McLaurin formula one may find in [11]  

For example, with ( ) 3f z z= , ( )1
10
2

B = − , ( )2
10
6

B = , ( )3 0 0B =  it is veri-

fied that 

( ) ( ) ( )33 3 3 3 2 2 1 1
2

1 1 0 81 16 19 152 d 3 2 3 3 2 6 3 2 8
2 12 3 4 2 12

z z −
= − − + − + − = − + =∫  

4. Obtaining Powers Sums of Real and Complex Numbers  
4.1. From Power Sums of Integers  

From the definition of the power sums on real and complex numbers 

( ) ( ) ( )( ), 1 1
mmm

mS z n z z z n= + + + + + −              (4.1) 

we get, by utilizing the translation operator e z∂  mentioned in (2.4),  
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( ) ( )( )1, 1 e e zz n m
mS z n z− ∂∂= + + +                 (4.2) 

and the formula for sums of geometric progressions, the compact formula 

( ) e 1,
e 1

z

z

n
m

mS z n z
∂

∂

−
=

−
                      (4.3) 

From (4.3) and the fact that  

( ) ( ) ( )z y z yf z y f z y f z y+∂ + = ∂ + = ∂ +                 (4.4) 

we get the symbolic formula 

( ) ( ) ( ) ( )( )e 1 e 1, : ,
e 1 e 1

z y y

z y y

n n
mm m

mS z y n z y z y z S y n
+

+

∂ ∂

∂ ∂

− −
+ = + = + = +

− −
 

leading to the very interesting new formula given powers sums of complex num-
bers from powers sums of integers 

( ) ( )( ),
m

mS z n S n z= +                      (4.5) 

where the undefined symbol ( )kS n  is to be replaced with the power sums on 
integers (2.17) 

( ) ( ) ( )0 1 1 kk k
k kS n n B n= + + + − = ∫ , 00 1=             (4.6) 

Another way, more shortly, to obtain (4.5) is by remarking that  

( ) ( )e nzz n n∂+ =   

so that 

( ) ( ) ( ) ( ) ( )( )
0 0

, e
!

n
km m mz k k

m m n m m k
k k

mzS z n S n S n z S n S n z
kk

∂
−

= =

 
= = ∂ = = + 

 
∑ ∑  

For examples 

( ) ( ) ( ) ( )0 1
1 1 0

1
,

2
n n

S z n S n z S n z nz
−

= + = +  

( ) ( ) ( ) ( ) ( )
3 2

2 2 2
2 2 1 0, : 2

3 2 6
n n nS z n S n S n z S n z n n z nz

 
= + + = − + + − + 

 
  

( ) ( )( ) ( ) ( ) ( )3 2 3
3 3 2 1, : : 3 3S z n S n z B n z B n z B n nz= + = + + +∫ ∫ ∫  

4.2. From Bernoulli Polynomials  

Now, because n may go until infinity, n∂  is well defined so that 

( ) ( )ee 1,
e 1 e 1

zz

z z

nn
m mz

n m n mS z n z z B z n
∂∂

∂ ∂

∂−
∂ = ∂ = = +

− −
         (4.7) 

On the other hand, from (2.18) 

( ) ( ) ( ) ( ), e 1
e 1

z
z

n mz
z m m mS z n z B z n B z∂

∂

∂
∂ = − = + −

−
        (4.8) 

so that we obtain the following beautiful important formula 

 ( ) ( ) ( ),n z m mS z n B z∂ − ∂ =                   (4.9) 
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as so as the historic Jacobi conjectured formula  

( ) ( )n m mS n B n∂ =                      (4.10) 

Formula (4.9) leads to the formula giving ( ),mS z n  directly from ( )mB z   

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2

2 1

1, 1

1! 2! 1 !

z z
m m m

n z n n

m
m

m m m

S z n B z nB z

n n nB z B z B z
m

+

  ∂ ∂ = = + + +  ∂ − ∂ ∂ ∂  

′= + + +
+





      (4.11) 

i.e., to the algorithm saying that  

( ),mS z n  is equal to ( )mnB z  plus ( )
2

2! m
n B z′  and so all until 

( )
( ) ( )

1

1 !

m
m

m
n B z
m

+

+
  

For examples 

( ) ( ) ( )
2 2

1 1 0,
2! 2 2
n n nS z n nB z B z nz= + = − +  

( ) ( ) ( ) ( )
2 3 3

2 2
2 2 1 0

1 1, 2 2
2! 3! 6 2 3
n n nS z n nB z B z B z n z z n z   = + + = − + + − +   

   
 

( ) ( ) ( ) ( )
2 4

3
3 3 2 1, 3

2! 4
n nS z n nB z B z n B z= + + +  

In particular, we get the recurrence relation between Bernoulli polynomials 
given by Roman [8]  

( ) ( ) ( ) ( ) ( )1 1 0
1,1

2! 1
m

m m m
mS z z B z B z B z B z

m−= = + + + +
+

    (4.12) 

and the well-known ancient formula of Bernoulli (1713)  

( )
2 1

1 1 01! 2! ! 1

m m

m m m
n n n nS n B mB B B

m m

+

−= + + + +
+

         (4.13) 

Lastly, because of (4.10) 

( ) ( ) ( )1
1 d

nm
m m mn

n S n S n B n n
+

= + − = ∫  

we get 

( ) ( ) ( )1
e 1 dz

zm
m mz

z S z B n n
+∂= − = ∫  

( ) ( )1e 1 d
z z

m mz
z

B z B n n
∂

+−
=

∂ ∫  

and, by expanding functions into Bernoulli series, the formula found in Wikipe-
dia  

 ( ) ( ) ( )
2 3

1e 1 d 1
2! 3!

z z z z
z

z

f z f n n f z
∂

+  ∂ ∂−
= = + + + 

∂  
∫        (4.14) 

We resuming the herein-before results of calculations in following Tables 
(Tables 3-5). 
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Table 3. Obtaining ( )mB z  and ( )mS n  from mB . 

mB  ( ) ( )10
d

z

m m mB z m B z z B−= +∫  ( ) ( ) ( )0 1 1 mm m
m mS n n B n= + + + − = ∫  

0 1B =  ( )0 1B z =  ( )0S n n=  

1
1
2

B = −  ( )1
1
2

B z z= −  ( )
2

1 2 2
n nS n = −  

2
1
6

B =  ( ) 2
2

1
6

B z z z= − +  ( )
3 2

2 3 2 6
n n nS n = − +  

3 0B =  ( ) 3 2
3

3 1
2 2

B z z z z= − +  ( )
4 3 2

3 4 2 4
n n nS n = − +  

4
1

30
B −

=  ( ) 4 3 2
4

12
30

B z z z z= − + −  ( )
5 4 3

4 5 2 3 30
n n n nS n = − + −  

5 0B =  ( ) 5 4 3
5

5 5
2 3 6

zB z z z z= − + −  ( )
6 5 4 2

5
5

6 2 12 12
n n n nS n = − + −  

6
1
42

B =  ( )
2

6 5 4
6

5 13
2 2 42

zB z z z z= − + − +  ( )
7 6 5 3

6 7 2 2 6 42
n n n n nS n = − + − +  

7 0B =  ( ) 7 6 5 3
7

7 7 7 7
2 2 6 42

B z z z z z z= − + − +  ( )
8 7

6 4 2
7

7 7 7
8 2 12 24 84
n nS n n n n= − + − +  

 
Table 4. Obtaining ( ),mS z n  from ( )mB z . 

( )mB z  ( ) ( ) ( ) ( ) ( ) ( )
2 1

,
2! 1 !

m
m

m m m m
n nS z n B z n B z B z

m

+

′= + + +
+

  

( )0 1B z =  ( )0 ,S z n n=  

( )1
1
2

B z z= −  ( )
2

1
1,
2 2!

nS z n z n = − + 
 

 

( ) 2
2

1
6

B z z z= − +  ( ) ( )
2 3

2
2

1, 2 1 2
6 2! 3!

n nS z n z z n z = − + + − + 
 

 

( )
2

3
3

3
2 2
z zB z z= − +  ( ) ( )

2 2 3 4
3 2

3
3 1, 3 3 6 3 6
2 2 2 2! 3! 4!
z z n n nS z n z n z z z

   = − + + − + + − +   
  

 

( ) 4 3 2
4

12
30

B z z z z= − + −  ( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5

4 4 3 2 1 0, 4 12 24 24
2! 3! 4! 5!
n n n nS z n B z n B z B z B z B z= + + + +  

 
Table 5. Obtaining ( ),mS z n  from ( )mS n . 

( )mS n  ( ) ( )( ), :
m

mS z n S n z= +  

( )0S n n=  ( )0 ,S z n n=  

( ) ( )
1

1
2

n n
S n

−
=  ( ) ( )

1

1
,

2
n n

S z n nz
−

= +  

( )
3 2

2 3 2 6
n n nS n = − +  ( ) ( )

3 2
2

2 , 1
3 2 6
n n nS z n nz n n z= + − + − +  

( )
4 3 2

3 4 2 4
n n nS n = − +  ( ) ( ) ( ) ( ) ( )3 2

3 0 1 2 3, 3 3S z n S n z S n z S n z S n= + + +  
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5. The Faulhaber Formulae on Power Sums of Complex  
Numbers 

5.1. Powers Sums of Odd Order 

Although the problems of powers sums and Faulhaber conjecture were treated 
by many authors for examples by Radermacher [12], by Tsao in (2008) [13], by 
Chen, Fu, Zhang in (2009) [14], etc., nevertheless we would like to present he-
reafter one new approach about the problems.  

In ( ),mS z n  let us replace the arguments z and n by 

( )1Z z z= −  and ( ) ( )
2

1 1,
2
nS z n B z nλ = = +            (5.1) 

Because 

 ( ) ( )1 1
d d d d2 , 0, ,
d d d d
Z ZB z B z n n
z n n z

λ λ
= = = + =         (5.2) 

and consequently 

( )( )1
d d
d dn Z
Z B z n
n n λ λ

λ
∂ ≡ ∂ + ∂ = + ∂  

( )1
d d 2
d dz Z Z
Z B z n
z z λ λ

λ
∂ ≡ ∂ + ∂ = ∂ + ∂  

( )( )1 2n z ZB z λ∂ − ∂ ≡ ∂ − ∂                    (5.3) 

we have, regarding (4.9), 

( ) ( ) ( )( ) ( ) ( ) ( )1 1
1 12 , ,Z m n z m mS z n B z S z n B z B zλ
− −∂ − ∂ = ∂ − ∂ =    (5.4) 

and the form of the formula for general power sums 

( ) ( ) ( ) ( ) ( )
2

1 1
1

2 2
2 , 2

2! !

m
m

m Z Z mS z n B z B z
m

λ λ
λ − −

 
 = + ∂ + + ∂
 
 

     (5.5) 

that may be calculated by the following considerations. 
From the property 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 1 2 2 2 2

2 2 1 2 2

d2 2
d

2 1 2

k z k Z k

Z k Z k

Zk B z B z B z
z

z B z B z B z

+ + +

+ +

+ = ∂ = ∂

= − ∂ = ∂
     (5.6) 

we get, for utilization in (5.5), 

( ) ( ) ( )1
1 2 1 2 2

1
1k Z kB z B z B z

k
−

+ += ∂
+

              (5.7) 

and, finally, 

( ) ( ) ( )
( ) ( )

( ) ( )

2 2 1
2

2 1 2 2

2 1
2 21

1

2 2 12 , 2
2! 2 1 ! 1

2
! 1

k
k

k Z Z Z k

jk
kj

Z Z
j

S z n B z
k k

B z
j k

λ λ
λ

λ

+

+ +

+
+−

=

 
 = + ∂ + + ∂ ∂
 + + 

 
= ∂ ∂ 

+ 
∑



 (5.8) 

All the problem is reduced to the calculations of ( )2 2Z mB z+∂  in function of Z 
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which are not so difficult. 
For examples: 

( ) ( ) ( )

( )

1 4 3 2
1 3 4

22 2

12 2
30

2

Z Z

Z Z

B z B z B z z z z

z z Z Z

−  = ∂ = ∂ − + − 
 

= ∂ − = ∂ =

 

( ) ( ) ( )2
2

3

2
2 , 2 2 2

2!
S z n Z Z

λ
λ λ λ= + = + , ( )1 ,S z nλ =  

( ) ( )2
2

3

2
2 2

2!
S n

λ
λ= =  

( ) ( ) ( )

( )

1 6 5 4 2
1 5 6

6 5 4 3 4 3 2

3 2 2

5 1 13 3
2 2 42
1 13 3
2 2

1 3
2

Z Z

Z

Z

B z B z B z z z z z

z z z z z z z

Z Z Z Z

−  = ∂ = ∂ − + − + 
 

= ∂ − + − − + −

 = ∂ − = − 
 

 

( ) ( ) ( ) ( )2 3

5

3
2 2

2 21 1 2 1 1 1, 2 2
2 3 1! 2 3 2! 2 3!

1 12 4
3 3 3

S z n Z Z Z

Z Z Z

λ λλ

λλ λ

   = − + − +   
   

   = − + − +   
   

 

( ) ( ) ( )2 3
5 1 1

1 4
3 3

S n S n S n= − +  

( ) ( ) ( )1 8 7 6 4 2
1 7 8

4 3 2 3 2

14 7 24 4
3 3 3

4 2 44 4
3 3 3

Z Z

Z

B z B z B z z z z z z

Z Z Z Z Z Z

−  = ∂ = ∂ − + − + 
 

 = ∂ − + = − + 
 

 

( ) ( ) ( ) ( )2 3
3 2 2

7

2 21 2 12 , 3 2 6 2
3 1! 3 2! 3!

S z n Z Z Z Z Z Z
λ λλ   = − + + − + + −   

   
 

and so all.  
As corollary of the calculations of ( )2 2Z kB z+∂  we may state that  
“All ( )2kB z  and all ( ) ( )1

1 2 1kB z B z−
+  are polynomials of order k in Z”. 

5.2. Faulhaber Formula for Even Power Sums ( )kS z n2 ,  

By differentiating both members of (5.7) and remarking that ( )2 1z Z Z z′∂ = = − , 
nλ′ =  we obtain the formula giving ( )2 ,mS z n  

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

2 1

2 1 2 2
1

12 1
1

2 2
1

2 12 1 ,
! 1

2 2 1
1 ! 1

km
k

m Z Z m
k

km
k
Z Z m

k

m S z n B z B z
k m

n
B z

k m

λ

λ

+

+
=

−+
−

+
=

 + = ∂ ∂ + 

 + ∂ ∂ − + 

∑

∑
 (5.9) 

For examples 
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( ) 2
3 ,S z n Zλ λ= +  

( ) ( ) ( )2 3
2

5

2 21 1 2 1,
2 6 1! 6 2! 3!

S z n Z Z Z
λ λλ   = − + − +   

   
 

( ) ( )2
2 2

4

21 2 1 1 15 , 2 4 4
6 1! 2 6 2! 6

S z n Z Z Z Z n Z Z n n
λλ λ λ     ′ ′= − + − + + − +     

     
 

The arrangement into polynomials with respect to ( 2λ ) is immediate. 
Remarks and Conclusions  

We subjectively think that this work is a real and effective contribution to the 
knowledge of Bernoulli polynomials, Bernoulli numbers and Sums of powers of 
entire and complex numbers, as indicated in Introduction.  

The main particularity of this work is the use of the translation or shift opera-
tor e za∂  that is curiously let apart by quasi all authors although this is seen to 
be very useful and easy to utilize.  

By the utilization of many new properties on ( )mB z  such as 

( ) ( )m mS n B n= ∫  

( ) ( ) ( ) ( ) ( )1
1 0 0 0

1 d 1 d d
z z

m m mB z m B x x m z B x x+ = + − +∫ ∫ ∫  

( ) ( ) ( ) ( ) ( )( )1: 1
m

m mB z y m z y B z y B z B y−+ = + + − + +  

( ) ( )e nzz n n∂+ =  

we easily get the new key formulae 
( ) ( )( ), :

m
mS z n S n z= +  together with ( ) ( ) ( ),n z m mS z n B z∂ − ∂ =  

for obtaining ( ),mS z n .  
We find also the miraculous symbolic formula for calculating rapidly the 

Bernoulli numbers 
( ) ( )1 : m

mm B B B− = −  
which together with the Lucas symbolic formula  

( ) ( ): m
mB z B z= +  

give easily ( )mB z . 
Afterward by a change of arguments from z into ( )1Z z z= −  and n into 

( )1 ,S z nλ =  we get the relation ( ) ( )( )1 2n z ZB z λ∂ − ∂ = ∂ − ∂  which together 
with the proof that ( ) ( )1

1 2 1kB z B z−
+  and ( )2kB z  are polynomials in Z gives 

simply rise to the Faulhaber form of ( ),mS z n .  
Operator calculus, which is very different from Heaviside operational calculus 

thus merits to be known. Moreover, it has a solid foundation and many inter-
esting applications in the domains of Special functions, Differential equations, 
Fourier and other transforms, quantum mechanics [10].  
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Abstract 
In this paper, based on the dynamic relationship between algae and protozoa, 
an aquatic ecological model with Allee effect was established to investigate 
how some ecological environment factors affect coexistence mode of algae 
and protozoa. Mathematical derivation works mainly gave some key condi-
tions to ensure the existence and stability of all possible equilibrium points, 
and to induce the occurrence of transcritical bifurcation and Hopf bifurca-
tion. The numerical simulation works mainly revealed ecological relationship 
change characteristics of algae and protozoa with the help of bifurcation dy-
namics evolution process. Furthermore, it was also worth emphasizing that 
Allee effect had a strong influence on the dynamic relationship between algae 
and protozoa. In a word, it was hoped that the research results could provide 
some theoretical support for algal bloom control, and also be conducive to 
the rapid development of aquatic ecological models. 
 

Keywords 
Algae, Protozoa, Allee Effect, Bifurcation, Relationship 

 

1. Introduction 

As everyone knows, lake eutrophication is a natural process and a stage of lake 
evolution. However, a common phenomenon associated with lake eutrophica-
tion is that many phytoplankton, especially those with buoyancy or mobility, 
usually multiply in large numbers to form algal blooms, which can cause a series 
of serious water environment problems [1] [2]. Therefore, the cause, harm and 
control measures of algal blooms have become one of the important environ-
mental issues concerned by the academic community. 

There are many organisms in nature that can inhibit algal growth, mainly in-
cluding: cyanobacteria virus (algaphage), alginolytic bacteria, protozoa, fungi 

How to cite this paper: Zheng, L.Z., Yan, 
J.Y. and Yu, H.G. (2022) Dynamics Analy-
sis of an Aquatic Ecological Model with Allee 
Effect. Applied Mathematics, 13, 822-844. 
https://doi.org/10.4236/am.2022.1310052 
 
Received: September 25, 2022 
Accepted: October 25, 2022 
Published: October 28, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2022.1310052
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2022.1310052
http://creativecommons.org/licenses/by/4.0/


L. Z. Zheng et al. 
 

 

DOI: 10.4236/am.2022.1310052 823 Applied Mathematics 
 

and actinomycetes [3] [4] [5] [6]. At the same time, protozoa are an important 
link in aquatic food chain, many protozoa can eat algae, and some even take al-
gae as their only food [7]. A large number of studies have shown that the decline 
of algal biomass is often accompanied by a sharp increase in the number of pro-
tozoa, considering the environmental adaptability, reproductive ability, algal con-
trol efficacy, host range, adaptability to host changes of various algal control bi-
ological factors, scholars believe that protozoa are a control factor with great ap-
plication prospects [7] [8] [9]. The paper [10] mainly focused on the dispute and 
consensus of non classical biological manipulation technology dominated by silver 
carp and bighead carp. The paper [11] pointed out that silver and bighead carps 
were just suitable for controlling cyanobacteria bloom by comparison with the 
increasing of blue-green algae’s proportion and the forming of microcystis bloom 
within the enclosures without fish. The paper [12] constructed a new aquatic eco-
logical model to understand the dynamic relationship between Microcystis aeru-
ginosa and filter-feeding fish, which could indirectly show the algae control ef-
fect of filter-feeding fish. The paper [13] proposed an aquatic amensalism model 
to explore the inhibition mechanism of algicidal bacteria on algae. In general, the 
use of protozoa to control algal blooms is a brand-new control idea, which is 
worth our in-depth exploration. 

The Allee effect is an ecological concept with roots that go back at least to 
the 1920s, and fifty years have elapsed since the last edition of a book by W.C. 
Allee, the father of this process in the paper [14]. The paper [15] pointed out 
that Allee effect is divided into weak Allee effect and strong Allee effect, weak 
Allee effect refers to the unit individual growth rate at low densities, increasing 
with population density and always positive, with the population showing a 
positive growth trend, strong Allee effect refers to the unit individual growth 
rate at low density, increasing with population density but negative below a crit-
ical value, when population density below that becomes negative and tends to 
extinction. The paper [16] investigated sufficient conditions for the existence of 
coexisting solutions from the strong and weak Allee effects. The paper [17] es-
tablished a predation-prey system with Allee effects to study the stability analysis 
of nonspatial systems and obtain the existence of Hopf branching at coexisting 
equilibrium points and the stability of branching periodic solutions. The paper 
[18] shown that the model with strong Allee effect has at most two positive equi-
librium point in the first quadrant, while the model with weak Allee effect has at 
most three positive equilibrium point in the first quadrant. The paper [19] dis-
cussed the impacts of Allee effect on co-existence, stability, bistability and bifur-
cations, and pointed out that the introduction of Allee effect could induce more 
rich dynamics and compel the model to be more sensitive to initial population 
densities. The paper [20] pointed out that the model with strong Allee effect 
could exhibit multiple stability in the first quadrant, and the model with weak 
Allee effect could undergo saddle knot bifurcation, Hopf bifurcation and Bog-
danov-Takes bifurcation in the first quadrant. In short, with more and more 
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examples of Allee phenomenon in natural ecology, more and more researchers 
pay attention to Allee effect, then more and more excellent achievements will 
appear in the near future. 

Other arrangements of this paper are as follows: In the second section, an aq-
uatic ecological model with Allee effect is built to describe the ecological rela-
tionship between algae and protozoa. In the third section, the existence and sta-
bility of all possible equilibrium points are studied. In the fourth section, the 
possible bifurcation dynamic behavior of the model (2.2) is mainly explored. In 
the fifth section, relevant dynamic simulation tests are carried out to verify the 
feasibility of theoretical results and demonstrate the evolution trend of popula-
tion coexistence mode. In the sixth section, we mainly give the main conclusions 
and make some explanations. 

2. Ecological Mathematical Modeling 

At present, it is of special significance to apply ecological models to study the 
problem of biological algae control, this is because that ecological model can 
form three basic of studying biological system, namely: trophic level analysis, 
system perspective and dynamic view [21] [22], which can improve the under-
standing of the ecological interactions between populations and their depen-
dence on internal and external conditions [23] [24]. The paper [12] proposed a 
new aquatic ecological model to explore the aggregation behavior of algae popu-
lation. According to the modeling framework of this new aquatic ecological 
model, we will propose an aquatic ecological model to characterize the dynamic 
relationship between algae and protozoa (protozoa can feed on algae), which can 
be described as follow: 

( )

( )

1
1 1

1

1 1
2 2

d 1 ,
d

d ,
d

N g PN N Nr N m N
T K N a c N g

N g PP r P m P
T c N g

α

β α

 − 
= − − −   + + −  


− = + − + −

          (2.1) 

where ( )N T  and ( )P T  are density of algae population and protozoa respec-
tively, r1 is maximum growth rate of algae population, K1 is maximum environ-
mental capacity for algae population, m1 is mortality rate of algae population, a 
is Allee effect coefficient, r2 is intrinsic growth rate of protozoa, c is saturation 
coefficient, m2 is mortality rate of protozoa, 1α  is capture rate of protozoa 
preying on algae, 1β  is energy conversion rate, and g is algal aggregation para-
meter. 

For simplicity, we will replace the model (2.1) with the following variable:  

1 1

1 1

1 2 1 1 2

1 1 1 1

, , , , ,

, , , , ,

r cy Kt gN cx P T p d
r c c

m r mam q b e n
r c r r r

α
β α

= = = = =

= = = = =
 

then the model (2.2) is obtained:  
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( )

( )

2d 1 ,
d 1

d .
d 1

x d yx x x mx
t x q p x d

ey x dy by ny
t x d

 − 
= − − −  + + −  

− = + − + −

             (2.2) 

For the model (2.2), the existence and stability of all possible equilibrium points 
will firstly be discussed. Then some critical conditions are given to demonstrate 
the occurrence of transcritical bifurcation and Hopf bifurcation. Finally, some 
numerical simulations were implemented to not only verify the feasibility of the 
theoretical results, but also dynamically evolve ecological dynamic relationship 
between algae and protozoa, which can abstract out ecological evolution signi-
ficance represented by bifurcation dynamic evolution behavior.  

3. Existence and Stability of All Possible Equilibrium Points 

In this section, we will explore the existence and stability of all possible equili-
brium points of the model (2.2), which represents the special dynamic relation-
ship between populations. 

To obtain all possible equilibrium points of the model (2.2), we list the fol-
lowing equations from the model (2.2):  

( )

( )

2

1 0,
1

0.
1

x d yx x mx
x q p x d

ey x d
by ny

x d

 − 
− − − =  + + −  
− + − = + −

               (2.3) 

It is easy to find that the model (2.2) has five possible equilibrium points: 
( )0 0,0E , ( )1 1,0E x , ( )2 2 ,0E x , ( )3 3 ,0E x , ( ),E x y∗ ∗ ∗ , where  

( ) ( )
1 2

1 1
0, 0,

2 2
m p m p

x x
− + ∆ − − ∆

= > = >  

( ) ( )2 2
3

1
0, 1 4 0.

2
p m

x m p mpq
−

= > ∆ = − − >  

According to the equation(2.3), the model(2.2) has one internal equilibrium 

point if n b> , b nd
b e n

−
>

+ −
 and 2 2x x x∗< < , where  

( ) ( ) ( )
( )( )

2 1
, .

x p x mpx x q x db nx d y
b e n x q x d p

∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗

 − − + + −−  = − =
+ − + −

 

Thus, we can give Theorem 1, which is mainly the critical condition for the 
existence of all possible equilibrium points. 

Theorem 1 1) The boundary equilibrium point ( )0 0,0E  always exists. 
2) The boundary equilibrium point ( )1 1,0E x  and ( )2 2 ,0E x  exist if and 

only if 
( )21

4
m p

q
m

−
<  and 0 1m< < . 

3) The boundary equilibrium point ( )3 3 ,0E x  exists if and only if  
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( )21
4
m p

q
m

−
=  and 0 1m< < . 

4) The internal equilibrium point ( ),E x y∗ ∗ ∗  exists if and only if n b> , 

b nd
b n e

−
>

− +
 and 2 1x x x∗< < . 

Because the stability of the equilibrium point is determined by the properties 
of the eigenvalues of its Jacobian matrix, the stability of each equilibrium point is 
discussed, thus we can get that the Jacobi matrix of the model (2.2) is  

( )
( ) ( )

( )
( )

3 2

2 2

2

2 3 2
11

.

11

x p q x pqx y x dm
x dp x q x d

J
e x dey b n

x dx d

 − + − + −
− − − 

+ −+ + − 
=  − + − + −+ − 

 

On the based of the Jacobi matrix, we can obtain Theorem 2-6, which mainly 
explore the types and stability of all equilibrium points. 

Theorem 2 Under the premise of n b> , we have 

1) If 0b n e− + >  and 1d >  or 0e b n+ − <  and 1 b nd
e b n

−
< <

+ −
 hold, 

( )0 0,0E  is a saddle. 

2) If 1d <  or 0e b n+ − <  and b nd
e b n

−
>

+ −
 hold ( )0 0,0E  is a stable 

node. 
Proof. The Jacobi matrix of the ( )0 0,0E  is: 

0

1 .
0

1

E

dm
dJ

edb n
d

 − −=  
 − − − 

 

Apparently, the Jacobi matrix of 
0EJ  has two characteristic roots,  

1 0mλ = − < , 2 1
edb n

d
λ = − −

−
. Under the premise of n b> , it is easy to know 

that if 0b n e− + >  and 1d >  or 0e b n+ − <  and 1 b nd
e b n

−
< <

+ −
 hold, 

the boundary equilibrium point ( )0 0,0E  is a saddle; if 1d <  or 0e b n+ − <  

and b nd
e b n

−
>

+ −
 hold, the boundary equilibrium point ( )0 0,0E  is a stable 

node. 
Theorem 3 Under the premise of n b> , we have 

1) If 
( )21

4
p m

q
m
−

<  and 
( )1

11
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium 

point ( )1 1,0E x  is a saddle. 

2) If 
( )21

4
p m

q
m
−

<  and 
( )1

11
e x d

n b
x d
−

< −
+ −

 hold, the boundary equilibrium 
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point ( )1 1,0E x  is a stable node. 

Proof. The Jacobi matrix of the boundary equilibrium point ( )1 1,0E x  is: 

( )

( )
( )

( )1 1

3 2
1 1 1 1

2
11

,0
1

1

2 3 2
1

.

0
1

E x

x p q x pqx x dm
x dp x q

J
e x d

b n
x d

 − + − + −
− − 

+ −+ =  − + − + − 

 

Then, the Jacobi matrix of ( )1 1 ,0E xJ  has two characteristic roots,  

( )
( )

( )3 2
1 1 1 1

1 22
11

2 3 2
, .

1
x p q x pqx e x d

m b n
x dp x q

λ λ
− + − + −

= − = + −
+ −+

 

Firstly, we will analyze the positive and negativity of 1λ . It is easy to know 
that ( )2

1 0p x q+ >  and 1x  satisfies ( )2
1 11 0x p m x mpq+ − + = , we put it in 

1λ  and sort it out.  

( ) ( ) ( )
( )

2 2 2 2
1

1 2
1

1 3 1 2 1
.

m p m pq x mpq mp m q

p x q
λ

 − − + − + + − =
+

 

According to 
( )21

4
p m

q
m
−

< , and  

( )
1

1
0,

2
m p

x
− + ∆

= >  

therefore  

( ) ( ) ( ) ( ) ( ) ( )
22

2 2 2 2
1

1 1
1 3 1 2 1 0,

8
p m m

m p m pq x mpq mp m q
m

− + − − + − + + − < − ∆ <   

so 1 0λ < . 
Secondly, we analyze the positive and negativity of 2λ . Through calculation, 

we can get that if 
( )21

4
p m

q
m
−

<  and 
( )1

11
e x d

n b
x d
−

> −
+ −

 hold, we have 2 0λ > , 

then the boundary equilibrium point ( )1 1,0E x  is a saddle; If 
( )21

4
p m

q
m
−

<  

and 
( )1

11
e x d

n b
x d
−

< −
+ −

 hold, we have 2 0λ < , then the boundary equilibrium 

point ( )1 1,0E x  is a stable node. 

Theorem 4 Under the premise of n b> , we have 

1) If 
( )21

4
p m

q
m
−

< , 1
3

m ≠  and 
( )2

21
e x d

n b
x d
−

> −
+ −

 hold, the boundary 

equilibrium point ( )2 2 ,0E x  is a saddle. 

2) If 
( )21

4
p m

q
m
−

< , 1
3

m ≠  and 
( )2

21
e x d

n b
x d
−

< −
+ −

 hold, the boundary equi-

librium point ( )2 2 ,0E x  is a stable node. 

Proof. The Jacobi matrix of the boundary equilibrium point ( )2 2 ,0E x  is 
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( )

( )
( )

( )2 2

3 2
2 2 2 2

2
22

,0
2

2

2 3 2
1

.

0
1

E x

x p q x pqx x dm
x dp x q

J
e x d

b n
x d

 − + − + −
− − 

+ −+ =  − + − + − 

 

Then, the Jacobi matrix of ( )2 2 ,0E xJ  has two characteristic roots,  

( )
( )

( )3 2
2 2 2 2

1 22
22

2 3 2
, .

1
x p q x pqx e x d

m b n
x dp x q

λ λ
− + − + −

= − = + −
+ −+

 

Firstly, we will analyze the positive and negativity of 1λ , because  
( )2

2 0p x q+ > , owing to 2x  satisfies ( )2
2 21 0x p m x mpq+ − + = , we put it in 

1λ  and sort it out, we can get  

( ) ( ) ( )
( )

2 2 2 2
2

1 2
2

1 3 1 2 1
.

m p m pq x mpq mp m q

p x q
λ

 − − + − + + − =
+

 

1) If 1 0λ > , then ( ) ( ) ( )( )2 2 2 2
21 3 1 2 1m p m pq x mpq mp m q − − + − > − + −  . 

a) If ( ) ( )2 21 3 1 0m p m pq − − + − >  , then ( ) ( )23 1 1m q m p− > − ,  

( )
( ) ( )

2 2

2 2 2

2 1

1 3 1

mpq mp m q
x

m p m pq

 − + − >
− − + −

. 

i) When 10
3

m< < , 
( )21

0
3 1

p m
q

m
−

< <
−

 contradicts 0q > . 

ii) When 1 1
3

m< < , 
( )21

0
3 1

p m
q

m
−

> <
−

 has no intersection with  

( )21
0

4
p m

q
m
−

< < , so there is no solution. 

b) If ( ) ( )2 21 3 1 0m p m pq − − + − <  , we have ( ) ( )23 1 1m q m p− < − ,  

( )
( ) ( )

2 2

2 2 2

2 1

1 3 1

mpq mp m q
x

m p m pq

 − + − <
− − + −

, also because 
( )

2

1
2

m p
x

− − ∆
= , therefore, it 

must be satisfied that  

( ) ( )
( ) ( )

2 2

2 2

1 2 1
0.

2 1 3 1

m p mpq mp m q

m p m pq

− − ∆ + −
+ <
− − + −

 

It can be deformed  

( ) ( ) ( ) ( )

( ) ( )

2 2

2

1 1 3 1 4 2 1
0

2 1 3 1

m p m p m q mq mpq m

m p m q

  − − ∆ ⋅ − − + − + + −    <
 ⋅ − − + − 

 

for ( ) ( )21 3 1 0m p m q − − + − <  . So it needs to be proved that  

( ) ( ) ( ) ( )2 21 1 3 1 4 2 1 0,m p m p m q mq mpq m  − − ∆ ⋅ − − + − + + − >     

simplified the upper type  

( )( ) ( )24 1 0,mq m p p q− − ⋅ + >  
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because ( ) 0p q+ > , and ( )24 1 0mq m p− − > , 
( )21

4
p m

q
m
−

>  contradicts 

( )21
0

4
p m

q
m
−

< < , so 1 0λ < . 

2) If 1 0λ < , then ( ) ( ) ( )( )2 2 2 2
21 3 1 2 1m p m pq x mpq mp m q − − + − < − + −  , 

a) If ( ) ( )2 21 3 1 0m p m pq − − + − >  , then 
( )

( ) ( )

2 2

2 2 2

2 1

1 3 1 0

mpq mp m q
x

m p m pq

 − + − <
− − + − <

, 

it contradicts 2 0x > . 

b) If ( ) ( )2 21 3 1 0m p m pq − − + − <  , we have ( ) ( )23 1 1m q m p− < − ,  

( )
( ) ( )

2 2

2 2 2

2 1

1 3 1

mpq mp m q
x

m p m pq

 − + − >
− − + −

, also because 
( )

2

1
2

m p
x

− − ∆
= , therefore, it 

must be satisfied that  

( ) ( )
( ) ( )

2 2

2 2

1 2 1
0.

2 1 3 1

m p mpq mp m q

m p m pq

− − ∆ + −
+ >
− − + −

 

It can be deformed  

( ) ( ) ( ) ( )

( ) ( )

2 2

2

1 1 3 1 4 2 1
0

2 1 3 1

m p m p m q mq mpq m

m p m q

  − − ∆ ⋅ − − + − + + −    >
 ⋅ − − + − 

 

for ( ) ( )21 3 1 0m p m q − − + − <  . So it needs to be proved that  

( ) ( ) ( ) ( )2 21 1 3 1 4 2 1 0,m p m p m q mq mpq m  − − ∆ ⋅ − − + − + + − <     

simplified the upper type  

( )( ) ( )24 1 0,mq m p p q− − ⋅ + <  

because ( ) 0p q+ > , ( )24 1 0mq m p− − < , so 
( )21

4
p m

q
m
−

< , therefore, this 

situation is true. On account of ( ) ( )23 1 1m q m p− < − , 

i) When 10
3

m< < , so 
( )21

0
3 1

p m
q

m
−

> <
−

 and 
( )21

0
4

p m
q

m
−

< < , they take 

the intersection to get 
( )21

0
4

p m
q

m
−

< < . 

ii) When 1 1
3

m< < , 
( )21

0
3 1

p m
q

m
−

< <
−

 and 
( )21

0
4

p m
q

m
−

< < , they take 

the intersection to get 
( )21

0
4

p m
q

m
−

< < . 

In a word, when 
( )21

0
4

p m
q

m
−

< <  and 1
3

m ≠  hold, we have 1 0λ < . 

Secondly, we analyze the positive and negativity of 2λ . When 
( )21

4
p m

q
m
−

<  
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and 
( )2

21
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium point ( )2 2 ,0E x  is a 

saddle. when 
( )21

4
p m

q
m
−

<  and 
( )2

21
e x d

n b
x d
−

< −
+ −

 hold, the boundary equili-

brium point ( )2 2 ,0E x  is a stable node. 

Theorem 5 Under the premise of n b> , we have 

1) If 
( )21

4
p m

q
m
−

<  and 
( )3

31
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium 

point ( )3 3 ,0E x  is a saddle. 

2) If 
( )21

4
p m

q
m
−

<  and 
( )3

31
e x d

n b
x d
−

< −
+ −

 hold, the boundary equilibrium 

point ( )3 3 ,0E x  is a stable node. 

Proof. The Jacobi matrix of the boundary equilibrium point ( )3 3 ,0E x  is  

( )

( )
( )

( )3 3

3 2
3 3 3 3

2
33

,0
3

3

2 3 2
1

.

0
1

E x

x p q x pqx x d
m

x dp x q
J

e x d
b n

x d

 − + − + −
− − 

+ −+ =  
− + − + − 

 

It is easy to obtain that the Jacobi matrix of ( )3 3 ,0E xJ  has two characteristic 
roots,  

( )
( )

( )3 2
33 3 3

1 22
32

2 3 2
, .

1
e x dx p q x pqx

m b n
x dp x q

λ λ
−− + − +

= − = + −
+ −+

 

Firstly, we will analyze the positive and negativity of 1λ , because 3x  satisfies 
( )2

3 31 0x p m x mpq+ − + =  and ( )2
3 31x p m x mpq= − − − , we put it in 1λ  and 

sort it out, we can get  

( ) ( ) ( )
( )

2 2 2 2
3

1 2
3

1 3 1 2 1
.

m p m pq x mpq mp m q

p x q
λ

 − − + − + + − =
+

 

Owing to 
( )

3

1
2
m p

x
−

= , simplified  

( ) ( ) ( )2 2 2 2
31 3 1 2 1m p m pq x mpq mp m q − − + − + + −  , we can get  

( )
( )

4 3

1 2
3

1
0

m p

p x q
λ

− −
= <

+
, so 1 0λ < . 

Secondly, we analyze the positive and negativity of 2λ . When 
( )21

4
p m

q
m
−

=  

and 
( )3

31
e x d

n b
x d
−

> −
+ −

 hold, the boundary equilibrium point ( )3 3 ,0E x  is a 

saddle. When 
( )21

4
p m

q
m
−

= , and 
( )3

31
e x d

n b
x d
−

< −
+ −

 hold, the boundary equi-

librium point ( )3 3 ,0E x  is a stable node. 
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Theorem 6 Under the condition of the internal equilibrium point  
( ),E x y∗ ∗ ∗ , 

1) If ( ) 0EDet J
∗
> , ( ) 0ETr J

∗
<  hold, the internal equilibrium point  

( ),E x y∗ ∗ ∗  is a stable node(focus). 
2) If ( ) 0EDet J

∗
> , ( ) 0ETr J

∗
>  hold, the internal equilibrium point  

( ),E x y∗ ∗ ∗  is an unstable node(focus). 
Proof. The Jacobi matrix of the internal equilibrium point ( ),E x y∗ ∗ ∗  is,  

( )

( )
( ) ( )

( )

3 2

2 2

,

2 3 2
11

0
1

E x y

x p q x pqx y x dm
x dp x q x d

J
e x d

b n
x d

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗∗ ∗

∗

∗

 − + − + −
− − − 

+ −+ + − =  − + − + − 

 

where b nx d
b e n∗

−
= −

+ −
, 

( ) ( ) ( )
( )( )

2 1x p x mpx x q x d
y

x q x d p
∗ ∗ ∗ ∗ ∗

∗
∗ ∗

 − − + + − =
+ −

. The fol-

lowing characteristic equation is obtained as follow  

( )
( ) ( )

( )

3 2
2

2 2

2

2 3 2

1

0,
1 1

x p q x pqx y m
p x q x d

x d ey
x d x d

λ λ∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

 − + − +
− − − ⋅ 

+ + −  
−

+ ⋅ =
+ − + −

 

and  

( ) ( )1 2 1 2, ,E ETr J Det Jλ λ λ λ
∗ ∗
= + =  

here  

( )
( )2 ,

1 1
E

x d eyDet J
x d x d∗

∗ ∗

∗ ∗

−
= ⋅

+ − + −
 

for 0y∗ > . Then we can get  
2

,
x mpx pxq

mp
∗ ∗ ∗− − +

<  

for  

( )
( ) ( )

3 2

2 2

2 3 2
.

1

x p q x pqx yT m
p x q x d

∗ ∗ ∗ ∗

∗ ∗

− + − +
= − −

+ + −
 

Thus if ( ) 0EDet J
∗
> , ( ) 0ETr J

∗
<  hold, the internal equilibrium point  

( ),E x y∗ ∗ ∗  is a stable node(focus); if ( ) 0EDet J
∗
> , ( ) 0ETr J

∗
>  hold, the in-

ternal equilibrium point ( ),E x y∗ ∗ ∗  is an unstable node(focus). 

4. Local Bifurcation Analysis 

In this section, we will choose parameter d as a bifurcation control parameter to 
investigate the bifurcation dynamics evolution characteristics of the model (2.2), 
and give the threshold conditions for transcritical bifurcation and Hopf bifurca-
tion of the model (2.2). 
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4.1. Transcritical Bifurcation 

Theorem 7 1) The model (2.2) undergoes a transcritical bifurcation at the 

equilibrium point ( )1 1,0E x  when 1 1TC
b nd d x

b e n
−

= = +
+ −

. 

2) The model (2.2) undergoes a transcritical bifurcation at the equilibrium 

point ( )2 2 ,0E x  when 2 2TC
b nd d x

b e n
−

= = +
+ −

. 

3) The model (2.2) undergoes a transcritical bifurcation at the equilibrium 

point ( )3 3 ,0E x  when 3 3TC
b nd d x

b e n
−

= = +
+ −

. 

Proof: 

1) On the basis of the Theorem 3, when 1 1TC
b nd d x

b e n
−

= = +
+ −

, the Jacobi 

matrix of the equilibrium point 1E  is 

( )
( )1

3 2
1 1 1 1

2
11

2 3 2
1 ,

0 0
TCE

x p q x pqx x dm
x dJ p x q

 − + − + −
− − 

+ −= + 
 
 

 

suppose V and W are eigenvectors of 
1TCEJ  and 

1

T
TCEJ , then  

1 1

T0 , 0 .
TC TCE EJ V V J W W= ⋅ = ⋅  

Then we can get  

( )
( )

1

11
3 2
1 1 12

2
1

1

2

1
,

2 3 2

0
.

1

x d
x dv

V
x p q x pqxv

m
p x q

w
W

w

− 
 + −   = =   − + − +  − 

+  
   

= =   
  

 

Due to  

( )
( )

( ) ( )1 1

2
1

1 1
2

2

;

1 0
; ,

0
1

TC

d
d TC

d

E d

y
x dF

F E d
F ey

x d

 
 + −    = = =    −     

+ −  

 

so  

( )
( )

( )
( )
( )

( )
( )
( )

1 1

1 1 1
1 1

22 2 ;

3 2
1 1 1

2 2
1 1

3 2
1 1 1

2 2
1 1

;

2 3 21
1

,
2 3 2

1

x y

x y
TC

d d

d TC
d d E d

F F v
DF E d V

vF F

x p q x pqx
m

x d p x q

x p q x pqxe m
x d p x q

   
=    
    

  − + − +
  −

  + − +  =
  − + − +−   −

  + − +  
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( )( )

( )

( ) ( )

( )

1 1

2 2 2
1 1 1

1 1 1 2 2 22 2
2

1 1 2 2 2
2 2 2

1 1 1 2 2 22 2
;

3 2 2 2
1 1 1

1 1 1 23 2
1 1

1 22
1

2
; ,

2

2 6 6 2 2
1

.
2

1

TC

d TC

E d

F F Fv v v v v v
x yx y

D F E d V V
F F Fv v v v v v

x yx y

x qx q x pq v v v v
p x q x d

e v v
x d

 ∂ ∂ ∂
+ + ∂ ∂∂ ∂ =  ∂ ∂ ∂

 + +
∂ ∂∂ ∂  

 − − − +
− 

+ + − =  
 
 + − 

 

Thus, we can reach the following conclusions:  

( ) [ ]T
1 1

0
; 0,1 0,

0d TCW F E d  
= = 

 
 

( )

( )
( )
( )

T
1 1

3 2
1 1 1

2 2
1 1

;

2 3 2
0,

1

d TCW DF E d V

x p q x pqxe m
x d p x q

  
 − + − +−  = − ≠
 + − + 

 

( )( )

( )
( )

( )
( )

T 2
1 1

3 2
1 1 1 1

3 2
1 1

; ,

2 2 3 2
0.

1

d TCW D F E d V V

e x d x p q x pqx
m

x d p x q

  
 − − + − +
 = − ≠
 + − + 

 

According to Sotomayors theorem, when 1 1TC
b nd d x

b e n
−

= = +
+ −

, then the 

model (2.2) undergoes a transcritical bifurcation at the equilibrium point  
( )1 1,0E x . 

2) On the basis of the Theorem 4, we next prove that the model (2.2) will un-
dergo a transcritical bifurcation at the equilibrium point ( )2 2 ,0E x . When 

2 2TC
b nd d x

b e n
−

= = +
+ −

, the Jacobi matrix of the equilibrium point 2E  is  

( )
( )2

3 2
2 2 2 2

2
22

2 3 2
1 ,

0 0
TCE

x p q x pqx x dm
x dJ p x q

 − + − + −
− − 

+ −= + 
 
 

 

suppose V and W are eigenvectors of 
2TCEJ  and 

2

T
TCEJ , then  

2 2

T0 , 0 ,
TC TCE EJ V V J W W= ⋅ = ⋅  

then  

( )
( )

2

21 1
3 2
2 2 22 2

2
2

1 0
, .

2 3 2 1

x d
x dv w

V W
x p q x pqxv w

m
p x q

− 
 + −      = = = =      − + − +     − 

+  

 

Owing to  
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( )
( )

( ) ( )2 2

2
1

2 2
2

2

;

1 0
; ,

0
1

TC

d
d TC

d

E d

y
x dF

F E d
F ey

x d

 
 + −    = = =    −     

+ −  

 

and  

( )
( )

( )
( )
( )

( )
( )
( )

2 2

1 1 1
2 2

22 2 ;

3 2
2 2 2

2 2
2 2

3 2
2 2 2

2 2
2 2

;

2 3 21
1

,
2 3 2

1

x y

x y
TC

d d

d TC
d d E d

F F v
DF E d V

vF F

x p q x pqx
m

x d p x q

x p q x pqxe m
x d p x q

   
=    
    

  − + − +
  −

  + − +  =
  − + − +−   −

  + − +  

 

( )( )

( )

( ) ( )

( )

2 2

2 2 2
1 1 1

1 1 1 2 2 22 2
2

2 2 2 2 2
2 2 2

1 1 1 2 2 22 2
;

3 2 2 2
2 2 2

1 1 1 23 2
2 2

1 22
2

2
; ,

2

2 6 6 2 2
1

,
2

1

TC

d TC

E d

F F Fv v v v v v
x yx y

D F E d V V
F F Fv v v v v v

x yx y

x qx q x pq v v v v
p x q x d

e v v
x d

 ∂ ∂ ∂
+ + ∂ ∂∂ ∂ =  ∂ ∂ ∂

 + +
∂ ∂∂ ∂  

 − − − +
− 

+ + − =  
 
 + − 

 

we can obtain  

( ) [ ]T
2 2

0
; 0,1 0,

0d TCW F E d  
= = 

 
 

( )

( )
( )
( )

T
2 2

3 2
2 2 2

2 2
2 2

;

2 3 2
0,

1

d TCW DF E d V

x p q x pqxe m
x d p x q

  
 − + − +−  = − ≠
 + − + 

 

( )( )

( )
( )

( )
( )

T 2
2 2

3 2
2 2 2 2

3 2
2 2

; ,

2 2 3 2
0.

1

d TCW D F E d V V

e x d x p q x pqx
m

x d p x q

  
 − − + − +
 = − ≠
 + − + 

 

According to Sotomayors theorem, when 2 2TC
b nd d x

b e n
−

= = +
+ −

, then the 

model (2.2) undergoes a transcritical bifurcation at the equilibrium point  
( )2 2 ,0E x . 

3) On the basis of the Theorem 5, we will prove that the model (2.2) will un-
dergo a transcritical bifurcation at the equilibrium point ( )3 3 ,0E x . When 

3 3TC
b nd d x

b e n
−

= = +
+ −

 holds, the equilibrium point ( )1 1,0E x  and ( )2 2 ,0E x  

will coincide as an equilibrium point, here the Jacobian matrix at ( )3 3 ,0E x  is  
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( )
( )3

3 2
3 3 3 3

2
33

2 3 2
1 ,

0 0
TCE

x p q x pqx x d
m

x dJ p x q

 − + − + −
− − 

+ −= + 
 
 

 

suppose V and W are eigenvectors of 
3TCEJ  and 

3

T
TCEJ , then  

3 3

T0 , 0 ,
TC TCE EJ V V J W W= ⋅ = ⋅  

so  

( )
( )

3

31 1
3 2
3 3 32 2

2
3

1 0
, .

2 3 2 1

x d
x dv w

V W
x p q x pqxv wm

p x q

− 
 + −      = = = =      − + − +     − 
 + 

 

Because of  

( )
( )

( ) ( )3 3

2
1

3 3
2

2

;

1 0
; ,

0
1

TC

d
d TC

d

E d

y
x dF

F E d
F ey

x d

 
 + −    = = =    −     

+ −  

 

then, we can obtain  

( )
( )

( )
( )
( )

( )
( )
( )

3 3

1 1 1
3 3

22 2 ;

3 2
3 3 3

2 2
3 3

3 2
3 3 3

2 2
3 3

;

2 3 21
1

,
2 3 2

1

x y

x y
TC

d d

d TC
d d E d

F F v
DF E d V

vF F

x p q x pqx
m

x d p x q

x p q x pqxe m
x d p x q

   
=    
    

  − + − +
  −

  + − +  =
  − + − +−  −

  + − +  

 

( )( )

( )

( ) ( )

( )

3 3

2 2 2
1 1 1

1 1 1 2 2 22 2
2

3 3 2 2 2
2 2 2

1 1 1 2 2 22 2
;

3 2 2 2
3 3 3

1 1 1 23 2
3 3

1 22
3

2
; ,

2

2 6 6 2 2
1

.
2

1

TC

d TC

E d

F F Fv v v v v v
x yx y

D F E d V V
F F Fv v v v v v

x yx y

x qx q x pq
v v v v

p x q x d
e v v

x d

 ∂ ∂ ∂
+ + ∂ ∂∂ ∂ =  ∂ ∂ ∂

 + +
∂ ∂∂ ∂  

 − − − +
− 

+ + − =  
 
 + − 

 

Thus, we can get the following conclusions:  

( ) [ ]T
3 3

0
; 0,1 0,

0d TCW F E d  
= = 

 
 

( )

( )
( )
( )

T
3 3

3 2
3 3 3

2 2
3 3

;

2 3 2
0,

1

d TCW DF E d V

x p q x pqxe m
x d p x q

  
 − + − +−  = − ≠
 + − + 
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( )( )

( )
( )

( )
( )

T 2
3 3

3 2
3 3 3 3

3 2
3 3

; ,

2 2 3 2
0.

1

d TCW D F E d V V

e x d x p q x pqx
m

x d p x q

  
 − − + − +
 = − ≠
 + − + 

 

According to Sotomayors theorem, when 3 3TC
b nd d x

b e n
−

= = +
+ −

, then the 

model (2.2) undergoes a transcritical bifurcation at the equilibrium point  
( )3 3 ,0E x . 

4.2. Hopf Bifurcation 

According to the Theorem 6, the internal equilibrium point ( ),E x y∗ ∗ ∗  can lose 
its stability, hence the model (2.2) may occur a Hopf bifurcation under certain 
conditions. 

Theorem 8 Under the conditions of the Theorem 6, the internal equilibrium 
point E∗  can change its stability when the controlling parameter d passes 
through a critical value Hpd d= , then the model (2.2) will undergo a Hopf bi-

furcation, where ( ) 0
Hp

E d d
Tr J

∗ =
= .  

Proof: To determine the internal equilibrium point ( ),E x y∗ ∗ ∗  can change 
its stability by a Hopf bifurcation, we need to prove the cross-sectional condition 
of Hopf bifurcation: 

( ) ( )
( ) ( )

3 2

2 2

2 3 2
0,

1
E

x p q x pqx yTr J m
p x q x d∗

∗ ∗ ∗ ∗

∗ ∗

− + − +
= − − =

+ + −
 

( )
( ) ( )( ) ( )

3 2 3 2
*

2 2

2 3d 0,
d 1

Hp
Hp

E
d d d d

x pqx qx x pxTr J
q p x q p x d x q x d∗

∗ ∗ ∗ ∗

= ∗ ∗ ∗ ∗ =

 − + −   = + ≠   + + − + − 
 

hence the model (2.2) can occur a Hopf bifurcation at Hpq q= . 
Next, we discuss the stability of the limit cycle by computing the first Lyapu-

nov coefficient of the internal equilibrium point ( ),E x y∗ ∗ ∗ . Translating the 
origin of coordinates at this equilibrium point through the following transfor-
mation dx x x∗= − , dy y y∗= − ,  
we can obtain  

( )
( )

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03

,

,
d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d

x x y x x y y x x y x y y P x y

y x y x x y y x x y x y y Q x y

α α α α α α α α α

β β β β β β β β β

 = + + + + + + + + +


= + + + + + + + + +





 

where  

( ) ( )
( )
( ) ( ) ( ) ( )

( )
( )
( ) ( ) ( )

2 3
* * * * *

10 012
* **

2
* * *

20 112 3 3 3
* * * *

22 3
* ** *

30 213 4 4 3
* * * *

02 12 03

2
, ,

11

2 1, ,
1 1

22 1, ,
1 1

0,

pqx qx x y x dm
p q x x dx d

q p x x y
p q x q x x d x d

x q p xq pq x y
p q x p q x x d x d

α α

α α

α α

α α α

− − + +
= + − =

− − −− −

+ −
= + − =

− − − − − −

− −− −
= + + =

− − − − − −

= = =
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and  

( )
( )

( )

( ) ( ) ( )

** *
10 01 202 3

** *

*
11 30 212 4 3

* * *

02 12 03

, , ,
11 1

, , ,
1 1 1

0,

e x dey eyb n
x dx d x d

eye e
x d x d x d

β β β

β β β

β β β

+−
= = − − =

− −− − − −

− −
= = =

− − − − − −

= = =

 

then ( ) ( ), , ,d d d dP x y Q x y  are power series in ( ),d dx y  with terms i j
d dx y  sa-

tisfying 4i j+ ≥ . 
Thus, the first Lyapunov coefficient is  

( ) ( ){

( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
10 10 11 11 02 02 11 10 01 11 20 11 11 023

2
01

2 2 2
10 11 02 02 02 10 10 02 20 02 10 01 20 20 02

2 2
01 20 20 11 20 01 10 10 11 02 11 20

2
10 01 10 10 03 01 30 10

3

2

2 2 2

2 2

3 2

l α β α α β α β α α β α β α β
α

β α α α β α β β α α α α α β β

α α β β β α β α β β α α

α α β β β α α α

− = + + + + +
∆

+ + − − − −

− + + − − 

 +

π

− + − ( ) ( ) }21 12 12 10 01 21α β α β α β + + −   

( )

( ) ( )
( )( )

2 2 2
10 10 11 10 01 11 20 11 10 01 203

2
01

2 2
01 20 20 11 20 11 20 01 10 10

2
10 01 10 01 30 10 21 01 21

3 2
2

2 2

3 2 .

α β α α α β α β α α α
α

α α β β β α α α β α

α α β α α α α α β

− = + + −
∆

− + − −

− + − + − 

π

 

If 0l < , the limit cycle is stable; if 0l > , the limit cycle is unstable. However, 
the expression for Lyapunov number l  is rather cumbersome, we cannot di-
rectly judge the sign of it, so we will give some numerical simulation results in 
section 5. 

Based on the mathematical theory, the existence and stability threshold condi-
tions of all possible equilibrium points of the model (2.2) are deduced, and some 
critical conditions for inducing transcritical bifurcation and Hopf bifurcation of 
the model (2.2) are explored, which can provide a theoretical basis for some 
numerical simulation works. Furthermore, it is also worth pointing out that the 
key parameter d has a serious effect on bifurcation dynamics of the model (2.2). 

5. Simulation Analysis and Results 

In order to verify the validity of theoretical results, find some key control para-
meters that can induce bifurcation dynamics of the model (2.2), and explore 
ecological interaction between algae and protozoa, some numerical simulations 
are given with parameter values 0.4n = , 0.2b = , 0.6e = , 0.1m = , 0.6q =  
and 2p = . From the equations 2.3, we can obtain that the dynamic relationship  

between algae x and protozoa y is 
( ) ( ) ( )

( )( )

2 1x p x mpx x q x d
y

x q x d p

 − − + + − =
+ −

. It is  

easy to find from Figure 1(b) that only when the algae density is greater than the 
value of d, the protozoa density can be positive, so the initial value of algae den-
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sity in numerical simulation is larger than the value of d. At the same time, the 
density of protozoa y can reach a limit value and a maximum value within the 
range of algae x density, which implies that there may be an oscillatory coexis-
tence mode between algae x and protozoa y. Furthermore, it is obvious to know 
from Figure 1(a) that the dynamic relationship between algae x and protozoa y 
is affected by the value of parameter d, thus, we can select parameter d as a con-
trol parameter of dynamic evolution process of the model (2.2). 

The bifurcation dynamic evolution processes of the model (2.2) are shown in 
Figures 2-5. It is clearly visible from Figure 2 that if the value of d is greater 
than a critical value 1.23TCd = , the boundary equilibrium point 1E  is locally 
asymptotically stable, the model (2.2) has no internal equilibrium point. How-
ever, if the value of d is less than a critical value 1.23TCd = , the boundary equi-
librium point 1E  loses stability and a new internal equilibrium point appears, 
this process implies that a transcritical bifurcation occurs, the detailed dynamic 
results are shown in Fi.3. Therefore, if the value of d is within the interval 
( ),Hp TCd d , the model (2.2) has a stable internal equilibrium point, that is, algae 
and protozoa have a steady-state coexistence mode. As the value of d gradually 
decreases and is lower than a key value 0.1882Hpd = , the internal equilibrium 
point loses stability and a limit cycle appears, which implies that the model (2.2) 
has a Hopf bifurcation dynamic behavior, the dynamic evolution process of 
Hopf bifurcation is shown in Figure 4 and Figure 5, which shows that algae and 
protozoa coexist in a periodic oscillation mode. At the same time, because the 
first Lyapunov coefficient is 0.046126845270109456077− Π , this limit cycle is 
stable. Furthermore, it is also worth emphasizing that when the value of para-
meter d gradually decreases from 1.5 to 0, the model (2.2) will undergo tran-
scritical bifurcation and Hopf bifurcation successively, which means that the 
coexistence mode of algae and protozoa has changed fundamentally, from a 
protozoan extinction mode to a steady-state coexistence mode, and finally to a 
stable periodic oscillatory coexistence mode. Therefore, it is worth pointing out 
that the value of parameter d seriously affects the coexistence of algae and pro-
tozoa. 

 

 
Figure 1. (a) Dynamic relationship between algae x, protozoa y and parameter d value; (b) 
Dynamic relationship between algae x and protozoa y with 0.1d = . 
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In order to investigate the influence mechanism of Allee effect on dynamic 
behavior of the model (2.2), we will select parameter q as a control parameter for 
relevant dynamic simulation experiments. It is relatively clear from Figure 6 and 
Figure 7 that the model (2.2) has a constant steady state and a stable periodic 

 

 
Figure 2. Bifurcation diagram of the model (2.2), here the red line indicates 
that the internal equilibrium point x∗  changes with the parameter d, the 
blue line and yellow line stand for the boundary equilibrium point 0x  and 

1x  with the parameter d value changing, respectively. Here 0x  and 1x  

represent the boundary equilibrium point ( )0 0,0E  and ( )1 1,0E x . The 

solid curve shows that the equilibrium point is stable, the cyan dotted curve 
shows that the equilibrium point is unstable, and the vertical dot dotted line 
indicates a critical value of the equilibrium point which can induce bifurca-
tion. More detailed, HP and TC are some critical values for the Hopf bifurca-
tion and transcritical bifurcation. Besides, the red dots are solid points, where 
the boundary equilibrium point ( )0,0  does not exist. 
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Figure 3. (a) If 1 1.23066238TCd d= = , then a transcritical bifurcation occurs, where the boundary equilibrium point ( )1 1,0E x  

and the equilibrium point ( ),E x y∗ ∗ ∗  coincide; (b) ( )1 1,0E x  is a saddle when 11.2 TCd d= < , which can separate an internal 

equilibrium point ( ),E x y∗ ∗ ∗ ; (c) ( )1 1,0E x  is a stable node when 1 1.25TCd d< = , and the internal equilibrium point ( ),E x y∗ ∗ ∗  

does not exist. 
 

 
 

 

Figure 4. (a) If 0.18821122Hpd d= = , then a Hopf bifurcation occurs at the internal equilibrium point ( ),E x y∗ ∗ ∗  and can 

generate a periodic solution; (b) Local magnification plot of (a); (c) ( ),E x y∗ ∗ ∗  is an unstable node (or spiral source)if 

0.16 Hpd d= < ; (d) ( )* * *,E x y  is a stable node (or spiral source) if 0.2Hpd d< = . 
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Figure 5. (a) Dynamic evolution diagram of Hopf bifurcation based on the change of parameter d value; (b) Local magnification 
plot of (a) when 0.1882Hpd d> = . 

 

 

Figure 6. (a) Time series of algae x with 1.5q = ; (b) Time series of protozoa y with 1.5q = ; (c) Phase diagram of algae x and 
protozoa y with 1.5q = . 

 

 
Figure 7. (a) Time series of algae x with 1.85q = ; (b) Time series of protozoa y with 1.85q = ; (c) Phase diagram of algae x and 
protozoa y with 1.85q = . 
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oscillation state, when the value of parameter q are 1.5 and 1.85 respectively, that 
is to say, the model (2.2) experiences a Hopf bifurcation dynamic behavior with 
the increase of parameter q value. Furthermore, this simulation result also indi-
rectly shows that the size of Allee effect seriously affects the coexistence mode of 
algae and protozoa. 

Based on the numerical simulation analysis, we first know that the model (2.2) 
has complex bifurcation dynamic behavior, mainly including transcritical bifur-
cation and Hopf bifurcation. Secondly, the algal population density gradually 
decreases with the transition from transcritical bifurcations to Hopf bifurcations. 
Finally, the value of key parameters of Allee effect seriously affects the coexis-
tence mode of algae and protozoa. 

6. Conclusions and Remarks 

In this paper, based on the dynamic relationship between algae and protozoa, an 
aquatic ecological model with Allee effect was established to explore bifurcation 
behavior and investigate how Allee effect affects the coexistence mode of algae 
and protozoa. Some key conditions were given to ensure the existence and sta-
bility of all possible equilibrium points, and induce the model (2.2) to have tran-
scritical bifurcation and Hopf bifurcation, which were theoretical basis for sub-
sequent numerical simulation and the necessary conditions for parameter esti-
mation value. 

Through numerical simulation, we can see that the model (2.2) has complex 
bifurcation dynamics. It can be seen from Figure 3 and Figure 4 that transcriti-
cal bifurcation could make algae and protozoa to transform from a protozoa 
gradual extinction coexistence mode to a steady-state coexistence mode, and 
Hopf bifurcation could force algae and protozoa to transform from a constant 
steady-state coexistence mode to a stable periodic oscillation coexistence mode, 
which implied that the ecological relationship between algae and protozoa had 
changed substantially. Furthermore, it was easy to know from Figure 6 and 
Figure 7 that the ecological relationship between algae and protozoa could 
change from a constant steady state to a periodic oscillatory steady state with the 
increase of key parameters of Allee effect, which showed that Allee effect se-
riously affected coexistence mode of algae and protozoa. 

Based on the theoretical analysis and numerical simulation results, it is worth 
pointing out that the algal aggregation behavior can change the coexistence 
mode of algae and protozoa, and the greater the algae population aggregation 
intensity, the more adverse to the permanent survival of protozoa, this research 
result is consistent with the fact that algae bloom is not conducive to the survival 
of protozoa. Furthermore, it should also be emphasized that algae population 
has Allee effect mechanism with small key value, which is conducive to form pe-
riodic oscillation coexistence mode of algae and protozoa. 

Although some theoretical and numerical simulation results have been ob-
tained in this study, there are still some deficiencies that need our follow-up re-
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search, such as: 1) the natural growth mode of protozoa is too simple, and the 
logistic growth function needs to be studied subsequently; 2) the influence of 
hydrodynamics on algae and protozoa should be considered in modeling dy-
namic process. However, it is hoped that the research results of this paper can 
play a theoretical supporting role in the study of aquatic ecological model.  
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Abstract 
The implementation of optimal control strategies involving preventive meas-
ures and antiviral treatment can significantly reduce the number of clinical 
cases of influenza. In this paper, a model for the transmission dynamics of in-
fluenza is formulated and two control strategies involving preventive meas-
ures (awareness campaign, washing hand, using hand sanitizer, wearing mask) 
and treatment are considered and used to minimize the total number of in-
fected individuals and associated cost of using these two controls. The result-
ing optimality system is solved numerically. Hamiltonian is formulated to in-
vestigate the existence of the optimal control, in the optimal control model. 
Pontryagin’s Maximum Principle is applied to describe the control variables 
and the objective function is designed to reduce both the infection and the 
cost of interventions. From the numerical simulation, it is observed that in 
the case of high contact rate (β = 3), both the controls work for a longer pe-
riod of time to reduce the disease burden. The optimal control analysis and 
numerical simulations reveal that the interventions reduce the number of 
exposed and infected individuals. 
 

Keywords 
Influenza, Optimal Control, Pontryagin’s Maximum Principle, Transversality 
Condition, Hamiltonian 

 

1. Introduction 

Influenza viruses cause the infectious disease, influenza, commonly known as 
“the flu” and this infection primarily transmitted through respiratory droplets 
produced by sneezing and coughing by an infected person [1]. Symptoms range 
from mild to severe and often include fever, sore throat, runny nose, headache, 
muscle pain, coughing, and fatigue and these symptoms begin from one to four 
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days after exposure to the virus (typically two days) and last for about 2 - 8 days. 
Particularly in children diarrhea and vomiting can occur. Some other complica-
tions caused by the infection include meningitis, acute respiratory distress syn-
drome, encephalitis and worsening of pre-existing health problems such as asth-
ma and cardiovascular disease. 

For the past few centuries, influenza remains a serious threat to public health 
globally [2]. During the past century, thousands of people lost their lives during 
three disastrous pandemics including the Spanish flu (1918), Asian flu (1958), 
and Hong Kong flu (1968) [2]. In 2009, the world experienced the H1N1 in-
fluenza, also known as the Swine Influenza, an epidemic that led to over 16,455 
deaths globally. 

In reducing the spread of influenza, frequent hand washing with soap and 
water, using hand sanitizers (alcohol-based) and not touching one’s nose, eyes 
and mouth with one’s hands, are highly effective. Covering nose and mouth 
when coughing or sneezing and staying home when sick, is important to limit 
influenza transmission [3]. Creating awareness among people about the afore-
mentioned etiquette and hygiene by spreading health education through media 
is important. The disease can be treated with supportive measures and, in severe 
cases, with antiviral drugs such as oseltamivir.  

In view of the serious consequences due to the H1N1 epidemic on the public 
health, various mathematical models have been proposed and analyzed in order 
to know the transmission dynamics of the H1N1 influenza [4]-[10]. 

Optimal control theory is another area of mathematics that is used extensively 
in controlling the spread of infectious diseases. It is a powerful mathematical 
tool that can be used to make decisions involving complex biological situation 
and is a decent strategy for deciding how to control a sickness best. 

To overcome H1N1 influenza, mitigation strategies are proposed in [11], an 
H1N1 influenza model was analyzed in [12] that accounts for the role of an im-
perfect vaccine and antiviral drugs that administered to infected individuals, the 
evolutionary model of influenza A with drift and shift was discussed in [13]. 
Authors in [14] discussed two strain influenza model with vaccination for strain 
1 and transmission dynamics of H1N1 influenza was rigorously analyzed with 
optimal control in [5]. All these studies reveal the complex feature of trans-
mission dynamics of influenza and to the author’s knowledge no such model 
for transmission of influenza in a population has been developed in which op-
timal control strategies have been designed on the basis of considering all 
possible preventive measures and treatment and this is the novelty of this re-
search work. 

The task of identifying optimal control strategies with a simple SEIR model 
that minimize the impact of influenza epidemics through the use of antiviral 
drug in combination with aforementioned preventive measures (which is highly 
prioritized) like covering nose and mouth, washing hand, using hand sanitizer, 
creating awareness through health education are the focus of this manuscript. 

https://doi.org/10.4236/am.2022.1310053
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Optimal control theory [15] [16] [17], is the primary tool used in the analysis. 
To complement the aforementioned studies by formulating a simple model and 
considering all possible preventive measures and treatment as control parame-
ters to reduce the disease burden, is the main objective of this study. 

This paper is organized as follows: Section 2 (Model formulation), Section 3 
(Existence of an optimal control), Section 4 (Necessary conditions of the optimal 
control), Section 5 (The optimality system), Section 6 (Numerical simulations 
and discussion) and Section 7 (Conclusion). 

2. Model Formulation 

The total population is divided into four mutually exclusive compartments, 
namely susceptible (S(t)), exposed (E(t)), infected (I(t)), and recovered (R(t)) at 
any time t. Thus, the total population can be written as  

( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + + . 
The corresponding system of nonlinear ODEs is, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

1 2

1

1 2

,

,

,

,

.

S t bN t S t I t S t

E t S t I t E t

I t E t r I t

R t rI t R t

N t b N t I t

β µ

β µ γ

γ µ µ

µ

µ µ

= − −

= − +

= − + +

= −

= − −

′

′

′

′

′

                (1) 

with initial conditions 

( ) ( ) ( ) ( ) ( )0 0 0 0 00 0, 0 0, 0 0, 0 0, 0 0S S E E I I R R N N= ≥ = ≥ = ≥ = ≥ = ≥  (2) 

Here b is the recruitment rate, γ  is the transmission rate from exposed class 
to infected class, r is the recovery rate and 1 2,µ µ  are natural death rate and 
disease induced death rate respectively. Susceptible individuals acquire infection 
at a per capita rate ( )I tβ , where β  is the transmission coefficients. 

To control various types of diseases, optimal control techniques are of great 
use in developing optimal strategies. In this model two control strategies are in-
troduced namely ( )1v t , which represents the preventive measures like covering 
nose and mouth, washing hand, using hand sanitizer, awareness campaign 
among the community and ( )2v t , which represents the treatment of infectious 
people. The modified model to estimate the effect of controlling strategies, is 
given below, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

1 2 2

1 2 1

,

,

,

,

S t bN t S t I t v S t

E t S t I t E t

I t E t r v I t

R t v S t v I t rI t R t

β µ

β µ γ

γ µ µ

µ

= − − +

= − +

= − + + +

= + + −

′

′

′

′

              (3) 

with initial conditions 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 0S S E E I I R R= ≥ = ≥ = ≥ = ≥         (4) 

To limit the number of infectious individuals and minimize the cost of applied 
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controls 1 2,v v , the required objective functional J is defined as follows, 

( ) ( ) ( )2 2
1 2 1 1 2 20

1, d
2

T
J v v YI t w v vw t = + + 

 ∫               (5) 

and the control set is, ( ) ( )( ) ( ) ( ) [ ]{ }1 2 1 2, : 0 1,0 1, 0,V v t v t v t v t t T= ≤ ≤ ≤ ≤ ∈ . 
A linear combination of quadratic terms ( )2 , 1, 2iv i =  are used to model the 

control efforts, and the constants Y, 1 2,w w  are a measure of the relative cost 
of the interventions over [0, T]. Here the problem is to find optimal controls, 

( )1 2,v v∗ ∗  such that 

( ) ( )( ) ( ) ( )( )1 2 1 2, min ,
V

J v t v t J v t v t∗ ∗ =                (6) 

3. Existence of an Optimal Control 

From the model (3), ( ) ( ) ( )1N t b N tµ≤ −′ . Then there exists M +∈  such 
that 

( ) ( ) [ ]1
0e , 0,b TN t N M t Tµ−≤ = ∈  

Since, ( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + +  and the state variables,  
( ) ( ) ( ), ,S t E t I t , and ( )R t  are bounded above, then there exists solution for the 

system (3). 
To prove the existence of the optimal control, it’s required to check the fol-

lowing hypotheses [15]. 
(M1) The set consisting of controls and corresponding state variables is non-

empty. 
(M2) The admissible control set V is convex and closed. 
(M3) R.H.S of state system (3) is bounded by a linear function in the state and 

control variables. 
(M4) J, the objective functional, has a convex integrand on V and the inte-

grand is bounded below by ( )1 2 1 2,b b v v
η

− +  with 1 20, 0b b> >  and 1η > .  
To prove the above statements the following theorem is required, 
Theorem 1. If each of the functions  iF , for 1,i n=   and the partial deriv-

atives i

j

F
x
∂
∂



 for , 1,i j n=  , are continuous in 1n+  space, then there exists a 

unique solution ( ) ( )( )1 1 , , n nx t x tφ φ= =  of the system of differential equa-

tions, ( )1, , ,i i nx F t x x′ = 

  for 1,i n=  , with initial conditions ( ) 0
0i ix t x=  for 

1,i n=  , and the solution also satisfies the initial conditions [15]. 
To prove the hypotheses (M1-M4), let us consider the system, 

( )

( )

( )

( )

1

2

4

3

d , , , , ,
d
d , , , , ,
d
d , , , , ,
d
d , , , , ,
d

S F t S E I R
t
E F t S E I R
t
I F t S E I R
t
R F t S E I R
t

=

=

=

=









                   (7) 

https://doi.org/10.4236/am.2022.1310053


F. Khondaker 
 

 

DOI: 10.4236/am.2022.1310053 849 Applied Mathematics 
 

where 1 2 3,,F F F    and 4F  represent the right side of the system (3) and for some 
constants 1c  and 2c , let ( )1 1v t c=  and ( )2 2v t c= . The functions iF  for 

, 41i =  , must be linear and their partial derivatives with respect to all state va-
riables are constants. Hence the functions and their partial derivatives are con-
tinuous everywhere. So, according to the theorem 1 we can say that, there exists 
a unique solution ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4, , ,S t t E t t I t t R t tφ φ φ φ= = = = , which sa-
tisfies the initial conditions. Therefore, the consisting set of controls and corres-
ponding state variables is nonempty. 

Now for any two controls 1 2,v v V∈  and [ ]0,1θ ∈ , ( )1 20 1 1v vθ θ≤ + − ≤ . 
Therefore, the set V is convex and closed (by definition). 

Now comparing (7) with (3),  

1 1

2

3 2

4 1 2

F bN v S

F KI

F E v I

F v S v I rI

γ

≤ −

≤

≤ −

≤ + +









 

in matrix form,  

( ) ( )1 2, , , ,
I I
R

S S
E E

F t X V m t X t m

R

t V

      
      
      ≤ +      
               

            (8) 

where,  

1

0 0 0 0
0

,
0 0

0 0 0
0 0 0

K
I

S
E

m t

R r
γ

    
    
    =    
         

 and 2

0
,

I
R

S S
E

m t
I

S I

  −   
    
    =    −
      +    

 

Here all the parameters are constant and nonnegative. Therefore from (8), 

( ) ( ) ( )( ) ( ) ( )( )( )1 1 2 1 2, , , ,t X V m X S I v t v t q X v t tF v≤ + + ≤ +  

Therefore, the right side of the state system (3) is bounded by a linear function 
in the state and control variables. 

Moreover, the integrand, ( ) ( )2 2
1 1 2 2

1
2

YI t w v w v+ +  of the objective functional 

J, is convex and satisfies ( ) ( ) 2
1 2 1 2 1 2, ,J v v b b v v= − +  where 1 20, 0b b> >  and 

2 1η = > , according to [18] [19] [20]. 

Hence, we have the following theorem. 

Theorem 2 For ( ) ( )( ) ( ) ( ) [ ]{ }1 2 1 2, : 0 1,0 1, 0,V v t v t v t v t t T= ≤ ≤ ≤ ≤ ∈  sub-

ject to Equation (3) having the initial conditions and  

( ) ( ) ( )2 2
1 2 1 1 2 20

1,
2

T
J v v YI t w v w v dt = + + 

 ∫ , there is an optimal control ( )1 2,v v∗ ∗  

such that ( ) ( )( ) ( ) ( )( )1 2 1 2, min ,
V

J v t v t J v t v t∗ ∗ =  [7]. 
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For the solution of the system (3), it’s Hamiltonian has to be defined. 

4. Necessary Conditions of the Optimal Control 

Let ( ) ( )1 2, , , , ,X S E I R V v v= =  and ( ), , ,S E I Rλ λ λ λ λ′ ′ ′ ′= . Then the Hamilto-
nian H for the optimal control problem is,  

( ) ( ) ( ) ( )( )
( )( ) ( )( )

( )

2 2
1 1 2 2 1 1

1 1 2 2

1 2 1

1, ,
2

 

 

S

E I

R

H X V YI t w v w v bN SI v S

SI E E r v I

v S v I r I R

λ λ β µ

λ β µ γ λ γ µ µ

λ µ

= + + + − − +

+ − + + − + + +

+ + + −



   (9) 

Pontryagin’s maximum principle [17] is used to derive the necessary condi-
tions for the optimal control, which (Pontryagin’s maximum principle) converts 
the problem (6) into the problem of minimizing the Hamiltonian. 

Hamiltonian H is used for determining the adjoint equations and transversal-
ity conditions.  

The following can be derived from the differentiation of H, with respect to 
each state variables 

( )( )1 1 1S S E R
H I v I v
S

λ λ β µ β λ λ∂′ = − = + + − −
∂

, 

( )1E E I
H
E

λ µ γ λ γλ∂′ = − = + −
∂

, 

( ) ( )1 2 2 2I S E I R
H S S r v v r Y
I

λ β λ β λ µ µ λ λ∂′ = − = − + + + + − + −
∂

,  

1R R
H
R

λ µ λ∂′ = − =
∂

  

with transversality conditions, ( ) ( ) ( ) ( ) 0S E I RT T T Tλ λ λ λ= = = = . 

With the help of controls and conditions of optimality,  

1 11

0
v v

H
v ∗=

∂
=

∂
 

1 1 0RSv w S Sλ λ∗⇒ − + =  

( )
1

1

S RS
v

w
λ λ∗ −

⇒ =  

and  

2 22

0
v v

H
v ∗=

∂
=

∂
 

2 2 0I Rv w I Iλ λ∗⇒ − + =  

( )
2

2

I RI
v

w
λ λ∗ −

⇒ =  
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5. The Optimality System 

The resulting optimality system is given as follows, 
State equations with initial conditions, 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

1 2 2

1 2 1

,

,

,

,

S t bN t S t I t v S t

E t S t I t E t

I t E t r v I t

R t v S t v I t rI t R t

β µ

β µ γ

γ µ µ

µ

= − − +

= − +

= − + + +

= + + −

′

′

′

′

             (10) 

with initial conditions 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 0S S E E I I R R= ≥ = ≥ = ≥ = ≥        (11) 

Adjoint system with transversality conditions, 

( )( )

( )

( ) ( )

1 1 1

1

1 2 2 2

1

,

,

,

S S E R

E E I

I S E I R

R R

H I v I v
S
H
E
H S S r v v r Y
I
H
R

λ λ β µ β λ λ

λ µ γ λ γλ

λ β λ β λ µ µ λ λ

λ µ λ

∂′ = − = + + − −
∂
∂′ = − = + −
∂
∂′ = − = − + + + + − + −
∂
∂′ = − =
∂

   (12) 

and,  

( ) ( ) ( ) ( ) 0S E I RT T T Tλ λ λ λ= = = = .              (13) 

Controls 1v∗  and 2v∗  are given by, 

( )

( ) ( )

( )

1

1
1 1

1

0, if 0

, if 0 1

1, if 1

S R

S R S R

S R

S
w

S S
v

w w
S

w

λ λ

λ λ λ λ

λ λ

∗

 −
<


 − −= ≤ ≤

 −
 >


          (14) 

and 

( )

( ) ( )

( )

2

2
2 2

2

0, if 0

, if 0 1

1, if 1

I

I I R

RI

R

R

I
w

I I
v

w w
I

w

λ λ

λ λ λ λ

λ λ

∗

−
<


 − −= ≤ ≤

 −
 >


          (15) 

6. Numerical Simulations and Discussion 

For the numerical solution of the system (10), the Runge-Kutta method is used. 
The simulation of the model is done with different scenarios. For this, the con-
sidered initial population size for susceptible class, exposed class, infected class 
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and recovered class are 0 0 00.8, 0.06, 0.05S E I= = =  and 0 0.05R =  respec-
tively and total number of years, T = 8. 

Here intead of whole numbers the proportions are used. Description of the 
variables of the model and other parameter values are given in Table 1 and Ta-
ble 2 respectively. 

Figure 1 shows the density of the susceptible, exposed, infected and recovered 
population with and without control. It is noticed that, the extinction of infected 
and exposed class is possible if the control parameters are kept. Otherwise the 
infection reaches to the maximum level.  

Figure 2 and Figure 3 show a comparative situation with varying effective 
contact rate. For low contact rate ( 0.4β = ) there is a significant increase in the 
recovered compartment, compared to the high contact rate ( 3β = ). In the case 
of high contact rate, both the controls 1v  and 2v  work for a longer period of 
time to reduce the disease burden. Figure 4 and Figure 5 portray the solution of 
the optimal control problem with different control weights ( 1 20.2, 0.5w w= = ) 
and ( 1 20.5, 0.2w w= = ) respectively and there are no significant changes in the 
infected and exposed class. Applying more awareness control does not signifi-
cantly bring down the number of exposed and infected individuals as compared 
to the case when applying more of the treatment control. In both cases there are 
increase in the infected individuals after the time t = 7.4 years. 

 
Table 1. Description of the model variables. 

Variable Description 

( )S t  Susceptible Population at time t 

( )E t  Exposed Population at time t 

( )I t  Infected Population at time t 

( )R t  Recovered Population at time t 

 
Table 2. Description and nominal value of the model parameter. 

Parameter Description Value 

b Birth rate 0.03 [assumed] 

1µ  Natural death rate 0.02 [5] 

2µ  Disease induced death rate 0.01 [5] 

β  Effective contact rate 0.9 [5] 

γ  Transmission rate from ( )E t  to ( )I t  class 0.53 [5] 

r Recovery rate 0.2 [5] 

Y Weight parameter 10 [assumed] 

1w  Weight parameter 0.2 [assumed] 

2w  Weight parameter 0.3 [assumed] 
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Figure 1. The graph shows the comparison of changes in population with 
and without control. 

 

 

Figure 2. The graph shows the effect of low contact rate ( 0.4β = ). 
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Figure 3. The graph shows the effect of high contact rate ( 3β = ). 
 

 

Figure 4. The graph shows the effect of weight parameters ( 1 20.2, 0.5w w= = ). 
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Figure 5. The graph shows the effect of weight parameters ( 1 20.5, 0.2w w= = ). 

7. Conclusions 

In this paper, a deterministic mathematical model of Influenza was formulated 
with preventive measures (awareness campaign, washing hand, using hand sani-
tizer, wearing mask) and treatment as interventions. It is monitored that there is a 
significant effect of using control strategies in reducing the exposed and infected 
individuals. In case of high effective contact rate, the effectiveness of the controls 
should last for longer period of time because of increasing disease burden. More-
over, the combination of both the controls has positive impact on reducing the 
disease burden and minimizing the corresponding cost. The main findings are: 

For high contact rate ( 3β = ), to reduce disease burden both the controls, 
preventive measures and treatment should work for long period and in the case 
of low contact rate ( 0.4β = ), exposed and infected individuals decrease rapidly 
and for this, control 1v  needs to work for more than 2 years. 

For different control weights ( 1 20.2, 0.5w w= = ) and ( 1 20.5, 0.2w w= = ), it is 
monitored that the number of recovered individuals increases more rapidly and 
reaches it maximum level faster whenever preventive measures get more priority 
and this is more economical than treatment cost.  

In this study, the optimal control problem does not include vaccination, which 
is important and for further study, this problem extends by considering the vac-
cination as intervention. 
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