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Abstract 
Nonparametric and parametric subset selection procedures are used in the 
analysis of state homicide rates (SHRs), for the year 2005 and years 2014- 
2020, to identify subsets of states that contain the “best” (lowest SHR) and 
“worst” (highest SHR) rates with a prescribed probability. A new Bayesian 
model is developed and applied to the SHR data and the results are contrasted 
with those obtained with the subset selection procedures. All analyses are ap-
plied within the context of a two-way block design. 
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1. Introduction 

The United States experienced its biggest one-year increase on record in homi-
cides in 2020, according to new figures released by the F.B.I. There is no simple 
explanation for the steep rise. A number of key factors are driving the violence, 
including the economic and social toll taken by the pandemic and a sharp in-
crease in gun purchases. However, how does the homicide rate appear before 
2020? As reported in a Wall Street Journal article [1], “the rate of 6.5 homicides 
per 100,000 residents is the highest since 1997, but still below historic highs of 
the early 1990s”. This article further explores possible causes for the recent in-
creasing trends in homicide rates. 

This article focuses on the application of nonparametric (or distribution-free), 
parametric subset selection procedures and the Bayesian approach to analyze 
state homicide rate (SHR) data for the year 2005 and years 2014-2020. With the 
Bayesian approach, a probability distribution is derived over all possible permu-
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tations of the population means. Thus, the probability that any particular state is 
characterized by the largest (or smallest) mean can be easily obtained by appro-
priate summing of the permutation probabilities. The variability of SHRs is 
herein analyzed with advanced statistical techniques. While root causal analysis 
is also very important, it requires different investigative approaches. 

The state homicide rate data is obtained from CDC:  
https://www.cdc.gov/nchs/pressroom/sosmap/homicide_mortality/homicide.ht
m 

There is an existing gap from the year 2005 to 2014 while addressing the data. 
The rate of 0.00 is not actually zero since we kept 2 decimal points for the data. 

2. Formulation of Nonparametric Subset Selection Rules 

The description of this selection rule will follow that given by Green and McDo-
nald [2], Let Π1, Π2, ∙∙∙, Πk be k(≥2) independent pupulations. The associated 
random variables, Xij, j = 1, ∙∙∙, n; i = 1, ∙∙∙, k, are assumed independent and to 
have a continuous distribution Fj(x; θi) where θi belong to some interval Θ on the 
real line. The basic model assumption is that Fj(x; θi) is a stochastically increas-
ing family of distributions for each j. The additive model of the following form is 
used: 

 ij i j ijX = + + +µ θ β ε                         (1) 

where βj indicates the particular block effect, θi indicates the population effect, 
and εij is the random error. The distribution of εij is any continuous distribution 
function Fj(x) with mean 0. The distribution of Xij will be stochastically ordered 
in θ as it is a location parameter in Equation (1). So, for example, Fj(x) could be a 
normal distribution with mean 0 and standard deviation σj. The assumption of 
negligible interaction between population and block must be satisfied. Let θ[i] 
denote the ith smallest unknown parameter, then for all x 

 [ ]( ) [ ]( ) [ ]( )1 2; ; ;j j j kF x F x F x≥ ≥ ≥θ θ θ              (2) 

where θ[1] (θ[k]) characterizes the best (worst) population. 
Let Rij denote the rank of the observation Xij among X1j, X2j, ∙∙∙, Xkj. The va-

riables Rij take values from 1 to k. The selection procedures considered here are 
based on the rank sums, Ti = ΣjRij, associated with Πi, i = 1, ∙∙∙, k. The structure 
for this process is outlined in Table 1. 

Any subset selection procedure based on the rank sums should have the 
property that the probability that a correct selection (CS) occurs, i.e., the worst 
population (or best population) is included in the selected subset, is bounded 
below by P*(k−1 < P* < 1). That is, for a given selection rule R, the probability of a 
CS should satisfy the inequality, 

 ( ) *inf CS | RP P
Ω

≥ ,                       (3) 

where ( ){ }1, , : , 1, ,k i i kΩ = = ∈Θ = θ θ θ θ . In some cases, as noted later, in-
equality may only hold on a subspace Ω' of Ω. 
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Table 1. Structure for determining ranks and rank sums. 

Block/Π Π1 Π2 … Πk SUM 

Block 1 X11 ≈ R11 X21 ≈ R21  Xk1 ≈ Rk1 k(k + 1)/2 

Block 2 X12 ≈ R12 X22 ≈ R22  Xk2 ≈ Rk2 k(k + 1)/2 

. 

. 

. 

. 

. 

. 
  

. 

. 

. 

. 

. 

. 

Block n X1n ≈ R1n X2n ≈ R2n  Xkn ≈ Rkn k(k + 1)/2 

Rank SUMS (Ti) T1 T2  Tk nk(k + 1)/2 

 
The two selection rules for choosing a subset containing the worst population, 

as described in McDonald [3], are given by: 
R1: Select Πi iff Ti ≥ max(Tj) – b1 
R2: Select Πi iff Ti > b2. 
Similarly, the two selection rules for choosing a subset containing the best 

population are given by: 
R3: Select Πi iff Ti ≤ min(Tj) + b3 
R4: Select Πi iff Ti < b4. 
Note that the rules R1 and R2 could be written in the form that select Πi iff Ti > 

b, where b is a stochastic quantity for R1 and a deterministic quantity for R2. A 
similar statement can be made for the rules R3 and R4. 

As developed by McDonald [4] [5] [6], R1 and R3 are justified over a slippage 
space, Ω', where all parameters θi are equal with the possible exception of θ[k] in 
case of rule R1 or θ[1] in case of rule R3; and R2 and R4 are applicable over the en-
tire parameter space. The constants b1, b3, and b4 are chosen as small as possible 
and b2 is chosen as large as possible preserving the probability goal. For large 
values of n, the selection rules are determined by the asymptotic formulae as de-
scribed in McDonald [5] and are computed as: 

 ( ) 1
1

2
3 1 6b b h nk k= = +   ,                     (4) 

 ( ) ( ) ( )
1 22 1 *

2 1 12 1 1 2b n k P n k− = − Φ − + +  ,           (5) 

 ( )4 21b n k b= + − ,                          (6) 

where the h-solution to be used in Equation (4) is given by: 

 ( ) ( ) *1 2 dk x h x x P−

−∞

∞
Φ + =∫ φ .                    (7) 

Here, Φ and φ  represent the standard normal cumulative distribution function 
(CDF) and probability density function (PDF), respectively. 

Taking P* to be particular confidence level, the h-solution is given in Table 1 
of Gupta et al. [7], and can be used to determine the constants b1 and b3. The 
above integral can also be calculated to determine P* for a given value of h, using 
a TI-83+ (or similar) calculator with numerical integration capability as shown 
in Green and McDonald [2]. The integral can be shown to be the probability that 
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the maximum of Ui, i = 1, ∙∙∙, k, is less than h where the Ui are normally distri-
buted random variables with zero means, unit variances, and covariance of 0.5 
(see Gupta et al. [7]). With confidence level P*, it can be asserted (using these se-
lection rules) that the chosen subset of the populations contains the one charac-
terized by θ[k] (θ[1]). 

Since there is only one observation for each state for each year, there is no 
general test for additivity, i.e., lack of interaction between states and years. Tukey 
developed a one degree-of-freedom test for nonadditivity when there is a single 
observation per cell, as given here. This test is used to establish the plausibility of 
model (1) for a power transformation of the SHRs. Table 2 shows the Tukey one 
degree-of-freedom test for nonadditivity for the SHRs and for these rates raised 
to the 0.4 power. The test indicates significant evidence of interaction with the 
untransformed rates, and no significant evidence of interaction with the power 
transformation of the rates. The Tukey test is testing for interaction of the form 

( )ij i j i jE X = + + +µ θ β λθ β . And the one degree of freedom test is given by 
testing for the one parameter λ. For the purpose of the nonparametric analyses 
to follow, the original SHR data will be used because ranks are invariant to mo-
notone increasing transformations. 

3. Nonparametric Subset Selection of States  

The goal is now to choose a subset of the 50 states that can be asserted, with a 
specified confidence, to contain the state with the highest SHR (worst popula-
tion), and similarly a state with the lowest SHR (best population) using the non-
parametric ranking and selection procedures. Ranks k = 1, ∙∙∙, 50 are assigned to 
states for each of n = 8 years, with a rank of “1” being the state with the lowest 
SHR. Based on these ranks, the selection procedure for choosing a subset of the 
50 states asserts that the best state (or worst state) is contained with a specified 
confidence level P*. 
 
Table 2. Tukey’s one degree-of-freedom test. 

Tukey’s 1 DF Test of 
Nonadditivity—SHR 

Tukey’s 1 DF Test of 
Nonadditivity—SHR0.4 

SS (Nonadditivity): 47.463 SS (Nonadditivity): 0.252 

SS (Error): 211.477 SS (Error): 20.575 

MS (Error): 0.722 MS (Error): 0.070 

Significance Level: 0.050 Significance Level: 0.050 

Test Statistic: 65.759 Test Statistic: 3.584 

Critical Value: 3.873 Critical Value: 3.873 

The test statistic is greater than the  
critical value, so there is significant  

evidence of interaction. 

The test statistic is not greater than the  
critical value, so there is no significant  

evidence of interaction. 
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Similar to the structure as outlined in the second section, let Rij denote the 
rank of the observation Xij within the jth block. The variables Rij take values from 
1 to k and the selection procedure is based on the rank sums, i ijjT R= ∑ , asso-
ciated with Πi, i = 1, ∙∙∙, k. In the case of ties, each tied state receives an average of 
their rank for that year. This is done for all 7 years. Ranks are then summed for 
each state and the rank sums Ti’s, are orderd. The selection rule constants are 
determined by the asymptotic formulae as described in the second section.  

Taking P* = 0.90, the h-solution as given in Table 1 of Gupta et al. [7], is h = 
2.581. This can be used to determine the constants b1 and b3. Using n = 8, k = 50, 
and h = 2.581, we obtain b1 = b3 = 150.5. Since n = 8 is not a particularly large 
sample size, the asymptotic values are compared with simulated values as de-
scribed in McDonald [8]. The simulated value would yield b1 = b3 = 148 vs. 150.5 
using the asymptotic formula. The other two constants are calculated to be b2 = 
151.7 and b4 = 256.3. The data yields max(Tj) = 397, and min(Tj) = 17.5. The 
choice of P* = 0.90 is determined by the degree of assurance one wishes to have 
concerning the goal of the chosen subset of states. This is similar to the choice of 
the level of confidence, an analyst would have concerning a confidence interval 
for a population parameter, e.g., the mean or variance. 

With confidence level P* = 0.90, it can be asserted that the following subsets of 
states contain that one characterized by θ[k]: 

Rule R1: Select the ith state iff Ti ≥ max(Tj) – 150.5 = 246.5. Twenty-one are 
chosen for “worst”. 

Rule R2: Select the ith state iff Ti > 151.7. Thirty-two are chosen for “worst”. 
With the same 0.90 confidence level, it can be asserted that the following sub-

set of states contain that one characterized by θ[1]: 
Rule R3: Select the ith state iff Ti ≤ min(Tj) + 150.5 = 168.0. Twenty-two are 

chosen for “best”. 
Rule R4: Select the ith state iff Ti < 256.3. Thirty-one are chosen for “best”. 
The identification of the specific states chosen with these four selection rules 

is given in Appendix B. 

4. Parametric Subset Selection of States  

In this section, a normal means parametric selection procedure will be used to 
contrast the inference with that of the nonparametric approach. This approach 
to subset selection was developed by Gupta [9]. With the additive model (1) 

 ( )ij i jE X = + +µ θ β                        (8) 

Letting ( )i ijjX X n= ∑ , then ( ) ( )i i jjE X n= + + ∑µ θ β . Since the quan-
tity ( )jj n+ ∑µ β  is constant for all i, inference on the ordered θi can be effi-
ciently based on the ordering of the means, iX . 

The additive model (1) will be used with Xij replaced with ( ) 0.4
ij ijf X X=  

based on the results given in Table 2. Here, the εij are assumed independent 
identically distributed normal variates with mean 0 and standard deviation σ. 

https://doi.org/10.4236/am.2022.137037
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Residual displays from a two-way additive analysis of variance (ANOVA) are 
given in Figure 1. 

The residuals are with some outliers on the lower and upper ends. The data at 
lower ends looks piled up, however, as mentioned in section one, the rate data of 
0.00 is not actually zero and not all the 0.00 are equal to each other. The “raw” 
data now will be the SHR to the 0.4 power. Since our interest is selection of “best” 
and “worst” subsets, we will retain the “outliers” and continue with a normal 
means selection process using the selection rule R5 for the “worst” population 
subset and R6 for the “best” population defined as follows: 

R5: Select the ith state iff [ ]i kX X d≥ − , d > 0 
R6: Select the ith state iff [ ]1iX X c≤ + , c > 0. 
The iX ’s are the respective sample means of the “raw” data and the [ ]iX ’s 

are the ordered sample means. The positive constants d and c are chosen so that 
the P(CS) ≥ P* for any configuration of the population (state) parameters, θi’s. It 
can be shown that for a fixed P*, d = c, and 

 ( )1 22d h n= σ ,                          (9) 

where h is defined by the integral Equation (7). 
For k = 50, n = 8, and P* = 0.90, the constants d = c = 1.2905σ. The value of σ 

is chosen to be 0.261 based on the two-way additive ANOVA of the transformed 
SHRs (i.e., the square root of the Mean Square for Error) as shown in Table 3.  
 

 
Figure 1. Residual plots for SHR0.4 from a two-way additive ANOVA. (a) Distribution of transformed data; (b) Resi-
dual probability plot. 

 
Table 3. Two-way ANOVA table for the transformed SHRs. 

Source DF SS MS F Ratios P Values 

STATE 49 137.043 2.79679 41.07 0.000 

YEAR 7 4.528 0.64681 9.50 0.000 

Error 343 23.356 0.06809   

Total 399 164.926    
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Both the factors state and year are shown to be highly significant in affecting the 
variability of the transformed SHRs, i.e., their p-values are approximately zero. 

Then d = c = 1.2905 × 0.261 = 0.34. The means of the transformed rates are 
given in Appendix C. The maximum sample mean is 2.88 (LA) and the mini-
mum sample mean is 0.00 (VT). 

For selecting the “worst” subset, 
R5: Select the ith state iff [ ] 2.88 0.34 2.54i kX X d≥ − = − = . 
The three states AL, MS, LA are chosen. 
For selecting the “best” subset, 
R6: Select the ith state iff [ ]1 0.00 0.34 0.34iX X c≤ + = + = . 
Only the state of VT is chosen for the selected subset. 
An advantage of the parametric approach over the nonparametric approach is 

that the parametric analysis explicitly utilizes the magnitudes of the data rather 
than simply their rank values. Thus, in this analysis, the normal means parame-
tric approach results in a dramatic reduction in the number of states chosen for 
the selected subsets. These results are displayed in Figure 2. 

5. Bayesian Approach to the Selection Problem 

In this section, a Bayesian approach is adopted and the population means are 
assumed to be stochastic. The idea is quite straightforward. A posterior distribu-
tion on the population means is used to simulate a large number of random 
draws, or realizations, of those means. With those draws, ordering probabilities 
of the population means can be estimated. And from these estimates, simple cal-
culations can provide estimates of, e.g., the probability that a specific population  
 

 
Figure 2. Selected states using parametric rules. 
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mean is greater than all the other population means. There are many choices 
that can be made for the posterior distributions. One such approach, utilizing 
flat (or noninformative) prior distributions on the population means is illu-
strated here. 

As shown in Gill [10] and many other Bayesian texts, the posterior distribu-
tion of the mean of the ith population (state), μi, is normal with mean iX  and 
standard deviation nσ , i = 1, ∙∙∙, k. In this situation, the Bayesian and fre-
quentist results (via Central Limit Theorem) are very similar in form. The rele-
vant calculations become 

 ( )1 2 km m mP ≤ ≤ ≤µ µ µ ,                 (10) 

where (m1, m2, ∙∙∙, mk) is any of the k factorial permutations of the integers (1, 2, 
∙∙∙, k). For example, for k = 4, there would be 4! = 24 such probabilities to calcu-
late. This can be easily handled with WinBugs (an MCMC simulator) or R. For 
frequentists, these calculations are meaningless. This approach is used in both of 
the following subsections. In section “Example with k = 4”, all of the permuta-
tion probabilities (10) can be estimated with simulated draws of the posterior 
mean as k is small. In section “Bayesian Analysis of SHR0.4” using R, with large k, 
applicable to the analysis of SHR0.4, a convenient function in R is used to identify 
which population (state) realizes the largest and smallest posterior mean on each 
simulation pass. 

5.1. Example with k = 4 

Suppose we have k = 4 populations with three observations from each of the 
populations yielding sample means of 2, 3, 4, and 5. Assume a common known 
standard deviation equal to 1 and a flat (noninformative) prior distribution on 
the population means. Using, for example, WinBugs, all 24 values of the proba-
bilities given in Equation (10) can be computed. By appropriate summing, the 
estimated values of P[μi = max(μj)], i = 1, 2, 3, 4, are obtained. Table 4 gives the 
results of such computations for 6 of the 24 parameter permutations. These are 
the 6 permutations, where μ4 is the largest of the four means. 

The tabled values were generated with WinBugs using the model code given 
in Appendix D and specifying a large number (105) draws on the posterior 
means. The probabilities of the permutations, ( )1 2 3 4m m m mP ≤ ≤ ≤µ µ µ µ , are 
denoted by P1.2.3.4 in Table 4. 

Given the probabilities in Table 4, it now follows that P(μ4 is max) = 0.6844 + 
0.1031 + ∙∙∙ + 0.0012 = 0.8873, i.e., the sum of the six probabilities in the Table. 
In a similar manner, the calculations yielded P(μ1 is max) = 0.00006, P(μ2 is max) 
= 0.00364, and P(μ3 is max) = 0.10900. A complete probability distribution over 
all possible ordering of the population means is realized. This approach of cal-
culating all the permutation probabilities is, from a practical vantage, limited to 
small values of k (say k ≤ 5 or 6). In our application to homicide rates where k = 
50, another Bayesian approach is more useful as described in the next subsec-
tion. 
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Table 4. A sampling of WinBugs estimates 
for selection from four populations. 

P1.2.3.4 = 0.6844 

P1.3.2.4 = 0.1031 

P2.1.3.4 = 0.09304 

P2.3.1.4 = 0.00274 

P3.1.2.4 = 0.00278 

P3.2.1.4 = 0.0012 

 

 
Figure 3. Selected states using Bayesian rules. 

5.2. Bayesian Analysis of SHR0.4 Using R 

The power transformation makes plausible the negligible interaction assumption 
for the additive model. The “state effects”, assuming flat normal priors, have a 
normal distribution centered at iX  and standard deviation nσ , i = 1, ∙∙∙, k. 
We now simulate in R a draw from each state, rank the results (using “which.max” 
and “which.min”), and repeat a large number of times (e.g., 106) to obtain P(LA 
is worst) = 0.74702, P(MS is worst) = 0.20606, P(AL is worst) = 0.04209, P(VT is 
best) = 0.99768. These results are displayed in Figure 3. The R code for these 
calculations is given in Appendix E. 

The results of the Bayesian analysis herein presented are in close agreement 
with the results given by the parametric selection procedure. This is as expected 
since the choice of a noninformative prior distribution results in an analysis 
based on the likelihood function as is the parametric selection procedure. 
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6. Concluding Remarks  

The subset selection procedures, parametric or nonparametric, select a random 
number of populations to include in the subsets on which a confidence state-
ment can be attached. Subset size is a random variable dependent on the ob-
served data. Determining the constants required to implement the selection rules 
does require the determination of the Least Favorable Configuration (LFC), i.e., 
the configuration of population parameters minimize the probability of a CS. 
With two of the procedures used in this article, R1 and R3, that determination 
has been made only in the situation where the underlying parameter space is a 
“slippage” space, i.e., all population parameters are equal with the possible ex-
ception of one.  

The nonparametric selection rules choose a much larger subset than the pa-
rametric procedures. And the conclusions from the Bayesian analyses are quali-
tatively closely aligned with those from the parametric selection procedures. This 
is not surprising as the nonparametric approach uses the ranks of the data, not 
the magnitudes. And as seen in Figure 1, there are outliers on the lower and 
upper end of the residual probability plot. 

Bayesian procedures can yield a complete probability distribution over all or-
derings of the population parameters (e.g., means). There is a curse of dimen-
sionality—k! gets large very quickly. However, using simulation capability in 
WinBugs and R, it is straightforward to generate a probability distribution over 
the populations as to which has the maximum (minimum) parameter. This was 
illustrated with SHRs from k = 50 states. 

The SHR results have been compared to MVTFRs conducted by McDonald 
[11]. The “worst” states selected for SHR are AL, MS, and LA while SC, MT, and 
MS for MVTFR. The “best” states selected for SHR is VT while MA for MVTFR. 
This is some consistency since the “worst” states are mostly from the Southeas-
tern states and the “best” states are both from the Northeast. 
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Appendix A. State Homicide Rates Raised to 0.4 Power 

State 2005  2014  2015  2016  2017  2018  2019  2020  
AK  1.93  1.86  2.30  2.21  2.57  2.24  2.59  2.21 
AL  2.47  2.31  2.53  2.68  2.78  2.72  2.77  2.89 
AR  2.30  2.26  2.23  2.38  2.49  2.42  2.45  2.79 
AZ  2.41  1.90  1.98  2.09  2.13  2.06  2.03  2.24 
CA  2.17  1.84  1.90  1.95  1.92  1.87  1.83  2.06 
CO  1.71  1.61  1.69  1.79  1.84  1.86  1.79  2.02 
CT  1.59  1.53  1.67  1.49  1.59  1.51  1.57  1.84 
DE  2.13  2.13  2.24  2.18  2.17  2.15  2.06  2.50 
FL  2.02  2.07  2.09  2.15  2.10  2.13  2.14  2.27 
GA  2.19  2.13  2.21  2.29  2.29  2.26  2.31  2.56 
HI  1.29  1.37  1.37  1.51  1.44  1.57  1.44  1.61 
IA  1.21  1.44  1.44  1.51  1.63  1.49  1.49  1.67 
ID  1.59  1.42  1.32  1.29  1.55  1.40  1.24  1.44 
IL  2.15  2.07  2.17  2.43  2.41  2.30  2.31  2.63 
IN  2.03  2.01  2.05  2.25  2.20  2.23  2.20  1.48 
KS  1.72  1.67  1.86  1.95  2.11  2.03  1.89  2.18 
KY  1.96  1.86  2.02  2.20  2.21  2.06  2.03  2.46 
LA  2.77  2.67  2.74  2.90  2.91  2.82  2.93  3.31 
MA  1.51  1.32  1.35  1.35  1.47  1.40  1.40  1.49 
MD  2.55  2.14  2.54  2.52  2.53  2.44  2.51  2.65 
ME  1.24  1.32  1.24  0.00  0.00  0.00  1.27  1.21 
MI  2.17  2.09  2.10  2.14  2.09  2.11  2.11  2.38 
MN  1.49  1.29  1.51  1.42  1.37  1.40  1.51  1.67 
MO  2.21  2.24  2.47  2.50  2.64  2.65  2.59  2.87 
MS  2.41  2.65  2.64  2.71  2.76  2.82  2.99  3.35 
MT  1.63  1.53  1.74  1.79  1.79  1.78  1.69  2.13 
NC  2.25  1.99  2.06  2.23  2.17  2.10  2.18  2.36 
ND  0.00  0.00  1.57  0.00  0.00  1.44  1.57  1.81 
NE  1.44  1.63  1.74  1.61  1.49  1.29  1.57  1.76 
NH  0.00  0.00  0.00  0.00  0.00  1.27  1.51  0.00 
NJ  1.92  1.81  1.83  1.84  1.76  1.69  1.63  1.79 
NM  2.29  2.15  2.30  2.45  2.35  2.59  2.68  2.59 
NV  2.27  2.09  2.14  2.23  2.25  2.26  1.98  2.21 
NY  1.86  1.63  1.63  1.67  1.55  1.59  1.59  1.86 
OH  1.99  1.93  2.05  2.11  2.24  2.15  2.13  2.42 
OK  2.06  2.13  2.35  2.36  2.35  2.18  2.39  2.41 
OR  1.53  1.42  1.63  1.61  1.57  1.44  1.55  1.71 
PA  2.09  1.93  1.99  2.05  2.13  2.10  2.06  2.35 
RI  1.57  1.44  1.51  1.40  0.00  0.00  1.44  1.55 
SC  2.29  2.25  2.46  2.41  2.44  2.53  2.61  2.76 
SD  1.53  1.57  1.78  1.86  1.78  1.72  1.67  2.11 
TN  2.33  2.11  2.20  2.39  2.39  2.43  2.43  2.66 
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TX  2.11  1.93  1.99  2.05  2.02  1.96  2.03  2.25 
UT  1.42  1.32  1.32  1.44  1.47  1.37  1.47  1.53 
VA  2.10  1.76  1.83  1.98  1.96  1.92  1.95  2.10 
VT  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 
WA  1.67  1.57  1.63  1.53  1.67  1.69  1.59  1.78 
WI  1.79  1.55  1.83  1.87  1.69  1.72  1.78  2.06 
WV  1.96  2.03  1.83  2.09  2.11  2.02  2.01  2.18 
WY  0.00  1.81  0.00  0.00  0.00  1.76  1.81  1.89 

Appendix B. State Rank Sums and Subsets of States Chosen by Nonparametric Rules 

 

https://doi.org/10.4236/am.2022.137037


A. Q. Wang, G. C. McDonald 
 

 

DOI: 10.4236/am.2022.137037 598 Applied Mathematics 
 

Appendix C. Ordered Means of State SHR0.4  
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Appendix D. WinBugs Code for Calculations Related to Table 4 

# Ranking & Selection for k = 4 populations 
model {  
 for (i in 1:3) { 
  x1[i] ~ dnorm(m1,tau1) 
  x2[i] ~ dnorm(m2,tau2) 
  x3[i] ~ dnorm(m3,tau3) 
  x4[i] ~ dnorm(m4,tau4) 
 }  
 m1 ~ dnorm(a,b) 
 m2 ~ dnorm(a,b) 
 m3 ~ dnorm(a,b) 
 m4 ~ dnorm(a,b) 
 tau1 <- pow(sigma1,-2) 
 tau2 <- pow(sigma2,-2) 
 tau3 <- pow(sigma3,-2) 
 tau4 <- pow(sigma4,-2) 
 p1.2.3.4 <- step(m2-m1)*step(m3-m2)*step(m4-m3)   
 p1.2.4.3 <- step(m2-m1)*step(m4-m2)*step(m3-m4) 
 p1.3.2.4 <- step(m3-m1)*step(m2-m3)*step(m4-m2) 
 p1.3.4.2 <- step(m3-m1)*step(m4-m3)*step(m2-m4) 
 p1.4.2.3 <- step(m4-m1)*step(m2-m4)*step(m3-m2) 
 p1.4.3.2 <- step(m4-m1)*step(m3-m4)*step(m2-m3) 
 p2.1.3.4 <- step(m1-m2)*step(m3-m1)*step(m4-m3) 
 p2.1.4.3 <- step(m1-m2)*step(m4-m1)*step(m3-m4) 
 p2.3.1.4 <- step(m3-m2)*step(m1-m3)*step(m4-m1) 
 p2.3.4.1 <- step(m3-m2)*step(m4-m3)*step(m1-m4) 
 p2.4.1.3 <- step(m4-m2)*step(m1-m4)*step(m3-m1) 
 p2.4.3.1 <- step(m4-m2)*step(m3-m4)*step(m1-m3) 
 p3.1.2.4 <- step(m1-m3)*step(m2-m1)*step(m4-m2) 
 p3.1.4.2 <- step(m1-m3)*step(m4-m1)*step(m2-m4) 
 p3.2.1.4 <- step(m2-m3)*step(m1-m2)*step(m4-m1) 
 p3.2.4.1 <- step(m2-m3)*step(m4-m2)*step(m1-m4) 
 p3.4.1.2 <- step(m4-m3)*step(m1-m4)*step(m2-m1) 
 p3.4.2.1 <- step(m4-m3)*step(m2-m4)*step(m1-m2) 
 p4.1.2.3 <- step(m1-m4)*step(m2-m1)*step(m3-m2) 
 p4.1.3.2 <- step(m1-m4)*step(m3-m1)*step(m2-m3) 
 p4.2.1.3 <- step(m2-m4)*step(m1-m2)*step(m3-m1) 
 p4.2.3.1 <- step(m2-m4)*step(m3-m2)*step(m1-m3) 
 p4.3.1.2 <- step(m3-m4)*step(m1-m3)*step(m2-m1) 
 p4.3.2.1 <- step(m3-m4)*step(m2-m3)*step(m1-m2) 
 p[1] <- p1.2.3.4 
 p[2] <- p1.2.4.3 
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 p[3] <- p1.3.2.4 
 p[4] <- p1.3.4.2 
 p[5] <- p1.4.2.3 
 p[6] <- p1.4.3.2 
 p[7] <- p2.1.3.4 
 p[8] <- p2.1.4.3 
 p[9] <- p2.3.1.4 
 p[10]<- p2.3.4.1 
 p[11]<- p2.4.1.3 
 p[12]<- p2.4.3.1 
 p[13]<- p3.1.2.4 
 p[14]<- p3.1.4.2 
 p[15]<- p3.2.1.4 
 p[16]<- p3.2.4.1 
 p[17]<- p3.4.1.2 
 p[18]<- p3.4.2.1 
 p[19]<- p4.1.2.3 
 p[20]<- p4.1.3.2 
 p[21]<- p4.2.1.3 
 p[22]<- p4.2.3.1 
 p[23]<- p4.3.1.2 
 p[24]<- p4.3.2.1 
 p.sum <- sum(p[]) 
} 
list(a=0,b=0.001,x1=c(1,2,3),x2=c(2,3,4),x3=c(3,4,5),x4=c(4,5,6), 
 sigma1=1,sigma2=1,sigma3=1,sigma4=1) 

Appendix E. R Code for Bayesian Simulations Described in the Bayesian Analysis of  
SHR0.4 Section 

# R-code for Bayesian simulations of Rate^0.4 
# k = number of populations; n = number of simulations 
# sigma = model sd ; m = number of years 
k=50; n=100000; sigma=0.261; m=8 
# sigma value is estimate from two-way ANOVA of Rate^0.4 
# mu values are means of (Rate^0.4) 
x <- c(rep(0,k)) 
y <- c(rep(0,n)) 
z <- c(rep(0,n)) 
err <- sigma/sqrt(m) 
mu <- c(2.24, 2.64, 2.41, 2.10, 1.94, 1.79, 1.60, 2.19, 2.12, 2.28, 1.45, 1.48,  
1.41, 2.31, 2.18, 1.93, 2.10, 2.88, 1.41, 2.49, 0.78, 2.15, 1.46, 2.52, 2.79,  
1.76, 2.17, 0.80, 1.57, 0.35, 1.78, 2.43, 2.18, 1.67, 2.13, 2.28, 1.56, 2.09,  
1.11, 2.47, 1.75, 2.37, 2.04, 1.42, 1.95, 0.00, 1.64, 1.79, 2.03, 0.91) 
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names(mu) <- c("AK","AL","AR","AZ","CA","CO","CT","DE", 
               "FL","GA","HI","IA","ID","IL","IN","KS", 
               "KY","LA","MA","MD","ME","MI","MN","MO", 
               "MS","MT","NC","ND","NE","NH","NJ","NM", 
               "NV","NY","OH","OK","OR","PA","RI","SC", 
               "SD","TN","TX","UT","VA","VT","WA","WI", 
               "WV","WY") 
mu 
for (i in 1:n){ 
  for (j in 1:k) {x[j] <- rnorm(1, mean = mu[j], sd = err)} 
  y[i] <- which.min(x) 
  z[i] <- which.max(x) 
} 
table(y) 
table(z) 
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Abstract 
In this paper, we establish properties for the switch-when-safe mean-variance 
strategies in the context of a Black-Scholes market model with stochastic vo-
latility processes driven by a continuous-time Markov chain with a finite 
number of states. More precisely, expressions for the goal-achieving probabil-
ities of the terminal wealth are obtained and numerical comparisons of lower 
bounds for these probabilities are shown for various market parameters. We 
conclude with asymptotic results when the Markovian changes in the volatil-
ity parameters appear with either higher or lower frequencies. 
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Model 

 

1. Introduction 

In the financial world, an investor is routinely subjected to finding strategies that 
offer higher returns with reduced risks. In his seminal paper [1], Nobel prize 
laureate Markowitz introduced the myopic (single period) mean-variance port-
folio management problem where one calibrates the amount of wealth invested 
in risky assets (stocks) and a riskless asset (bond) in such a way that it minimizes 
the variance of a terminal wealth while targeting an average end return. Since 
then, scores of innovative research problems arose related to his original static 
model as well as dynamic extensions in both discrete and continuous time, as 
seen for example in the following recent papers: [2] [3] [4].  

It’s worth noting that since the unconstrained mean-variance approach is 
solely based on averaged return, then an investor might experience undesired 
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marked scenarios such as returns below a safe investment in a bank account with 
guaranteed interest rate or even worst events such as bankruptcy. In an effort to 
reduce the probability of encountering these undesired scenarios while still aim-
ing for the target wealth at the end of the investment horizon, Zhou and Li [5] 
devised a hybrid strategy that we will call here the switch-when-safe strategy. 
More precisely, in a continuous-time setting under a Black-Scholes market mod-
el with deterministic parameters, the investor follows the optimal unconstrained 
mean-variance strategy up to the first (random) moment, if it occurs, where he 
could reinvest all of his cumulative wealth in a riskless asset so that it would 
generate the desired wealth at the end of the investment horizon. In their paper, 
they discovered the following astonishing properties:  
● The goal-achieving probability depends on neither the initial wealth nor the 

desired terminal wealth;  
● The goal-achieving probability has an explicit expression in terms of market 

parameters and time horizon;  
● The goal-achieving probability has a universal lower bound of 0.80, which 

depend on neither the market parameters nor the time horizon.  
Still, in the context of deterministic market parameters in a Black Scholes 

model with stock prices driven by Brownian motions, these same properties 
were also uncovered when one considers cone-constrained mean-variance strat-
egies such as no short-selling strategies [6] [7]. In this paper, we wish to explore 
if these properties carry on to more general market models for example by con-
sidering a Black-Scholes model with added randomness, more precisely, while 
maintaining deterministic interest for the riskless asset and deterministic drift 
parameters for the risky asset, we will allow the volatility parameter of the risky 
asset to change, depending on the state of a continuous-time Markov chain, in-
dependent of the stock prices driven by Brownian motions. 

2. Market Model and Regime-Switching Mean-Variance  
Strategy 

The market model is composed of a riskless asset and m risky assets with a vola-
tility matrix ( )tασ  depending of an independent Markov chain α . The price 

( )0S t  of the riskless asset a time t follow the dynamics given by the ODE:  

( ) ( ) ( )0 0d dS t r t S t t=  

while the price of the risky assets follow the dynamics given by the SDEs:  

 ( ) ( ) ( ) ( ) ( ),
1

d d d , 1, ,
m

i i i jij t
j

S t S t t t W t i mαµ σ
=

 
= + = 

 
∑   

where jW  are independent standard Brownian motions and ( ){ }: 0t tα ≥  is a 
continuous-time Markov chain with a finite set of states { }1, , S . 

Let  ( ) ( )
1j m

W t W t
×

 =   ,  ( ) ( ),t ij t m mα ασ σ
×

 =   ,  ( ) ( ) ( )
1i m

B t t r tµ
×

= −    and 

( ) ( )
1i m

t tπ π
×

=     be the investor portfolio: ( )i tπ  is the amount invested in  
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the ith stock at time t. Then the self-financing wealth process X of the investor is 
driven by the SDE  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0d d d , 0 .tX t r t X t B t t t t t W t X xαπ π σ= + + =    

A mean-variance strategy ( )MV tπ  is one that minimizes the variance of the 
terminal wealth ( )( )Var X T  under the constraint that the expected terminal 
wealth satisfies ( )( )E X T z=  where ( )0 d

0e
T r s sz x ∫> . 

Zhou and Yin [8] showed that, for a regime-switching volatility model, this 
optimal strategy is given by  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 de
T
t r s s

MV t tt t t B t X tα απ σ σ λ
− −∫  = − +    

 

where the Lagrange multiplier λ  is given by  

 
( )( ) ( )

( )( ) ( )

0

0

d
0

2 d

0, 0 e

0, 0 e 1

T

T

r s s

r s s

z x P

P

α
λ

α

−

−

∫

∫

−
=

−
 

and ( ),P t k  is the solution to the following ODE system  

 
( ) ( ) ( ) ( ) ( ) ( )

1

,
2 , ,

S

k k k

P t k
t t r t P t k q P t

t
θ θ

=

∂
= − −  ∂ ∑





  

 ( ), 1P T k =  

where ( ) ( ) 1
k kt B tθ σ −=  and [ ]k S S

Q q
×

=


 is the infinitesimal generator of 
Markov chain ( ){ }: 0t tα ≥  . 

Consequently, following Itô’s formula, the wealth process ( )MVX t  of the 
mean-variance startegy can be expressed as  

 ( ) ( )( ) ( ) ( )0 d d
0e e

T T
tr s s r s s

MVX t x Z tλ λ −∫ ∫= + −  

where  

 ( ) ( ) ( ) ( ) ( ) ( )
2

0 0

3exp d d .
2

t t

s sZ t s s s W sα αθ θ = − − 
 ∫ ∫  

This form is well-suited to the computations in the next section. 

3. Switch-When-Safe Mean-Variance Strategy and Goal  
Achieving Probabilities 

Consider the following stopping time:  

 ( ) ( ){ }dinf 0 : e .
T
t r s s

z MVt T X t zτ ∫= ≤ ≤ =  

This time, if it exists, is the first moment at which the wealth is such that, in-
vested in the riskless asset, it would have a final value equal to the targeted ex-
pected terminal wealth of the mean-variance strategy. 

The switch-when-safe mean-variance strategy of [5] is defined as  

 ( ) ( ) if ,
0 otherwise.

MV z
SWS

t t T
t

π τ
π

≤ ∧
= 

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Now observe that  

 ( ) ( )
( )

( )( ) ( )
( ) ( )( ) ( )0

0

0

d
d 2 d0

2 d

e
e 0, 0 e .

1 0, 0 e

T
T T
t

T

r s s
r s s r s s

MV r s s

x z
X t z Z t P

P
α

α

− −

−

∫
∫ ∫

∫

−  − = −  −
 

Since ( )0 d
0e 0

T r s sx z∫ − < , it follows that the equality ( ) ( )de
T
t r s s

MVX t z∫ =  is veri-
fied if and only if  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

0 0 0

3 d d 2 d ln 0, 0 .
2

t t T

s ss s s W s r s s Pα αθ θ α+ = −∫ ∫ ∫  

From this condition, we see that, as it is the case in [5], the goal-achieving prob-
ability of the switch-when-safe mean-variance strategy for a regime-switching 
volatility model does not depend on either the initial wealth or the desired ter-
minal wealth. 

Now let us find an expression for the goal-achieving probabilities in the case 
of a model with one risky asset that is W is reduced to a one-dimensional brow-
nian motion, let  

 ( ) ( ) ( ) ( ) ( ) ( )2
0 0

3 d d
2

t t

s sY t s s s W sα αθ θ= +∫ ∫  

First, according to Buffington and Elliottt [9], the characteristic function of 
the diffusion process Y is given by 

( ) ( )

2 2
1

2 2

3 1 0
2 2

exp 0 0 0 ,1
3 10
2 2

t S

S

iu u

u Qt t

iu u

θ

φ π

θ

   −      
  = +
  

   −      







 

where 1S  is a S-dimensional vector of ones. 
Let ( ) ( )

0
2 d ln 0,1

T
a r s s P= −∫  represent the barrier, if aT  is the stopping 

time defined by  

( ){ }inf 0 :aT t T Y t a= ≤ ≤ =  

then  

( ) ( )Pr Pr .z aT T Tτ ≤ = ≤  

By introducing the Wiener-Hopf factorization of the process ( ) ( )( ),Y t tα  
that is to say, the couple ( ),Q Q+ −  which solves for every 0u >   

( ) ( ) 0Q Q+ −Ξ − = Ξ =  

where  

( ) 2 21
2 SP P VP Q uIΞ = Σ + + −  

with ( )1, , Sdiag θ θΣ =  , 2 2
1

3 3, ,
2 2 SV diag θ θ =  

 
 , Q the infinitesimal gener-  

ator and SI  the S S×  identity matrix, then, following Jiang and Pistorius [10], 
the associated Laplace transform aΨ  of the random variable aT  is given by  
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( ) ( )0 exp 1a SaQπ +Ψ =  

therefore, through Laplace transform inversion, we deduce  

( ) ( ) ( )
0

0 1Pr Re e d .
2

a aiu
a

iu
T T u

iu
∞ −Ψ Ψ − 

≤ = −  
 π ∫  

Moreover, since the ratio 
( )

2

2

3
32
2

i

i

θ

θ
=  is constant for 1, ,i S=   then accord-

ing to Hieber [11] the last expression is reduced to  

( ) ( ) ( ) ( ) ( )
0

1 exp 3 exp 3 exp1Pr Re d .
2a T

a a iua iua
T T u u

iu
φ

∞+ + − − 
≤ = − 

π



∫  

Both expressions can easily be evaluated numerically. However, it is worth 
mentioning that, even if one could find explicit forms for the exponential ma-
trices (which is the case for 2S =  for example) appearing in these expressions, 
searching for possible closed-formed formulas for the integrals involved could 
prove to be quite challenging. 

One notable exception is the trivial case where all possible values of the vola-
tility matrix are reduced to a single constant matrix. Then we have ( )tαθ θ≡  
that is ( )Y t  revert to a standard Brownian motion with drift and according to 
[5]:  

 ( )
231 5Pr e .

2 2
T

aT T T Tθθ θ   ≤ = Φ + Φ −   
   

 

Figure 1 shows the probabilities in this case as a function of x Tθ= .  
 

 

Figure 1. Goal-achieving probabilities as a function of x Tθ= . 
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For the numerical study of lower bound probabilities, we will suppose hereon 
that we have one risky asset, the parameters r and µ  are constant, and the vo-
latility parameter σ  follows a 2-state continuous-time Markov chain with an 
infinitesimal generator Q taking the form  

11 11

22 22

q q
Q

q q
− 

=  − 
 

where 11 22, 0q q < . In this case, the constant interest r allows us to have the ex-
plicit solution to the ODE system  

( )
( ) ( )( )( ),1 1

exp
,2 1

P t
T t M Q

P t
   

= − − −   
  

 

with  
2

1
2
2

2 0
.

0 2
r

M
r

θ
θ

 −
=  

− 
 

Furthermore, since α  is 2-state Markov chain, the matrix Q+  can be written 
explicitly [11] as  

( )

( )

2 2
3, 4, 11 1 11 1

3, 4, 3, 4,

22
3, 4, 22 222 2

3, 4, 3, 4,

2 2
3 3

22
3 3

u u

u u u u

u u

u u u u

q u q

Q
q uq

β β θ θ
β β β β

β β θθ
β β β β

+

 − + − −
 

+ + + + =  − + −− 
 + + + + 

 

where 3, 4,u uβ β<  are the real positive roots of the quartic equation  

2 2 2 2 2 2
1 1 11 2 2 22 11 22

1 3 1 3 0.
2 2 2 2

q u q u q qθ β θ β θ β θ β  + + − + + − − =  
  

 

Following the Cayley-Hamilton theorem we then have  

( )
4, 3, 3, 4,

3, 4,
2

3, 4, 3, 4,

e e e eexp
u u u ua a a a

u u

u u u u

aQ I Q
β β β ββ β
β β β β

− − − −

+ +

   − −
 = +    − −  

 

which leads us to an explicit expression for the Laplace transform aΨ . We will use 
it in our numerical computation of the goal-achieving probabilities ( )aP T T≤ . 

As an example, consider a market model with a single asset and a two-state 
volatility:  

1 1
0.10, 0.01, .

1 1
r Qµ

− 
= = =  − 

 

We can compute the goal-achieving probabilities ( )aP T T≤  like in Figure 1 
and find a lower bound for them as a function of the different values of the 
stock’s regime-switching volatility. Table 1 gives the lower bound probabilities, 
assuming the initial regime-switching state is ( )0 1α = . 

Clearly one observes that, in presence of a true regime-switching volatility 
model ( 1 2σ σ≠ ), the lower bound probabilities cross the threshold of its deter-
ministic model counterpart. Moreover, as 1σ  takes on larger values while 2σ  
takes on lower values the lower bound probabilites gets fairly small, for example  
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Table 1. Lower bounds of goal-achieving probabilities. 

σ1/σ2 0.05 0.10 0.15 0.20 0.25 

0.05 0.810 0.795 0.783 0.778 0.776 

0.10 0.771 0.810 0.800 0.788 0.777 

0.15 0.706 0.797 0.810 0.806 0.800 

0.20 0.645 0.776 0.806 0.810 0.808 

0.25 0.594 0.753 0.798 0.808 0.810 

 
if we take 1 0.50σ =  and 1 0.01σ =  the lower bound probability decreases to a 
mere 0.166. 

4. Limit Cases of Goal Achieving Probabilities 

Assume now that Q depends on a parameter k:  

 ( ) 11 11

22 22

q q
Q k k

q q
− 

=  − 
 

with 0k > . We will study the first passage time probabilities when either k ↑ ∞  
or 0k ↓ , which corresponds respectively to the case where the regime-switching 
jumps appear with high frequency or are scarce. 
● k ↑ ∞  (average time to next jump tends to zero)  

( )( )
22 11

11 22
11 22 11 22

22 11

11 22 11 22

22 11

11 22 11 22

lim exp e
q q

M M T
q q q q

k

q q
q q q q

T M Q
q q

q q q q

 
− + 

+ + 

→∞

 
 + + − − =
 
 + + 

 

and therefore  
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( )

22 11
11 22

11 22 11 22

22 11
11 22

11 22 11 22

0,1 e
.

0,2
e

q q
M M T

q q q q

q q
M M T

q q q q

P
P

 
− + 

+ + 

 
− + 

+ + 

 
  

→   
  
  

 

The barrier ( )( ) ( )22 ln 0, 0a rT P Tα θ∞→ − =  where  

( )2 2 222 11
1 2

11 22 11 22

q q
q q q q

θ θ θ∞ = +
+ +

. 

We can also show after tedious calculations that  
221 1

lim e
u

ak

λ ν
ν λ

 
 − +
 
 

→∞
Ψ =  

where 2
3

Tν =  and ( )2 2Tλ θ∞= . 

This expression corresponds to the Laplace transform of the inverse Gaussian 
(or Wald) density with mean ν  and shape parameter λ , therefore  

( )
2

Pr 1 e 1a
T TT T

T T

λ
νλ λ

ν ν
      ≤ →Φ − + Φ − +               
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( ) ( ) ( )22 231 5e
2 2

TT Tθθ θ∞
∞ ∞

   = Φ + Φ −   
   

 

For the single asset model of the previous section, with regime-switching vola-
tilities 1 0.10σ =  and 2 0.20σ = , Figure 2 below shows the goal-achieving 
probabilites for increasing values of k. 
● 0k ↓  (average time to next jump tends to infinity)  

( )( ) ( )
0

lim exp exp
k

T M Q TM
+→

− − = −  

and therefore  

( )
( )

11

22

0,1 e
.

0, 2 e

M T

M T

P
P

−

−

   
→   

  
 

The barrier ( )( ) ( )02 ln 0, 0a rT P Tαα θ→ − = . 
In this case, we can obtain the limit of the passage-time probability in a 

straightforward manner. Since the average time to the next jumps tends towards 
infinity, the Markov chain ( )tα  will have a tendency to stay at its intital state 
( )0α , thus  

( ) ( ) ( ) ( )2
0 0

3
2

Y t t W tα αθ θ→ +  

and therefore  

( ) ( )
( )

( )

2
03

0 0
1 5Pr e .
2 2

T

aT T T Tαθ

α αθ θ   ≤ →Φ + Φ −   
   

 

For the same example as above, Figure 3 illustrates this result for decreasing 
values of k.  

 

 
Figure 2. Goal-achieving probabilities for increasing k. 
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Figure 3. Goal-achieving probabilities for decreasing k. 

5. Conclusion 

In the context of a Black-Scholes market model with stochastic volatility processes 
driven by a continuous-time Markov chain with finite states, we obtained tracta-
ble expressions for the goal-achieving probabilities of switch-when-safe strate-
gies as first introduced by Zhou and Li [5]. We observed that the goal-achieving 
probabilities are independent of the value of the initial wealth and targeted ter-
minal mean wealth, a property shared with the standard Black-Scholes market 
counterpart. Unfortunately, it appears that a universal lower bound for these 
probabilities does not exist for the set of all possible market parameters and infi-
nitesimal generators of the Markovian process as illustrated by our numerical 
studies. Finally, when the Markovian regime is allowed to either attain higher or 
lower frequencies than the first-passage time probabilities expressions converge 
to closed-form formulas. 
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Abstract 
A great discovery made by H. von Foerster, P. M. Mora and L. W. Amiot was 
published in a 1960 issue of “Science”. The authors showed that existing data 
for calculating the Earth’s population in the new era (from 1 to 1958) could 
be described with incredibly high proximity by a hyperbolic function with the 
point of singularity on 13 November 2026. Thus, empirical regularity of the 
rise of the human population was established, which was marked by explosive 
demographic growth in the 20th century when during only one century it al-
most quadrupled: from 1.656 billion in 1900 to 6.144 billion in 2000. Nowa-
days, the world population has already overcome 7.8 billion people. Imme-
diately after 1960, an active search for phenomenological models began to ex-
plain the mechanism of the hyperbolic population growth and the following 
demographic transition designed to stabilize its population. A significant role 
in explaining the mechanism of the hyperbolic growth of the world popula-
tion was played by S. Kuznets (1960) and E. Boserup (1965), who found out 
that the rates of technological progress historically increased in proportion to 
the Earth’s population. It meant that the growth of the population led to rais-
ing the level of life-supporting technologies, and the latter in its turn enlarged 
the carrying capacity of the Earth, making it possible for the world population 
to expand. Proceeding from the information imperative, we have developed 
the model of the demographic dynamics for the 21st century for the first time. 
The model shows that with the development and spread of Intelligent Ma-
chines (IM), the number of the world population reaching a certain maxi-
mum will then irreversibly decline. Human depopulation will largely touch 
upon the most developed countries, where IM is used intensively nowadays. 
Until a certain moment in time, this depopulation in developed countries will 
be compensated by the explosive growth of the population in African coun-
tries located south of the Sahara. Calculations in our model reveal that the 
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peak of the human population of 8.52 billion people will be reached in 2050, 
then it will irreversibly go down to 7.9 billion people by 2100, if developed 
countries do not take timely effective measures to overcome the process of 
information depopulation. 
 

Keywords 
Explosive Population Growth, Demographic Transition, Demographic, 
Technological and Information Imperatives, Phenomenological Models of 
The Demographic Dynamics, Demographic Forecast in the Age of Intelligent 
Machines 

 

1. Introduction: Global Demographic Transition as the Main  
Driving Force of the 21st Century Civilisation  

Unprecedented economic growth, rampant scientific and technological progress 
and spacious geopolitical changes in the 20th century were caused by an amazing 
demographic growth when during only one century the world population almost 
quadrupled: from 1.656 billion people in 1900 to 6.144 billion people in 2000 
[according to the United Nations:  
https://population.un.org/wpp/Download/Standard/Population/]. At the same 
time humanity, beginning with the 1960s, has made a significant demographic 
transition, the essence of which is to change the explosive demographic growth 
lasting until 1960, into the mode of its slowdown with the following stabilization 
of the world population by means of a simultaneous decrease in birth and death 
rates. Moreover, as was stated by S.P. Kapitsa [1], the process of the demograph-
ic transition of endogenous origin only is going to last up to the 2050s. It should 
be noted that humanity has already been going through the demographic transi-
tion for the last 235 years. Most developed countries and leading developing 
countries such as China, India and others have already successfully gone 
through the demographic transition. In many developing countries, this process 
is only beginning but it is expected that it is going to be on the fast track, and it 
will last for 35 - 45 years and not 70 - 90 as it used to be.  

The demographic transition in all countries was preceded by a rapid increase 
in speed and rate of population growth, which then was replaced by an equally 
rapid slowdown of growth rate, although speed continued to increase for dec-
ades. Due to the process of the demographic transition, in a short historical pe-
riod—several decades only—the country’s population has increased several 
times—from three to seven times, and then striven to stabilize in its number. As 
a rule, the demographic transition is accompanied by a significant increase in 
scientific and technological progress, productive forces and economy, the rise of 
culture and education, and great masses of migrants from the country to towns. 
There is no doubt that the demographic dynamics will remain the main driving 
force of the world development in the 21st century. After the end of the demo-
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graphic transition, there is a sharp shift in the population age, and the propor-
tion of elderly people grows significantly, as is the case with Japan. On the other 
hand, it all required an ever-increasing production and food and energy con-
sumption, as well as mineral resources, which led to ever-increasing pressure on 
terrestrial biosphere and environmental pollution. Although developed and 
leading developing countries have successfully overcome these problems, they 
have used not only their internal capacities, but also cheap resources drained 
from the rest of the world. Besides, there was an absolute growth of population 
during the demographic transition which counted tens and hardly ever hun-
dreds of millions of people (China and India). Now the growth of population 
amounts to more than a billion people from poor developing countries. There-
fore, the question arises: is the world going to cope with such an invasion? Un-
fortunately, this question remains underexplored.  

Indeed, the demographic transition is going on in African, Asian and partly 
Latin American developing countries. The explosive population growth is cha-
racteristic of African countries to the south of the Sahara Desert. According to 
the estimates of UN experts, in the next 30 years, about 60% of the world popu-
lation growth will fall on Africa, i.e. more than 800 million people, and this 
number is bigger than the EU population ( ≅ 730 million people). The popula-
tion of Nigeria only by 2050 will exceed 400 million people. Rapid population 
growth of developing countries going through the demographic transition poses 
difficult questions to their governments, threatening economic growth, envi-
ronmental quality, population safety and prosperity. Hardly would they be able 
to create millions of new working places, give sound education to a great num-
ber of young people and prepare them for productive activity to earn “demo-
graphic dividends”. The Arab Spring that happened in the early 2010s reminds 
us of the fact that the population with a large proportion of unemployed young 
people poses great risks to the social and political stability in societies that do not 
meet high expectations in terms of standards of living. 

The demographic explosion that is in high gear now in developing countries 
may be the main factor determining trends of the world development in the 21st 
century. A swelling demographic tide generated by developing countries may 
shake the whole world just like a tsunami if humanity does not take drastic 
measures to neutralize the negative consequences of this largely uncontrolled 
process. Indeed, in 2050 the world population will likely exceed 9 billion people 
(in contrast to 7.8 billion people now), i.e. there will be one more China. Such 
population growth will not remain unnoticed by the environment and climate 
changes. By 2050, humanity will require twice as many resources as our planet 
can provide. We will have to double food production to satisfy population needs, 
while productive land resources plummet, and fish resources in the world ocean 
are already running dry. It is taken into consideration here that nowadays 
around 2.8 billion people live in poverty and are malnourished. In addition, 
ecosystem destruction puts food and especially water safety at threat. 
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There will be five main problems accompanying the global demographic tran-
sition: 1) inequality of the demographic process; 2) increase in international mi-
gration (refugees); 3) population ageing; 4) urbanization acceleration; 5) escala-
tion of climate warming and ecosystem destruction. It has already been noted 
above that demographic processes have an extremely irregular nature both in 
countries and world regions. In decades to follow many developed countries will 
see population decline, while in many developing African, Asian and Latin 
American countries there will be explosive or rapid population growth. For ex-
ample, according to the UN medium-term forecast, by 2050 the EU population 
will shrink from 731 million people to 664 million people. The explosive popula-
tion growth in developing countries and its decline in most developed countries 
will inspire international migration as well as refugees from the countries where 
violent social conflicts will arise. However, many developed countries see unre-
gulated chaotic migration as a threat to national identity, social cohesion, do-
mestic security and economic welfare.  

Increasing life expectancy and population ageing provoked by it can be seen 
all over the world, but first and foremost it has a negative influence on the 
economy of most developed countries. Nowadays average life expectancy in the 
world is 71 years. And by 2050 it will increase to 76 years. Urbanization in de-
veloping countries going through the demographic transition will increase since 
the population growth and urban sprawl are closely intertwined. Now more than 
half of the world population lives in towns – around 4 billion people, and by 
2050 their number will amount for two-thirds, i.e. more than 6 billion people. 
Economic, cultural and political gains connected to the population concentra-
tion in towns are evident. Towns are centers of innovations, culture and educa-
tion, a melting pot of civilization, and the source of wealth and power. Moreover, 
towns and global urbanization have become the source of the greatest problems 
on our planet: among them, there are crimes, pollution, shantytowns, poverty 
and diseases, and above that, they are centers of extreme energy and environ-
mental resources consumption. High energy expenditure has inevitable devas-
tating consequences for the terrestrial biosphere.  

Since all aspects of human life and activity are connected to energy, the explo-
sive population growth has led to the massive increase in energy use and pro-
duction in the 20th century. Besides, power industry is the main source of envi-
ronmental pollution—soil, atmosphere and water—and it has led to unprece-
dented degradation of the human habitat. Besides, terrestrial biosphere disinte-
grates drastically, partially losing the most important function of environmental 
stabilization. Greenhouse gases emitted into the atmosphere in the process of 
combustion in power plants of fossil hydrocarbon fuels – coal, oil and natural 
gas have engendered global warming, which has already exceeded 1.2˚С in 
comparison with preindustrial level (1850). It is known that the exceedance of 
global warming level by 2˚С may lead to the global economic crisis with unpre-
dictable negative consequences for human existence. That is why the UN ac-
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knowledged climate stabilization as the main ecological imperative and in 2015 
at the UN Climate change conference in Paris, it adopted a historic agreement 
demanding detention of average global temperature rise at the level below 1.5˚С 
- 2˚С, which, in turn, requires reducing greenhouse gases emission two or three 
times by 2050.  

Thus, the world goes through the most significant demographic shift in hu-
man history. The explosive population growth in the poorest developing coun-
tries with the following demographic transition and population aging provoked 
by it, a possible unpredictable international migration and refugee increase, ur-
banization acceleration in developing countries, further climate warming and 
terrestrial biosphere destruction foreshadow drastic social and economic conse-
quences both on the regional and global levels. Besides, the rapid development of 
digital technologies and intellectual machines (IM), computers and robots with 
elements of artificial intelligence (AI) lead not only to the technological substitu-
tion of working places, depriving intermediate-level people of them, but also to 
population decline, which is to be seen first and foremost in the most developed 
OECD countries, which in any case expect a demographic decline. However, as 
is demonstrated in our work, all key models used at present for forecasting the 
global demographic dynamics do not take this factor into consideration and thus 
make a wrong forecast for the 21st century. The present work is concluded with 
an examination of a model for calculating population decline in the information 
and digital age (1980-2050), driven by the ever-growing usage of IM almost in all 
spheres of human activity. 

2. Global Demographic Process. Phenomenological Models  
of the Demographic Dynamics 

The graph of the growth curve representing the world population, calculated 
according to Kapitsa’s evolutionary demographic model [1] is presented in Fig-
ure 1 along with the actual data of the demographic dynamics (represented as 
dots) between 1 and 2008 A.D. [2]. As is seen from examining the actual trajec-
tory of the world population growth shown in the figure, it had been accelerating 
for the last 500 years and slowed in the 1960s only. Moreover, the accelerating 
character of growth was expressed by the annual absolute growth of population 
and rates of this growth which increased with time. The highest growth rate was 
in 1962-1963 reaching 2.2%. Then it started to recede characterising the begin-
ning of the global demographic transition. The highest annual world population 
growth hit 88 million people in 1989 characterising the passage of the flexible 
crossing point in the trajectory of the global demographic dynamics. It led to ex-
plosive demographic growth in the 20th century, when during only one century 
the world population quadrupled from 1.656 billion people in 1900 to 6.144 bil-
lion people in 2000. Over the past 20 years, the population has increased by al-
most 1.65 billion people and now the Earth’s population exceeds 7.8 billion 
people [according to the United Nations:  
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Figure 1. Global demographic dynamics [2] and evolutionary model of the population growth in World-System [1]. 

 
https://population.un.org/wpp/Download/Standard/Population/] and it contin-
ues to grow. It is evident that the Earth’s population will continue to grow as 
long as the demographic transition continues. 

The world population growth has been accompanied by economic growth 
caused by technological progress. The key role in the demographic dynamics 
was played by real mid-year per capita income. In Figure 2, you can see graphs 
of per capita income growth in the Industrial era for 5 advanced countries – 
Australia, Denmark, Netherlands, France and Sweden and one average country – 
Chile. Strong correlation between the demographic dynamics (Figure 1) and the 
dynamics of growth of per capita income (Figure 2) immediately strikes the eye. 
Secondly, advanced highly profitable countries constitute clear cluster of coun-
tries with approximately equal rates of per capita income. It is possible to show 
that average and low-profitable (developing) countries also form corresponding 
clusters. Thirdly, a sharp rise of per capita income in advanced countries be-
comes visible only with the start of the global demographic transition, although 
demographic transitions actually started in these countries 180 - 100 years earli-
er, while in Chile it coincided with the actual demographic transition.  

The demographic transition occurred in different parts of the world at differ-
ent time. This phenomenon consisting in the change of accelerating population 
by a slowdown mode with further stabilization, was first introduced by the 
French demographer Adolphe Landry [3] in respect to the French population  
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Figure 2. GDP dynamics per capita. Source: http://siteresources.worldbank.org/DATASTATISTICS/Resources/GNI_PPP.pdf. 

 
where it started around 1785 and finished approximately in 1970, which was also 
determined by the French researcher J. C. Chesnais [4]. Thus, the demographic 
transition in France lasted for 185 years and was the most continuous one [4]. 
According to Chesnais, the duration of the demographic transition in Germany 
constituted 90 years (1876-1965), in India—90 years (1920-2010), China—70 
years (1930-2000). He also gave predictive estimate of the duration of the global 
demographic transition—around 90 years, i.e. having started in 1960 it is to end 
around 2050. [4]. This forecast is supported by Kapitsa’s calculations [1] [5]. 
Thus, as for the majority of Western European and North American countries, 
the demographic transition started at the beginning-mid 19th century and fi-
nished in the second half of the 20th century, in Asia – started at the beginning of 
the 20th century – finished at the beginning of the 21st century, in Latin America 
– started in mid-20th century and is finishing now, and in African countries it is 
beginning just now. Most likely in Africa the demographic transition will be 
going on the fast track, which will present additional challenges for political, 
economic and social spheres. 

A prominent Russian scholar S. Kapitsa [5] saw the reason of the demograph-
ic transition in the crisis of the development of the demographic system: “There 
are all reasons to believe that demographic crisis is of a fundamental character 
connected, first and foremost, to achieving speed limit of the system growth. It is 
accompanied by the deformation of culture, consciousness, disintegration of 
values” ([5], p. 38). It is no wonder that the passage through the demographic 
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transition escalated by the global interaction is leading to the age marked by the 
processes of disintegration of the existing pattern of development, fairly called 
“revolution” by A. Landry. During such periods, as in phase changes in material 
substances, the “restructuring” occurs, the destruction of old structures and their 
substitution with the new ones—more advanced structures ([5], p. 36). In the 
countries that have already gone through the demographic transition, qualitative 
changes have taken place. There was a change in the fertility behavior: people 
started to give preference to smaller families, give birth to fewer children, but 
pay more attention to the quality of their upbringing and education. As a result, 
the population growth started to slow down already at the end of the 19th century 
first in West Europe and North America, and its rates fell by more than half in 
1870-1950. It happened largely because of reducing a cumulative birth rate. To-
gether with falling birth rate there was the rise of education level. In the devel-
oped Western countries general primary education in schools was developed in 
the mid-19th century, and secondary school education—in the early 20th century. 
Already in the second half of the 20th century, despite substantial differences in 
the level of education among the countries, it spread all over the world. 

Nowadays there is a global demographic transition which simultaneously 
covers all humanity as a unique World-System [6]. Examining the stability of the 
global demographic development, Kapitsa concluded that before the transition 
the demographic dynamics was unstable and only after it became stable and was 
going to stay like that ([5], p. 29). Together with it we can see that local devel-
opment in the world becomes more chaotic, unstable and thus unpredictable. 
However, these two facts are compatible as, according to the synergetic principle 
by D. S. Chernavsky [7] chaotic dynamics at the microlevel generates highly de-
terminate systemic pattern of behavior at the macrolevel. The demographic 
transition should be regarded as a fundamental phenomenon dealing with all 
spheres of life. As was noted by S. Kapitsa [5], the beginning of the global demo-
graphic transition was accompanied by the urban growth, the industrial revolu-
tion and extraordinary production growth, development of transport and com-
munication, education and medicine, establishment of the world financial sys-
tem and incredible development of science and art. This development first and 
foremost started in Europe and then spread to the rest of the world.  

The major part of researchers in the demographic dynamics believes that the 
world population is going to stabilize in the result of the demographic transition, 
i.e. human development will take place at zero population growth. However, the 
possibility of sustainable human development with a fixed number raises ques-
tions. The fact is that now there is an ongoing transition to a new paradigm of 
human development based on information and digital technologies, digital 
economy and a widespread usage of intellectual machines – computers and ro-
bots with the elements of artificial intelligence. The transition to the society 
where intellectual machines will dominate may lead to a rapid change of values. 
Therefore, it is important to understand what awaits humanity in the long-term 
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perspective and how to manage its development at the global level. Responsible 
management of the society demands realization of the scale of information and 
digital revolution, its consequences for humanity and the demographic dynam-
ics, in particular. Europe, many countries of which were the first to come 
through the demographic transition, joined forces to reform economic, scientific 
and technological and political space, which points at the processes which may 
await other countries both at the regional and global levels in the future. 

2.1. Stages of Human Development 

The history of human development from the point of view of the population 
growth and its standards of living should be looked at in stages. Following O. 
Galor and D. N. Weil [8] we may divide it into three stages – Malthusian and 
Post-Malthusian era, era of the demographic transition and we may add the 
fourth era—which we are living in—informational and digital one. Indeed, for 
more than quarter of a century humanity has been going through incredible in-
crease in information and communication technologies (ICT). The network 
communication is everywhere, and more than 6.5 billion people have cellular 
phones, and every second uses smartphones which means he or she has Internet 
access. The number of Internet users has already exceeded 5 billion people. The 
Internet has become an effective mechanism of collective information network 
interaction, materialization of collective memory and human intelligence with 
such effective information retrieval systems as Google and Yandex, as well as 
technologies of cloud storage and data processing. While networked economy is 
based on ICT, digital economy is being formed now on the basis of digital tech-
nologies and platforms. In the most developed countries, the process of creating 
Industry 4.0 has already begun, with commercial Internet as its basic infrastruc-
ture, and the production will be maintained by intelligent machines only – ro-
bots and computers with the elements of artificial intelligence (AI). Information 
and knowledge have become the key production factors and the main driving 
force of human development. 

2.2. Malthusian Era. The Model of Population Growth According  
to Malthus 

The first known mathematic model of the population growth was exponential 
model of the demographic dynamics limited by linear growth of the volume of 
production. The model was developed by the English economist and priest 
Thomas Malthus [9]. Relying on the data of his time, Malthus supposed that 
population grows exponentially [9]: 

( ) ( )0
0 ea t TN t N −= ⋅ ,                         (1) 

where 0N  is the number of population at the initial time, 0t T=  of the period 
in question is 0t T> ; a is a constant coefficient characterising tempos of the 
population growth. Function (1) is the solution of the simplest linear differential 
equation: 
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d
d
N aN
t
= , 0N N=  at 0t T= .                   (2) 

This equation suggests that birth rate and death rate change slightly with time, 
since a const= . On the other hand, food production according to the data 
Malthus had at hand grew linearly, i.e. much slower than the number of the 
population (1). That is why Malthus concluded that “the number of population 
is inevitably limited by the means of living” ([10], p. 22).  

As the number of population (1) in the Malthusian model grows faster than 
food production level, food shortage soon begins, which leads to the rise in pric-
es and fall in consumption. Malthus argued that a decrease in consumption en-
genders, in turn, decrease in the population. Then it is time when there is 
enough food and consumption increases again, provoking population growth, 
thus, the process is periodic. Indeed, agricultural communities of the past had 
the periodic dynamics of the population growth [11] [12] described by the Law 
of Malthus. Yet then already when Malthus wrote his famous work on popula-
tion, the Industrial Revolution unfolded in England, which guaranteed preemp-
tive growth of means of living in comparison to population size and it lifted re-
source limitations of the demographic dynamics. 

Malthus believed that fall in the population growth rates with decrease in 
consumption was the law of nature, which was proved for the population size for 
some species. The law was first described by P.-F. Verhulst with the help of a 
nonlinear differential equation [13]: 

d 1
d
N NrN
t K

 = − 
 

, 0N N=  at 0t T= ,              (3) 

where ( )N t  is the current number of population; K is the maximum possible 
population size with the resources given (capacity of environmental niche, the 
carrying capacity of the Earth); r is a constant coefficient characterizing the 
highest possible rate of population growth in favorable conditions. The solution 
for Equation (3) is a logistic function: 

( )
( )0

0

1 1 exp

KN t
K r t T
N

=
 

 + − − −   
 

.               (4) 

This logistic function describes very well the Malthusian model with resource 
limitations to the population growth. It grows exponentially but having passed 
the flexible crossing point it slows down and with unlimited growth of t →∞  
it asymptotically reaches out for К, i.e. N K→  and the population reaches the 
constant level. 

As calculated by A. Maddison [2], average annual per capita income amounted 
to around 450 international dollars in 1990 in purchasing-power parity in the 
early our era and remained so until 1000. For comparison, the quantity of the 
product for a person, minimum essential for a simple reproduction of World- 
System population, composing minimum cost of living, 420m ≅  of interna-
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tional dollars in 1990, according to the estimate given in the work ([14], p. 81). 
As we can see, in the first millennium A.D. the average annual per capita income 
slightly exceeded minimum cost of living; that is why the number of population 
of World-System remained practically the same: if at the beginning of a new era 
the number of world population was around 230 million people, then it grew up 
to 261 million only by 1000, and the average growth rate was 0.02% per year 
([15], 8.1.1). After 1000 A.D. the world population was increasing with the rate 
of 0.1% per year and was 438 million people in 1500. Further on it was growing 
with the average rate of 0.27% per year and increased to 1.04 billion people by 
1820 (Figure 1). 

What about income in this period? From 1000 to 1820 the average annual per 
capita income increased to 670 dollars in 1990 (average growth rates were 0.05% 
per year), but world countries already differed significantly in terms of income. 
For example, in prosperous countries of Western Europe per capita income was 
1200 dollars in 1990 ([15], 8.1.1). Thus, the facts show that during periods when 
per capita income was low and increased slowly, the world population was low 
as well and increased slowly (Figure 1). People for most of the history were oc-
cupied with hunting and foraging, and only around 10 thousand years ago agri-
culture emerged. According to G. Clark [16], hunters and foragers of tens of 
thousands and millions of years ago consumed as much food per day as people 
living at the beginning of our era. More than that, food consumption practically 
did not change until 1800. That is why the period of human history from the 
emergence of a modern person around 1 billion years ago until 1800 is called 
Malthusian era. 

2.3. Post-Malthusian Era and the Hyperbolic Population Growth.  
Taapegera’s and Kremer’s Models 

After 1800, there began a notable acceleration of per capita income growth 
(Figure 2) and the world population in particular (Figure 1). For example, in 
1820-1870 and 1870-2013 average annual per capita income grew at rates of 0.5% 
and 1.3% per year respectively, i.e. ten and twenty-five times higher than in the 
Malthusian time. The world population growth rate in the periods given also 
grew and constituted 0.4% per year respectively (1820-1870) and 0.8% per year 
(1870-2013). Thus, while the Malthusian era was characterized by extremely low 
population growth rates, post-Malthusian era and vice versa, by increasing pop-
ulation growth rates. However, it did not lead to the decrease in standards of 
living, as Malthus predicted. On the contrary, during this period there was an 
accelerated growth of per capita income, which surpassed the population growth. 
It was unclear how the world managed to turn from the state characteristic of 
the Malthusian epoch with low income and low population growth to the state 
with high income and high world population growth. It was like that until the 
1960s when the world population growth rates exceeded 2% per year. 

It was evident that the Earth’s carrying capacity (K) in Equation (3) was not 
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constant, it grew all the time due to numerous technological innovations in-
vented by humanity. For its long history humanity has made a great number of 
technological innovations and, first and foremost, life-supporting technologies, 
which enormously increased the ceiling of the Earth’s carrying capacity. It was 
revealed that technological progress rates are proportional to the population size. 
Surprisingly, the reason for scientific and technological advances and the growth 
of per capita income in the long term was the population growth. It was first 
analyzed by the Nobel laureate in economics Simon Kuznets [17], who formu-
lated such assumption: “The more the people, the more the inventors.” A little 
later a prominent Danish researcher E. Boserup [18] independently formulated 
it, who considered it as anti-Malthusian. In a mathematic form this Kuz-
nets-Boserup assumption was first set down by R. Taagepera [19]: 

d
d

mT cTN
t
= ; c const= , m const= ,                (5) 

where Т is the level of technological development. Thus, the population growth 
leads to the increase in technological level in accordance with Equation (5), and 
the latter, in turn, raises the Earth’s carrying capacity and makes it possible for 
the further population growth. This is the essence of an accelerated population 
growth in the post-Malthusian era. 

Indeed, several millennia ago when the Earth’s population was relatively small, 
the humanity was in the Malthusian-type society. Proceeding from Kusnets- 
Boserup Equation (5), it becomes evident that with a small number of the popu-
lation technological progress rates were also extremely low. The slow growth of 
the technological level meant the slow population growth in a steady state of the 
Malthusian type. This situation lasted for thousands of years until 1500, when 
there was a significant increase in scientific and technological progress in West-
ern Europe, as well as the increase of per capita income. Yet economy continued 
to develop for 300 years in line with the Malthusian mechanism. Only with the 
beginning of the Industrial Revolution, when technological progress rates sur-
passed population growth rates, the transition to the process of a sustainable ac-
celerating demographic growth began. 

2.3.1. Hyperbolic World Population Growth 
As for the regularities in the world population growth in the Malthusian era, it 
was also specified in 1960 by H. von Foerster, P. Mora, and L. Amiot [20], who 
convincingly demonstrated that present data for the world population between 1 
and 1958 can be accurately described with the help of a quasihyperbolic func-
tion: 

( )
( )0.99

S

CN t
T t

=
−

, C const= .                 (6) 

Point of singularity TS was estimated by the authors as the year of 2026,87, 
which corresponded to 13 November 2026. On that day the world population 
should become infinite if it is to continue grow according to the formula (6). It 
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prompted the authors to give a catchy title to their article “Doomsday: Friday, 13 
November, A.D. 2026”. However, exactly at the beginning of the 1960s, the ac-
celerated world population growth changed to the process of slowing down and 
the global demographic transition began. Later S. J. von Hoerner [21] showed 
that the dynamic of the world population in the period under discussion should 
be approached with a merely hyperbolic function: 

( )
s

CN t
T t

=
−

; 2025sT = , 9200 10C = ×  people per year     (7) 

This function is the solution for the following simplest nonlinear differential 
equation: 

2
2d

d
N N bN
t C
= = , 1b

C
= .                       (8) 

2.3.2. Taagepera’s Model 
Taagepera [19] examined quasihyperbolic function to describe the demographic 
dynamics in the post-Malthusian era: 

( )
( )M

s

CN t
T t

=
−

, where С, Ts and М are constants.         (9) 

He analyzed the period from 400 to 1900, for which he obtained the following 
values: М = 0.7; Ts = 1980. To explain the quasihyperbolic logic (9), Taagepera 
suggested the model of interaction between the population size and the technol-
ogical level (5): 

а) d
d

nN kT N
t
= ; b) d

d
mT cTN

t
= ,                  (10) 

where k, n are constants, and 1 1.43m
M

= = . However, it turned out that М = 1  

was more accurate. It should be noted here that the verification of a hyperbolic 
regularity (7) with the most precise empirical measurement of the world popula-
tion made by C. McEvedy and R. Jones [22] for the years of 1000-1500 showed 
that it could explain 99.6% of the whole demographic dynamics in the period. In 
a later work [23], Taagepera proposed a three-factor model, supplementing Eq-
uation (1) with an equation for the population size, which takes into account the 
restrictions of the Earth’s carrying capacity, which made it possible to consider 
the slowdown in the population growth during the global demographic transi-
tion. 

Thus, to explain and justify the hyperbolic growth of the world population (7) 
it was enough to have two assumptions ([14], p. 30): 

1) During the most part of human existence the growth of its size at every 
moment was restricted by the ceiling of the Earth’s carrying capacity, caused by 
apparent level of life-supporting technologies (Malthusian assumption). The 
ceiling of the Earth’s carrying capacity increased in the result of the growth of 
the development of life-supporting technologies. Therefore, the rates of the pop-
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ulation growth were proportional to the level of the development of life-sup- 
porting technologies, which is expressed by Equation (10a) with n = 1.  

2) Relative growth rates of life-supporting technologies are in direct propor-
tion to the world population (Kuznets assumption), which is expressed by Equa-
tion (10b) with m = 1. 

Hence, during Malthusian and post-Malthusian eras the leading role for the 
population growth was played by economic and technological factors. Thus, we 
may assume that at the specified stages of human development economic and 
technological imperatives dominated the demographic process. 

2.3.3. Kremer’s Model 
The most prominent model based on Malthusian-Kuznets assumption is the 
model developed by the Nobel laureate M. Kremer [24]. According to the Kre-
mer’s model, manufacturing depends on two factors only—the level of technol-
ogies T and population size N, and has a form of  

G TN= αγ ,                          (11) 

where γ  is a normalizing factor; α  is a constant parameter. The dynamics in 
Kremer’s model is put in the equation for technological growth 

d
d
T cNT
t
= , c const= .                     (12) 

1
1gN

T
− =  

 

α
.                         (13) 

The dynamic equation is not given for the population as it is believed that this 
variable is faster than the technological level and thus it instantaneously ap-
proaches the equilibrium level N  defined by the equilibrium level of per capita 
output g : 

1
1gN

T
− =  

 

α
.                        (13) 

If a produced product per capita exceeds g , then the population increases, if 
it is less than g , then the population decreases. With the help of equations (12) 
and (13), Kremer was able to describe the hyperbolic population growth (7). 

To describe the demographic transition and introduce limitations to the pop-
ulation growth in the model, Kremer compiled quite a difficult function which 
described birth rate depending on the level of income. However, such an ap-
proach did not bring any positive results ([14], p. 170). Kremer also tried to 
reach the goal by modifying equation of technological growth (12) following Ch. 
I. Jones [25]: 

d
d
T cN T
t
= ⋅ψ ϕ ,                      (12a) 

where ψ  and ϕ  are constant parameters which are not necessarily equal to 
one. Drawing on this equation, Kremer modified his model and received such 
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values for the parameters given: 2 5=ϕ ; 6 5=ψ . As a result, the modified 
model considering the population growth (13) and technologies (12a) adequate-
ly described the hyperbolic population growth, yet it did not manage to describe 
the demographic transition even though there was a fall in growth rates since 

1<ϕ . So, Kremer concluded that 1=ϕ  and 1=ψ  as well. 

2.4. The Epoch of the Demographic Transition. Models by KMKh,  
Podlazov, Kapitsa, Naydenov and Kozhevnikova  
Korotayev-Malkov-Khalturina Model (KMKh) 

One of the most effective models describing both the hyperbolic growth and the 
demographic transition is the three-factor model by Korotayev-Malkov-Khalturina 
(further on abbreviated as KMKh) ([14], chapter 5): 

а) ( )d 1
d
N aS L N
t
= − ; b) d

d
S bNL
t
= ; c) ( )d 1

d
L cS L L
t
= − ,       (14) 

where ( )N t  is the population; ( )S t  is an excess product produced at a given 
level of technological development per one person; L is the share of literate pop-
ulation; a, b and c are constant coefficients. An excess product S is the difference 
between relevantly manufactured products and minimum essential products for 
a simple reproduction of the population (m = 420$ in 1990). Hence, S is a per 
capita resource, which can be used for the purpose of human development 
(healthcare, education, science, culture etc.) apart from preserving life sustaining 
of an established population size. Since per capita GDP production (T = G/N) is 
the most natural measurable factor corresponding to the definition of “level of 
technology”, then S T m= − . Hence, S in equations (14) characterizes the level 
of technological development. 

Considering literacy dynamics (L) of the population is an important characte-
ristic feature of KMKh model (14), which, in turn, allows for considering an em-
pirically determined fact of a negative influence of the literacy level on the birth 
rate and the population growth rates. Thus, in Equation (14) a tendency to one 
engenders slowing down of the population growth rate during the demographic 
transition. Moreover, L is in equation of technological progress (14b), which means 
the following assumption: a literate population makes more technological inno-
vations than an illiterate one. Hence, the growth of literacy leads to accelerating 
rates of technological development. During the evolution variable factors dem-
onstrate the following: literacy comes to a permanent state (L = 1), then the same 
happens to the population size, and the technological level grows according to 
the linear law. KMKh model perfectly corresponds to empirical assessments of 
the world population size during the whole new era until the 2000s ([14], pp. 
90-94). In (14), pp. 79-89) the following generalized model was also considered: 

а) ( ) 31 2
d 1
d
N aN S L
t

⋅ ⋅= − ϕϕ ϕ ; b) 4 5d
d
S bN S
t
= ⋅ϕ ; 

c) ( ) 86 7
d 1
d
L cL S L
t

⋅ ⋅= − ϕϕ ϕ ,                   (15) 
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where 1 8, ,ϕ ϕ  are positive numbers not necessarily equal to one. In the result 
of the analysis the authors concluded that data available on the world population 
size was in favor of 1 2 8 1= = = =ϕ ϕ ϕ . 

2.4.1. Podlazov’s Model and the Technological Imperative 
Following Kremer, A. Podlazov [26] [27] tried to mathematically describe the 
demographic transition and discover objective reasons for the limits of the pop-
ulation growth. Like Kremer, he sees the reason for the hyperbolic growth in a 
mutual process of the population growth and increase of the technological level, 
which he describes with equations: 

а) d
d
N PN
t
= ; b) d

d
P NP
t
= ,                   (16) 

where N is the population size; P is the technological level. Yet in contrast to 
Kremer, for whom technologies are the means of production (11), Podlazov be-
lieves that the role of technologies is to prevent human death and prolong 
his/her life and that is why he calls them “life-saving technologies” (P). While 
Kremer speaks about the resource niche (13), Podlazov specifies the technologi-
cal niche, thus implying that the population size would follow the capacity of the 
technological niche P: 

N kP= , k const= .                      (17) 

In contrast to Kremer, who assigned the main role to the economic and tech-
nological factor, thinking of the demographic factor as subordinate, Podlazov 
gives preference to the technological factor and formulates “the technological 
imperative”: “Population size is defined by the size of the technological niche it 
has created, i.e. that number of people who may be requested by life-saving 
technologies they have created” ([27], p. 524). This principle is reflected in for-
mula (17). 

Thus, Podlazov believed that the birth rate in the growth phase stayed the 
same and fell during the demographic transition. The exclusion of the birth rate 
from factors influencing the growth of population leads Podlazov to suggest that 
it is connected to the fall in death rate, which he believes to be the result of the 
collective behavior increasing the chances of survival of each individual. Mutual 
assistance is more effective as there are more people. It is assumed that this mu-
tual assistance is realised via transmission and spread of knowledge and tech-
nologies. Podlazov is limited only to life-saving technologies (P), which are used 
to lessen death rate and raise life expectancy. As for the limiting the population 
growth, Podlazov sees the reason for it in the fact that it is impossible to nullify 
death rate coefficient. To sum up all the above mentioned, we may conclude that 
the population growth for Podlazov (17) is determined by the spread of the hu-
man technological niche (P) because of the development of their life-saving 
technologies. Their measure is the reduction in death rate coefficient achieved 
through their action. Its approach to natural limits restricts the possibilities of 
the further population growth.  
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Thus, Podlazov concludes that there are limits of the technological growth 
( P∞ ) and the demographic growth as well ( N∞ ), and he estimated them ([27], 
pp. 525-526): 

( ) 10.05 0.01 yearP −
∞ ≅ ± ; ( )10 2 billion peopleN∞ = ±         (18) 

Podlazov underlines that (18) by no means restricts the possibilities of the 
technological development. However, the life-saving technologies become less 
effective from the perspective of lessening death rate and prolonging life expec-
tancy, which have biological limitations. As a result, he suggests a phenomeno-
logical model describing the demographic transition with the help of the stated 
technological limit P∞  ([27], p. 526): 

d 1
d
P PN P
t C P∞

 
= − 

 
, C const= .                   (19) 

By uniting Equations (16), (17) and (19), we get Podlazov’s model for the 
population growth (N) and life-saving technologies (P), suitable for all the 
epochs of human development including the epoch of the demographic transi-
tion. As is shown in ([27], p. 530), the present model demonstrates the best re-
sults from 1500 until now. Podlazov’s model is criticized in ([14], pp. 173-174) 
as for most of the human history birth rate has played more important role than 
death rate. As we have already seen, in KMKh model it is birth rate which regu-
lates the population, including the epoch of the demographic transition. 

2.4.2. The Demographic Imperative and Kapitsa’s Model 
As we have seen above, the Earth’s population growth throughout almost all the 
human history was subject to a universal pattern of development per hyperbole 
(7) being completed with the explosive population growth in the 20th century. 
Then, in 1962-1963 there was a phase transition with a sharp change of the 
whole human development and, first of all, having reached 2.2% maximum per 
year the rates of the population growth started to decline, which are nowadays 
1.04%, i.e. for the past 60 years they have more than doubled. Besides, this global 
demographic transition is associated with the beginning in the aggravation mode 
of the limit of relative growth rate of the world’s demographic system, since it 
occurred in the context of further persistent growth in per capita income (see 
Figure 2). It denies the Malthusian population principle, according to which the 
factor of slowing down the growth is closely related to external resources. Thus, 
we conclude that the Earth’s population growth for tens of thousands of years 
depended only on the population size itself (7) and (8) and is not connected to 
any other external factors such as environmental factor, factors of productive 
forces and resource limitations.  

All of this made it possible for S. Kapitsa ([5], p. 12) to formulate the pheno-
menological principle of the demographic imperative, according to which the 
quantitative human growth is determined by the world population itself and the 
development of its consciousness in contrast to the Malthusian population prin-
ciple when the limit of growth is dependent on external resources—the Earth, 

https://doi.org/10.4236/am.2022.137039


A. Akaev 
 

 

DOI: 10.4236/am.2022.137039 629 Applied Mathematics 
 

energy, food. The demographic imperative means accepting that demographic 
processes in the history of human development are paramount and self-sufficient, 
and postulating demographic dependence of many phenomena and processes 
studied by social sciences. For synergetics [28], this principle is deduced to the 
assumption that in the variable collection that describe huge historical, social, 
economic, cultural etc. processes, the population size for significant amount of 
time is a parameter of order, i.e. that leading slow variable to which all the others 
adjust ([5], p. 20). 

To justify the principle of the demographic imperative, Kapitsa thinks of the 
world population as a unified whole, as a developing interconnected complex 
dynamic system, in which a common mechanism managing the development of 
all system by collective interaction. According to Kapitsa, collective interaction 
takes place with the help of the propagation and multiplication mechanism of 
summarized information in the human society as a global networked informa-
tion community ([5], p. 17). It has already been stated above that for several 
thousand years the dynamic of the world population reflects first of all the dy-
namic of World-System population, in which by the beginning of the 1st century 
A.D. lived more than 90% of the world population and which might have been 
seen as a single system ([14], pp. 117-120). There are enough data to speak about 
a systemic spread of most important technologic innovations in World-System. 
There are grounds for saying that creation and spread of innovations was one of 
the most important mechanisms of World-System integration. At the same time 
information network system is the most ancient mechanism of World-System 
integration and it played extremely important role during the whole evolution 
history of World-System ([14], p. 120). Thus, we see that since the beginning of 
the hyperbolic population growth, humanity was developing as information so-
ciety, which gave Kapitsa the basis to propose a cooperative mechanism of de-
velopment. 

The analysis of the hyperbolic humanity growth connecting the size and 
integral development of humanity allowed suggesting the cooperative mechan-
ism of development, when its measure is the square of population size in con-
trast to the mere population size (2) characteristic of the animal world. It means 
that the regularities of the human population growth are of social rather than bi-
ological character. That is why S. P. Kapitsa suggested using the quadratic de-
pendence for the population growth rate [5]: 

2
2d

d
N N aN
t C
= = .                       (20) 

The solution for this equation is the hyperbolic function (7). The solutions of 
such equations as (20) are known as the aggravation modes. The characteristic 
feature of such equations is that at a certain moment TS called point of singular-
ity, the solution extends at infinity. In reality, there is a change from the explo-
sive growth to the stabilization mode. In our case, it is the global demographic 
transition. Here we are dealing with not only the explosive growth of a self-org- 
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anizing human society, but also with the exhaustion of the possibilities for its 
further accelerated growth and its replacement by a slowdown mode. 

To describe the demographic transition, Kapitsa regularized the quadratic 
Equation (20), transformed with the help of substitution (7) by introducing the 
characteristic human lifetime τ, limiting the population growth rate, and found 
its solution ([5], p. 22): 

а) 
( )2 2

1

d
d
N C
t T t
=

− +τ
, б) 2 1arcctg

T tN K − =  
 τ

, 2 CK =
τ

      (21) 

Using the data of the world demographic statistics, S. P. Kapitsa calculated the 
numerical values of the constant parameters in formula (21): 9163 10C = × ,  

60100K = , 45 years=τ , 1 1995T = . With these values of the parameters it 
follows from formula (21b) that the world population asymptotically tends to 

2
max 11.36N K= π =  billion people. Kapitsa’s formula (21b) describes the mode 

of the world population growth with stabilization and is just only for the case of 
sustainable human development, assuming an unlimited carrying capacity of the 
Earth’s biosphere. 

The graph of the Earth’s population growth, calculated according to Kapitsa’s 
formula (21b), is shown in Figure 1, which also demonstrates the actual (ob-
served) values of the Earth’s population, indicated by dots. It is important to  

note that the growth rate of the Earth’s population ( d
dN
Nq

N t
= ) has already passed  

through a maximum (1962-1963, 2.2%Nq = ) and began to decline rapidly. 
Today they are about 1% (according to the World Bank), having more than 
halved, and in the future, they will only fall, approaching zero. Thus, the global 
demographic transition is associated with the onset of the limit of the relative 
growth rate of the world’s population in the mode with aggravation. It can be 
seen from Figure 1 that Kapitsa’s formula (21b) approximates well the demo-
graphic dynamics of World-System throughout the new era, especially well dur-
ing the period of demographic transition. The latter is natural, since the regula-
rized Kapitsa’s Equation (21a) is intended to describe precisely the stage of the 
demographic transition. 

Podlazov [27] conducted a comparative numerical analysis of the effectiveness 
of several models (Kapitsa’s, KMKh and the author’s) in retrospect with a fore-
cast until 2250 by the example of the world demographic dynamics as at long 
times (1250 B.C.-2250 A.D.), and at short times (1850-2150). The results of his 
calculations are given in a graphical form in Figure 3 ([27], Figure 7). As is seen 
from the examination of the graphs, Kapitsa’s model perfectly approximates the 
real demographic dynamics at the stage of the demographic transition, as well as 
in the post-Malthusian epoch, yielding in accuracy to KMKh and Podlazov’s 
models at long times in retrospect. It is also clear (see Figure 3) that all models 
show the stabilization of the Earth’s population in the 21st-22nd centuries, but at 
different times and at different levels, and the spread of stationary levels is huge 
—from 8.5 billion to 11.4 billion people. It should be noted that the population  
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Figure 3. Comparison of the world population dynamics in different models. 
 
in KMKh and Podlazov’s models approaches asymptotic limits with a characte-
ristic time that has a finite value, while in Kapitsa’s model it is infinite. 

Kapitsa’s phenomenological model (21) can be successfully used for calculat-
ing the demographic dynamics of separate countries that can ensure sustainable 
development when the population grows according to the stabilization scenario 
without a noticeable decrease. An indispensable condition is the absence of 
coercive measures to limit birth rate, as well as a significant impact of migration 
flows on the social and economic processes in the country. As an example, in 
Figure 4 there is a graph illustrating the population growth in little Denmark 
according to Kapitsa’s model (21b). There can be seen a close agreement be-
tween the estimated trajectory of demographic development and the actual data 
in retrospect. 

Thus, Kapitsa demonstrated that the Earth’s population growth may be de-
scribed mathematically (20)-(21) without introducing any additional variables 
other than the population N itself, i.e. in fact without any additional factors. This 
circumstance served as the basis for Kapitsa to formulate demographic impera-
tive according to which global social, historical, economic and cultural processes 
adjust to the changes in the Earth’s population. This value plays the role of a 
leading slow variable, called the order parameter in synergetics, which subordi-
nates all other variables [28]. Hence, the demographic dynamics plays a primary 
and decisive role in the history of the development of human society. 

The global demographic transition, accompanied by a drastic change in the 
growth rate, should lead to very significant changes in human development. Ka-
pitsa notes that the global demographic transition will take place in a characte-
ristic time equal to double τ, i.e. in 90 years, and will be completed by the middle 
of the 21st century. It synchronously embraces all humanity. At present, most of  
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Figure 4. An evolutionary model of the Danish population. 

 
the developed countries have already made this transition and the population of 
the developed countries has stabilized at one billion. Therefore, here we can see 
several phenomena that will soon begin to appear in developing countries, which 
are now just entering the transition stage, and it will be completed only in the 
second half of the 21st century. 

However, the demographic transition in developing countries may transform 
into a demographic crisis connected to environmental, food and other disasters. 
Due to its swiftness and inevitability, it triggers great concern: what dangers and 
challenges do await humanity? It is also supported by growing social and eco-
nomic inequalities in both developing and developed countries. The modern 
world, in addition, is embraced by a global political crisis.  

It is essential to note that the global demographic transition began when the 
relative rate of the population growth passed precisely through the maximum 
(2.2% in 1962-1963) and did not settle at this maximum value. Therefore, as it 
decreases to zero, the Earth’s population will asymptotically level off and stabil-
ize as we saw in Figure 3. It is important that the slowdown in the growth of 
humanity is connected precisely with reaching the limit of the relative growth 
rate and not with a shortage of resources. Yet it will be true as long as human 
interaction with the environment or climate change does not lead to global neg-
ative consequences which, in turn, will drastically change the trajectory of hu-
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man development. Further on we will show it on the example of deforestation. 

2.4.3. Naydenov-Kozhevnikova Model 
A simple phenomenological model with stabilization proceeding from the de-
mographic imperative was suggested in [29]: 

2d 1
d C

N NrN
t N

 
= − 

 
, r const= ,                  (22) 

where CN  is the limiting stationary population size. 
If CN N , this model is deduced to Kapitsa’s Equation (20) and therefore 

describes hyperbolic growth, and then characterizes by a slowdown and entering 
the asymptotic stage with a gradual approach to the limiting population size 

CN , which according to authors’ estimates constitutes 7.4CN =  billion people. 
Moreover, this maximum number was to be reached in the middle of the 21st 
century. As we can see, the model turned out to be ineffective, as, according to 
the UN, today the Earth’s population has already surpassed 7.8 billion people. 
We brought this model here because it gave impetus to the development of other 
interesting models. 

3. Models of the Demographic Dynamics with the Return to  
the Stationary Level 

The question of the permissible maximum Earth’s population as a stationary 
level is one of the fundamental issues of our time. There are various evaluating 
methods of defining the stationary number of the world population CN , which 
are covered in [31]. A stable population of 7.7 billion people may be taken as a 
permissible world population in the resource model of D. Meadows and his as-
sociates [32]. Academician V. M. Matrosov, developing the resource model of 
Meadows’ group, defines the permissible population of the Earth at 6.5 billion 
people [31]. A. Akimov [30] estimates 5.2CN =  billion people. It should be 
noted that there is an urgent need to develop reliable and reasonably accurate 
methods for assessing the acceptable stationary population size both for the 
world as whole and for individual countries. In this connection, one cannot pass 
over the following historical fact associated with the amazing prediction of 
Charles Fourier (1772-1837), one of the founders of the theory of utopian social-
ism. He believed that it would be expedient to “establish a population balance, a 
proportion between the number of consumers and productive forces”, and 
therefore “reduce the number of inhabitants of the globe to the precise propor-
tion of means and needs to approximately 5 billion people” [33]. Besides, at the 
beginning of the 19th century, when Charles Fourier made his estimates, the 
Earth’s population was only about 1 billion people. As we can see, the estimates 
of the permissible stationary Earth’s population size are much lower than statio-
nary levels achieved in phenomenological models (8.5 - 11.36 billion people, see 
Figure 3). 

In this connection, the most interesting are the modes of the following world 
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population growth, reaching a maximum value and subsequent decline with sta-
bilization around the stationary level, determined by the permissible carrying 
capacity of the Earth’s biosphere. Such modes of the development are called 
“growth modes with a return”. The high probability of such scenarios of human 
development was first pointed out by A. V. Akimov [30]. He developed an orig-
inal method for forecasting the world population with the help of an operational 
description of the demographic transition and a forecast of the modes of demo-
graphic development. The disadvantage of Akimov’s method is the complexity 
of its mathematical formalization and the large spread of predictive results with 
small changes in the mode of demographic development.  

3.1. Dolgonosov’s Model and Transition to the Information  
Imperative 

B. M. Dolgonosov proposed an informal conception of the world population 
dynamics [34], supplementing Kapitsa’s demographic imperative with the in-
formation imperative according to which global demographic processes adjust to 
changes in the amount of information accumulated by the humanity, which 
brings information to the level of the driving force of civilization development. 
Here information is understood as knowledge at the core of life-supporting and 
life-saving technologies. In the information paradigm the volume of knowledge 
q(t) takes the role of the order parameter. Moreover, the population size ac-
cording to Dolgonosov is determined by the rate of information production q:  

d
d
q N
t
= ω ,                          (23) 

where ω  is the average rate of information processing by a person. 
Dolgonosov’s mathematical model for the world population size is the devel-

opment of the Naydenov-Kozhevnikova model and it is as follows: 

а) 
( )

2d 1
d
N NrN
t K q

 
= − 

  
; b) ( )

1 exp

c

c

N
K q

q
q

=
 

− − 
 
α

,        (24) 

where 
c

r
q

=
ω —is a coefficient of the population growth; ( )K q  is an instanta-

neous capacity of medium, i.e. the largest population size achievable with a given 

level of knowledge q; c
c

c

q
N

t
=
ω

 is the carrying capacity of the Earth’s biosphere,  

which is determined as the stationary human population, at which the biosphere 
and civilization can firmly coexist; ,c cq t  are characteristic scaled values. It is 
obvious that ( )K q →∞  if 0q →  and ( ) cK q N→  if q →∞ . Thus, the in-
stantaneous capacity of medium (24b) can significantly exceed its stationary 
value cN , which overcomes the major disadvantage of Naydenov-Kozhevnikova 
model (22), which consists in strict restriction of the population growth by the 
limit of cN . Parameter α in Equation (24b) characterizes human ability to effec-
tively restore the environment using innovative knowledge and technologies. 
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Equation (23) for the rate of information production encloses the system. Thus, 
for ( )N K q  Equation (24a) reduces to Kapitsa’s equation for the hyperbolic  

growth (20), therefore, 1 1

c cN t C
= =τ  or c

c

CN
t

= . If we take 40ct =  years, 

then we get an estimate for 5cN =  billion people.  

Dolgonosov’s model (23)-(24) may be considered as a universal model that 
allows, by means of numerical simulation, to analyze various scenarios of human 
development in the sense of growth scenarios for its population with stabiliza-
tion, a return and a damped oscillation. All these scenarios for the development 
of the demographic dynamics are schematically presented in Figure 5. The evo-
lution with damped oscillations proceeds as follows. Even at the stage of the de-
mographic transition the Earth’s population is growing at a significant rate and 
it skips the level corresponding to the Earth’s stationary capacity by inertia. The 
growth continues for some time. Due to overpopulation, the state of the envi-
ronment is rapidly deteriorating. An ecological or climate crisis sets in, and as a 
result, the population is reduced to the level lower that the permissible stationary 
level. During this period the environment is restored and soon after the popula-
tion increases again and, after several fluctuations, it enters the stabilization 
phase. 

Dolgonosov concludes that the mode of damped oscillations is most suitable 
for describing the demographic dynamics. However, the corresponding model of 
information production contains the oscillation frequency β, for which there is 
no necessary empirical basis. Therefore, to describe the demographic dynamics, 
Dolgonosov examines only a simple model with an aperiodic return [34]. Be-
sides, the scheme of calculations according to Dolgonosov’s model is compli-
cated by the fact that at first it is required to calculate the modes of growth in the 
information production and only after that—the demographic dynamics. 

 

 
Figure 5. Various scenarios of the world demographic dynamics development. 
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3.2. Akaev-Sadovnichiy Model 

In order to evade the noted difficulties, it is necessary to restrict ourselves to the 
demographic imperative constructing the function to describe the instantaneous 
capacity of the environment, i.e. ( )K K N= , which was done in [35], where the 
following approximate formula was obtained: 

( )expcK N N kN= + −γ , const=γ .               (25) 

There exist various estimation methods for determining the stationary world 
population cN , highlighted in [31]. It is shown that the most probable scientif-
ically substantiated value of the carrying capacity of the Earth’s biosphere, which 
determines the permissible population, lies in the range from 3 to 7 billion 
people. The stationary world population is estimated at about 5 billion people. 
The stationary level for the world population in the long-term forecasts of recent 
years is 5.2 - 5.4 billion people [30] [34]. In the examples below we adhered to 
the assumption that 5.2cN =  billion people. The stationary population size of 
a country can approximately be found by dividing the stationary world popula-
tion by the anthropogenic load index of the country of interest, for which there 
are special tables [31]. For example, if we take 5.2cN =  billion people for the 
world as a whole, then for China 1.2ckN =  billion people, and for India 

0.98cuN =  billion people. 
V. G. Gorshkov gave an answer to the fundamental question related to 

bio-consumption: he found out that the biota is able to fully regulate and stabil-
ize the environment, if the value of human consumption of primary biological 
products does not exceed approximately 1% of total production of the biosphere 
[36]. He also calculated that this value of permissible bio-consumption corres-
ponded to the permissible Earth’s population of about 1 billion people, which 
was already reached by about the 1820s. According to Gorshkov, nowadays hu-
manity consumes about 22% - 23% of the planet biomass. Therefore, humanity 
has surpassed the permissible limit of the natural stability of the biosphere by 
more than 20 times. Thus, practical influence of life-supporting technologies on 
the instantaneous capacity of the medium started at the beginning of the 19th 
century, when the Earth’s population reached 1 billion people and violated the 
permissible limit of bio-consumption. To take this circumstance into account, 
we write (25) in the form: 

( ) ( )0 0expcK N N N k N N = + − − − γ , 0 1N =  billion people.    (26) 

Now we can write equation of the demographic dynamics (24a) as follows: 

( ) ( )
2

0 0

d 1
d expc

N NrN
t N N N k N N

  = − 
 + − − −   γ

.         (27) 

By introducing characteristic time lags, we get: 

( ) ( )
( )

2
1

2 3

d 1
d , ,

N tN rN t
t K N

  = − − 
  

τ
τ τ

,               (28) 
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( ) ( ) ( ){ }2 3 2 0 3 0, , expcK N N N t N k N t N = + − − − − −    τ τ γ τ τ , 

where 1τ  is the average time of the beginning of reproduction ability; 2τ  is 
diffusion time of basic technologies; 3τ  is the delay in the response of the bios-
phere to the anthropogenic load. The average time of the beginning of reproduc-
tive ability is 25 years. The duration of technology diffusion in our era is 25 - 30 
years. The time lag of the biosphere response to the anthropogenic load exceeds 
100 years. The introduction of these delays makes it possible to obtain the modes 
of the demographic dynamics with damped oscillations.  

Figure 6 shows the results of predictive calculations of the demographic dy-
namics for the world under various scenarios of development. As is seen from 
the figure, model (28) allows to model different scenarios of population devel-
opment: growth with an aperiodic return to a stationary level (scenario 2); 
growth and stabilization around a stationary level with the help of damped os-
cillations (scenario 1). Due to the introduction of time delays 1 2,τ τ  and 3τ , 
model (28) makes it possible to effectively employ the prehistory of the demo-
graphic dynamics for about 100 years and thus excellently coincides with actual 
data in retrospect. It also follows from the examination of Figure 6 that the sce-
nario of steady growth with stabilization, described by Kapitsa’s equation, can 
hardly be carried out into practice, since, according to Kapitsa, the stationary 
level is almost twice the permissible stationary level estimated by a number of 
authors [30] [31]. 

Figure 7 represents forecast trajectories of the demographic dynamics for 
China and India. As is seen from the figure, due to the introduction of a strict 
birth control mechanism, the demographic dynamics in China is a smooth growth  
 

 
Figure 6. Forecast for the dynamics of the world population size. Circles represent real 
data. Here and in Figure 1 τ1 = 25, τ2 = 30, τ3 = 100. Scenario 1: r = 0.7, γ = 0.85, k = 0.51; 
Scenario 2: r = 0.05, γ = 0.4, k = 1.31. 
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Figure 7. Forecast for the dynamics of the population in China and India. Circles 
represent real data. India (NC = 0.8, r = 0.33, γ = 1.3, k = 3), China (NC = 1.2, r = 0.15, γ = 
0.50, k = 2.77). 
 
trajectory with an aperiodic return to the stationary level. As for India, if similar 
measures are not taken there, there will be a large-scale environmental crisis. As 
a result, a sharp decline in the population will begin, the size of which will sub-
sequently stabilize at great cost in the damped oscillation mode. 

3.3. Bologna-Aquino Model. The Influence of Deforestation on the  
Global Demographic Dynamics 

We have already examined models of the population growth with a return to a 
stationary level, determined by the ceiling of the Earth’s carrying capacity. It is 
possible only if the environment is in satisfactory condition. During the last 
decades discussions on climate warming have become very acute and acquired 
global significance. The main reason for the accelerate climate warming was ex-
cessive pollution of the World Ocean and the Earth’s atmosphere with carbon 
dioxide (CO2). This was largely due to intensive deforestation. Humanity during 
its existence has destroyed 1/3 of the forest cover, reducing it from 60 million sq. 
km. to 40 million sq. km. Yet trees and forests are the best air filters. The influ-
ence forests have on our planet is strong: from carbon absorption and oxygen 
release to soil fertility preservation and water cycle regulation. Due to the great 
role that forests play in the Earth’s ecosystem, it is hard to imagine that people 
can survive without them. In [37] the authors calculated that if deforestation 
continues at the current rate, they will disappear in a hundred to two hundred 
years at the most. Then, the authors believe, human destiny will be exactly the 
same as it was with the inhabitants of Easter Island, who disappeared with the 
disappearance of forests there. 

In the mentioned work [37], a model of evolutionary development of human-
ity is proposed in combination with a deterministic generalized logistic model of 
interaction between people and the forest: 

а) 
d 1
d
N NrN
t R

 
= − 

 β
; b) 0

d 1
d C

R Rr R a N R
t R

 
′= − − ⋅ 
 

,         (29) 
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where ( )N t —is the world population; ( )R t  is the Earth’s surface covered 
with forests; β  is a coefficient characterizing the maximum carrying capacity 
of the planet on the part of the population; r—rates of the population growth in 
favorable conditions; r′  is a parameter representing the ability of forests to re-
cover; CR  is the permissible forest load which used to be 60 million sq. km.; 

0a  is a technological parameter measuring rate with which people can use forest 
resources, given the level of achieved technological development. Calculations 
performed according to model (29) are shown in a graphical form in Figure 8. 
As is seen from the figure, by the end of the 21st century, the area of forests will 
be reduced by half, and the Earth’s population will be reduced to about 5 billion 
people. It is important to note that the population steadily declines and there is 
not any stabilization of the population. In addition, the authors examined an ad-
ditional stochastic model and showed that if current rates of deforestation con-
tinue, then there are several decades only left before the point of no return, after 
which humanity will enter a collapse trajectory. The last conclusion seems to be 
too alarmist, but at the same time there is a grain of truth in it. 

4. The Forecast of the Demographic Dynamics in the  
Information and Digital Age 

At the end of the 20th-beginning of the 21st centuries information and commu-
nication technologies (ICT) have become widespread thus turning into a po-
werful lever for accelerating technological progress and economic growth. How-
ever, their revolutionary influence on all aspects of the life of the society mani-
fested itself in the mid-1990s with the advent of the global computer network 
Internet. With the development and spread of the Internet network markets and 
network economy appeared and started to develop rapidly. Electronic networks 
became the main organization form of the information society, which grew ra-
pidly and soon embraced all countries and continents. The production and con-
sumption of information has become the most important activity of the new so-
ciety, and information is recognized as the most significant strategic resource. Ad-
vances in nanoelectronics have led to the creation of nanochips with unprecedented  
 

 
Figure 8. Influence of the Earth’s deforestation dynamics on the global demographic dynamics. 
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processing power, which has revolutionized the sphere of big data processing 
and machine learning. As a result, highly effective digital technologies and intel-
ligent machines (IM) have appeared – robots and computers with the elements 
of artificial intelligence. A digital economy has begun its formation, in which 
digital technologies and platforms based on the Internet, as well as IM, play a 
key role. Thus, the Internet has become a global driving force for the develop-
ment of the human society and the whole world economy, and information has 
become the main resource. 

Kapitsa was the first who suggested an information hypothesis to explain the 
phenomenon of hyperbolic population growth. According to this hypothesis, so-
cial interaction of people, their cumulative experience, dissemination and 
transmission of values qualitatively differ from human evolution and determine 
the population growth rate [5]. Kapitsa’s demographic imperative is based on 
the information conception, and information is spread through the network 
structures of the human society. The well-known Metcalfe’s law ([38], p. 40) 
states that the network value for each participant (user) is proportional to the 
square of the number of other participants (N in our case) of the network, which 
coincides with the right part of Kapitsa’s demographic Equation (20). Following 
Kapitsa’s ideas, Dolgonosov [34] believes human civilization to be an open 
evolving system endowed with memory and capable of information production 
and accumulation. Based on this, he formulates the information imperative, in 
accordance with which global demographic, technological, economic and other 
processes adjust to changes in the amount of accumulated information, which 
brings information to the level of the main driving force of human development.  

Indeed, as for the most of human history its population has remained propor-
tional to the overall rate of information production (23), it is possible to pass di-
rectly from the information to demographic dynamics. Podlazov’s technological 
imperative [27] is also subordinate to information one, since the same know-
ledge is at the core of life-saving technologies. Moreover, technologies are essen-
tially information systems. Technological evolution is similar to biological one – 
it is the process of establishing information order in the world of chaos. In the 
development of technologies one can also observe such properties as autonomy 
and self-organization, which are characteristic of biological creatures. All this 
speaks in favor of the leading autonomous role that information plays. In KMKh 
model (14) the key role is played by the level of literacy (L), which is also deter-
mined by the volume and prevalence of knowledge. Thus, it is knowledge (in-
formation) that acts as the only driving force of the human development. It goes 
as follows [34]. Knowledge accumulation contributes to the development of 
life-supporting and life-saving technologies, which lead to the improvement in 
the quality of life. As a result, child mortality diminishes, security of all ages in-
creases, and it leads to the increase in average life expectancy and the total pop-
ulation. Increasing life expectancy and improving education lead to the rise of 
the rate of knowledge production. As a result, we get a closed cycle that guaran-
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tees a nonlinear self-accelerating nature of the knowledge production process. 
Dolgonosov goes further and formulates the information paradigm in the fol-

lowing strong form: “information is a self-developing entity that can use various 
types of producers and be based on different media at different stages of its evo-
lution” ([34], p. 51). If we are to proceed from this definition, then it is informa-
tion that is the driving force of the evolution, choosing the most productive spe-
cies among those competing and regulating their size. Until recently, humans 
have been the most productive species. However, now people have a competitor 
in the form of IM, which are already superior to them in the number or areas 
related to analysis, processing and production of information [39]. That is why it 
can be assumed that IM will not only deprive people of middle-skilled jobs, 
which is much written about [39], but also they will contribute to the reduction 
of the world population, taking away an increasing part of work on information 
production and use. Below we shall demonstrate, for the first time on the model, 
that already in the 21st century the world population will shrink with the devel-
opment and spread of AI and IM. Several researchers have already noted that AI 
would affect the reduction in the population, for example, in [40] this pheno-
menon was examined under the influence of the trend in the development of the 
energy in virtuality and reality. 

On the other hand, the development of society through the information me-
chanism is basically a non-equilibrium process. The growing non-equilibrium 
state of the society is manifested in growing social and economic inequality both 
in developed and developing countries, which causes equally growing social 
protests. All these destructive processes will continue unless appropriate meas-
ures are taken at the global level. It is possible as for all the societies the devel-
opment was guaranteed by culture and ideology. Life-supporting systems have 
always ensured human existence but did not determine its development. That is 
why human society in the nearest future should determine the long-term priori-
ties of human development, including progressive guidelines and goals set by the 
UN, and immediately begin to implement those mobilizing huge resources that 
humanity has. First, it is necessary to develop a strategy to overcome depopula-
tion in leading countries and overpopulation in developing countries, where 
population explosion is about to happen. China can serve as an example, where 
the main target setting for the development of the country by the middle of the 
century—by the centenary of the PRC founding—is the construction of the 
prosperous country with a healthy environment, achievement of comprehensive 
social justice, formation of a harmonious and prosperous society, in the center of 
which is the qualitative growth of human capital based on the all-round im-
provement of the quality of accessible education and healthcare.  

A Model for Forecasting the Demographic Dynamics in the  
Information and Digital Age 

As we have seen earlier, Kapitsa’s phenomenological model (21) was obtained 
under the assumption that there was a demographic and information imperative. 
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It means that Kapitsa’s formula (21b) 

2 1arcctgK
T tN t K − =  
 τ

                       (30) 

describes the upper limit of the potential maximum population in the 21st-22nd 
centuries. However, with the beginning of the computer age in the 1950s, part of 
the studies on the analysis, processing and production of information is trans-
ferred to computers, ICT and now IM and it will be further transferred to AI in 
an ever-growing volume. This led to the fact that the population HN  de-
manded by the information imperative started to decline, i.e. H KN N< . Indeed, 
it is observed in Figure 9, which shows the trajectory of the KN  demographic 
curve, determined by Kapitsa’s formula (30), normalized according to actual da-
ta for the entire industrial period (1800-2000) together with the actual curve of 
the population growth up to the present day (1800-2020). As is seen from the 
figure, Kapitsa’s demographic curve broke away from the actual one immediate-
ly after 1990, i.e. with the beginning of the information age. 

Thus, the transition from information to its producers can be carried out ac-
cording to formula (23), where ( ) ( )KN t N t=  

( ) ( )d
d K
Qq t N t
t

= = ω .                     (31) 

Here NK(t) is the number of carriers and producers of information, including 
people and IM. Besides, in this formula information performs the function of the 
driving force of evolution, choosing producers of information both among 
people and IM. On the other hand, according to Kremer [24], the growth of the 
Earth’s population throughout human history has been determined by technolo-
gical progress (12). It was shown in [14] that the most appropriate value as an  
 

 
Figure 9. The dynamics of the Earth’s population growth in the 19th-21st centuries. 
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index of technological development is the total number of inventions and disco-
veries Q(t), made by the point in time of interest t, i.e. ( ) ( )~T t Q t , which si-
multaneously characterizes the amount of technological information in formula 
(31). It is important that there are reliable data bases for inventions and discove-
ries made by people since ancient times, the most complete of which is the one 
compiled by A. Hellemans and B. Bunch [41]. Therefore, Kuznets-Kremer for-
mula (12) can be written in the following form:  

( ) ( ) ( )d
dT Q H
Qq t q t cN t

Q t
= = = .                (32) 

Here NH(t) exclusively characterizes the population dynamics. 
We should note that Kuznets-Kremer formula (12) itself was first verified in 

[14] using the mentioned database by A. Hellemans and B. Bunch. All main in-
ventions and discoveries made by people from ancient times up to the 1980s 
were collected and systematized in the well-known database by A. Hellemans 
and B. Bunch [41]. This database was further refined, supplemented, calibrated 
and brought up to 2005 by L.E. Grinin [42], and later by A.V. Korotaev, S.Yu. 
Malkov and L.E. Grinin, as well as their colleagues up to 2020. Graphs of the 
functions q(t) and Q(t), constructed according to the data of the refined and 
supplemented Hellemans and Bunch base, are shown in Figure 10 on a loga-
rithmic scale. However, we are mainly interested in speed q(t) (31) and the rate 
of technological progress qQ(t) (32), which are shown on a regular scale in Fig-
ure 11 and Figure 12. 

From Equations (31) and (32) we obtain an identical relation between NH(t) 
and NK: 

( ) ( )
( )

( )
( )

K K
H

N t N t
N t

c Q t Q t
= =
ω γ ,                 (33) 

 

 
Figure 10. Global dynamics in the number of inventions and discoveries in the industrial 
(1800-1980) and information (since 1980) ages. 
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Figure 11. Graphs of the global growth rate movement in the number of inventions and discoveries q(t) is an actual broken 
curve, ( )q t  is an approximating smooth curve. 

 

 

Figure 12. Graphs of the global growth rate movement in the number of inventions and discoveries. ( )Qq t  is an actual bro-

ken curve, ( )Qq t  is an approximating smooth curve. 

 
where γ  is a normalization coefficient, which is determined by the least squares 
method from the condition of NH(t) coincidence at the stage of the information 
age (1980-2020) with the actual data of the world population, shown in Figure 9 
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by discrete dots. As for NK(t), its trajectory has already been calculated using 
formula (30) and is presented graphically in Figure 9. 

Before using Equation (33) to calculate the trajectory of NH(t), we need to ap-
proximate the broken curve, passing through the actual values q(t) (see Figure 
11), with a smooth continuous function. As is seen from the graph, the discrete 
function q(t) tended to increase throughout the industrial age (1750-1980) and 
started to stabilize towards its end in order to reach saturation level in the in-
formation and digital age (1980-2050). It is natural to assume that the approx-
imating function belongs to the class of S-shaped functions. Therefore, we used 
first the simplest logistic function: 

( )
( )01 exp

mq
q t

t T
=

 + ⋅ − − µ ϑ
,                 (34) 

where mq , µ , ϑ  and 0T  are constant parameters. Having determined the 
best estimates of the values of these parameters with the help of the least square 
method, we have obtained:  

346mq = ; 0.68=µ ; 0.012=ϑ ; 0 1903T = ;          (34а) 

given that the value of the correlation coefficient R = 0.98 and R2 = 0.95. Such a 
high value of the correlation coefficient indicates the correct choice of the type of 
approximating function (34). 

For comparison, the approximation using Kapitsa formula (30) was also car-
ried out: 

( ) 2 arcctg KT tq t K
 −

=  
 τ

.                    (35) 

with the help of the least square method the following estimates for constant pa-
rameters were obtained: 

10K = ; 69=τ ; 1854KT = ; 0.98R = ; 2 0.95R = .       (35а) 

As we can see, both S-shaped functions (34) and (35) are equally good for ap-
proximating actual data. However, as it turned out, function (35) perfectly ap-
proximates ( )Q t  and ( )Qq t  at the same time, while logistic function (34) 
does it worse. That is why we have chosen formula (35) as an approximating 
function, which represents the smooth growth trajectory ( )q t  in Figure 11. 
Let us determine ( )Q t  and ( )Qq t . Considering (31) and (32) we obtain: 

а) 

( ) ( )

( ) ( )

( ) ( )

0

2
0 0

22 2
0

220
0 0

d arcctg d

arcctg ln
2

arcctg ln
2

t K
T

K
K K

K
K K

T tQ t Q q t t Q K t

T tQ K T t T t

T T
T T T T

′ −′ ′ ′= + = +  
 

  −  = + − + + −       
 −  − − − + −       

∫ ∫ τ

τ τ
τ

τ τ
τ

   (36) 

b) ( ) ( )
( ) ( )

2

arcctg K
Q

q t T tKq t
Q t Q t

 −
= =  

 τ
. 
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Figure 13. Demographic dynamics of the world in the 21st century influenced by the widespread use of intelligent 
machines 

 
The latter function (36b) describes a smooth curve ( )Qq t , which concerns 

the average trajectory of growth rates of technological progress, shown in Figure 
12. 

Now we need to calculate the forecast trajectory of the Earth’s population NH(t) 
in the era of the widespread use of IM, using Equation (33) and formulas (30) 
and (36a) for NK(t) and Q(t), respectively. The normalization coefficient γ  is 
determined by the least square method in circumstances where NH at the stage of 
information age (1990-2020) is combined with actual data N(t) (see Figure 9). 
The estimate obtained: 6414≅γ . The forecast trajectory of the world popula-
tion movement in the digital age (2022-2100), calculated by formula (33) is 
shown in Figure 13. As we can see, the Earth’s population, having reached a 
maximum value of 8.37 billion people in 2050, will then begin to steadily decline, 
decreasing to 7.9 billion people by 2100. In [35], we proposed a flexible and ef-
fective model of the demographic dynamics for calculating the modes of the 
world (country) population growth with the achievement of a certain peak value 
and subsequent reduction and further stabilization around a certain stationary 
value both in aperiodic and oscillatory forms. Yet the question of possibility to 
stabilize population in the framework of this model remains open. 

5. Conclusion 

Thus, if we are to proceed from the information imperative [5] [34], according 
to which global demographic, technological, economic and other processes ad-
just to changes in the amount of useful information accumulated by people, 
which brings information to the level of the main driving force, controlling the 
human development, then we can predict that the Earth’s population, having 
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reached a certain maximum ( maxN ), will then begin to decline steadily. It will 
happen since intelligent machines (IM) will perform most of the main work on 
information production and usage for the implementation of development goals. 
Moreover, the information forecast model, proposed by the author, gives an es-
timate of max 8.52N ≅  billion people, which will be reached presumably in 2050, 
and then humanity will begin to decline, dropping to 7.9 billion people by 2100. 
That is why humanity should take decisive measures to counteract the process of 
information depopulation: first of all, overcoming the current excessive social 
inequality and guaranteeing the maximum growth of human capital based on 
the comprehensive improvement of the quality of affordable education and 
healthcare, as well as labor symbiosis of “human + IM” [43], saving jobs for 
people and increasing the overall productivity of the symbiosis. 
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