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Abstract 
Non-iterative analysis of indentation results allows for the detection of phase 
transitions under load and their transition energy. The closed algebraic equa-
tions have been deduced on the basis of the physically founded normal force 
∝  depth3/2 relation. The precise transition onset position is obtained by li-
near regression of the FN = kh3/2 plot, where k is the penetration resistance, 
which also provides the axis cuts of both polymorphs of first order phase 
transitions. The phase changes can be endothermic or exothermic. They are 
normalized per µN or mN normal load. The analyses of indentation loading 
curves with self-similar diamond indenters are used as validity check of the 
loading curves, also from calibration standards that exhibit previously unde-
tected phase-transitions and are thus incorrect. The phase-transition energies 
for fused quartz are determined from the loading curves from instrument 
provider handbooks. The anisotropic behavior of phase transition energies is 
studied for the first time. Quartz is a useful test object. The reasons for the 
packing-dependent differences are discussed on the basis of the local crystal 
structure under and around the inserting tip. 
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1. Introduction 

Instrumented indentations require proper calibrations and physically correct 
analysis. Modern instruments are highly reliable (at least since 1998) and the 
most used standards fused quartz, aluminum and sapphire are available in con-

How to cite this paper: Kaupp, G. (2019) 
Phase-Transition Energies, New Characte-
rization of Solid Materials and Anisotropy. 
Advances in Materials Physics and Chemi-
stry, 9, 57-70. 
https://doi.org/10.4236/ampc.2019.94006 
 
Received: February 8, 2019 
Accepted: April 21, 2019 
Published: April 24, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ampc
https://doi.org/10.4236/ampc.2019.94006
http://www.scirp.org
https://doi.org/10.4236/ampc.2019.94006
http://creativecommons.org/licenses/by/4.0/


G. Kaupp 
 

 

DOI: 10.4236/ampc.2019.94006 58 Advances in Materials Physics and Chemistry 
 

stant good quality. There are however problems with non-consideration of 
largely unknown phase transitions at moderately high loads of conical or pyra-
midal indentations [1] [2]. Even worse is the data treatment according to the 
ISO14577 standard (of the International Organization for Standardization), ac-
cepting the highly acclaimed Oliver-Pharr method [3]. As generally known, this 
is based on very complicated mathematical deductions that clearly forgot to take 
into account the sidewise forces and thus energies at conical penetrations. Their 
deduced normal force (FN)-depth square (h2) proportionality [4] [5] is therefore 
invalid. This standard cannot describe the experimental loading curves. Rather 
polynomial iterations are used, but these wipe out all surface effects, local gra-
dients, elbows, and phase transitions under load. It was empirically found that 
the exponent 3/2 on h correctly describes the load parabola. This was first pub-
lished in 2005 [6], with a review in 2006 [7], and later in [1] and [2]. Equation 
(1) provided excellent correlations and numerous unprecedented applications 
without fittings, or iterations. The validity of (1) was physically deduced in a 
clear-cut way. This was published electronically in 2016 and open access in 2017 
[8]. The basic idea for the physical deduction of the exponent 3/2 on h (1) [8] is 
the undeniable fact that the entire pressure plus pressure work—and thus also 
the corresponding part of the normal force FN—goes with the indented volume 
of cones or pyramids, which is proportional to h3. This deduction of the physi-
cally enforced Equation (1) can easily be repeated with simple arithmetic. Or 
graphically: the work that is lost for the penetration is the area between the pa-
rabola with exponent 3/2 and its secant that starts at zero. Furthermore, the ap-
plied work (Wapplied) is the area under such secant of the parabola (down to the 
zero line). Furthermore, the indentation work (Windent) covers the area below the 
parabola, and it can also be described by the area of the 0 - hmax - 0.8 FN triangle 
[9]. It follows the 5/4 ratio of Wapplied/Windent that was already mathematically 
deduced by integration of (1) in [10]. The k-values in Equation (1) are the vali-
dated penetration resistances. They are obtained by linear regression of the FN 
versus h3/2 plots with excellent correlation. This viable analytical tool is disdain-
fully known as “Kaupp fitting” in the literature. We must therefore call it now 
“Kaupp plot (1)” to underline that it must not be degraded to a fitting technique.  

FN = kh3/2                            (1) 

The Wapplied/Windent = 5/4 relation means that the loss of FN for the penetration 
depth h is for exponent 3/2 always 20% with universal mathematical precision. 
This is totally independent of the material. For an assumed exponent 2 it would 
calculate to be 33.33% [9] [10]. The non-consideration of such energy and thus 
also force losses is a violation of the first energy law in the ISO14577 standards 
and [3]! Our energy correction for directly depth related mechanical parameters 
is the factor 0.8 (4/5 ratio), for keeping with the first energy law. This is, of 
course, already implied in the indentation work Windent [10].  

For example, motorized aviation with flying machines required new physical 
understanding of aerodynamics and also knowledge of materials’ properties [11]. 
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To make the former usable for airliners and airplanes they had to become faster, 
lighter, more efficient, and safer. The local analyses with (nano)indentation at the 
unphysical and iterating HISO and Er-ISO level are unsuitable. They could therefore 
not prevent catastrophic failures (not only with airliners), which have been 
termed “failure by fatigue of materials”. The liability clearly requires that local 
test procedures identify phase-transitions on the physical mathematic basis. We 
again urge ISO-ASTM to use the undeniable strict mathematical analyses, as 
presented here and in our cited publications since 2005. Addition of suitable 
ductilizers must optimize the super-alloys, so that the first phase transition onset 
force will be considerably above the permitted maximal force on them (also 
“pop-ins” must not occur upon load). Such analytical tests are required after the 
common long-term stretching, bending treatments, and after the repeated 
thermo-mechanical stress upon application with loading curves at the prescribed 
service intervals. The present technique is fast and easy for obtaining the onset 
information. 

The penetration resistance k [mN/µm3/2] is literately the physical hardness 
with respect to the used indenter geometry. For the general applications the (ef-
fective) cone angle dependency of the self similar indenters is removed by the 
normalization as “penetration-resistance” hardness Hphys = k/π tanα2, where k of 
Equation (1) is energy corrected with factor 0.8 when the hardness shall be re-
lated to the indentation depth [9], and α is the effective cone angle [9].  

Conversely, the still generally accepted definitions of indentation hardness as 
H = FN/Aprojected or HISO = FN/Acontact use the entire maximal loading force for the 
depth. This seemed to verify the physically false exponent 2. But the reasoning 
that the area of a cone “varies as the square of the depth of contact” [3] is mis-
leading: such area (πh2tanα2) variation is self evident, but the volume of the con-
ical indenter varies with πh3tanα2/3. Neither is the definition of indentation 
hardness according to ISO and [3] as “force (of a cone) over contact area” a 
“theoretical confirmation” of an “exponent 2” on h as claimed in [12]. This defi-
nition severely violates the first energy law! 33.33% (for an exponent 2) of ap-
plied energy cannot be made out of nothing, and force is related to energy! Un-
fortunately, the energy violation remained apparently undiscovered for all of 
these authors since 1939 [4], and even so after our paper in 2013 [10] that quan-
tified the violation with basic algebra. As above: the area of the 0 - FNmax - hmax 
triangle minus the area under the loading parabola with an exponent 2 would 
amount to one third of the total applied work. Nevertheless, this violation of the 
first energy law was not allowed to be literally expressed in publications before 
1997 [9] [13]. ISO14577 and apparently most of the indentation world are urged 
to stop with tolerating the violations against basic physics.  

A further advantage of the physical indentation resistance hardness Hphys = 
k/π tanα2 is its independence of the depth (self-similar indenter!). We can there-
fore for the first time choose from hardness with respect to the penetration act 
(0.8 k) or with respect to the full indentation resistance (uncorrected k). An im-
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portant discussion on what should be used for what theoretical and practical use 
is now opened. The papers [9] [13], and [14] chose the first version for theoreti-
cal reasons. This can however easily be changed for more practical reasons. A 
similar choice between FNmax or 0.8 FNmax applies for the definition of indentation 
elastic moduli Er from the unloading curve. But none of such indentation moduli 
are the still claimed “Young’s moduli”. They resemble the bulk moduli [13]. 
Clearly, all hardness and moduli determinations must be at loads before the 
phase-transition onset and it can no longer be avoided to detect it with the 
Kaupp plot (1).  

These important developments facilitated the easy detection of phase transi-
tions by indentation. Previously such detection was restricted to a kink in the 
unloading curve. There is one in the unloading curve of silicon (though without 
onset information), which had been amply discussed as a particular exception 
[3]. On-site Raman spectroscopy, TEM, electrical resistance, electron diffraction, 
or micro-diffraction by synchrotron radiation revealed discontinuities and veri-
fied phase transition. We have a sharp kink upon Berkovich indentation onto 
silicon at the loading curve with onset information [1] [15]. Similar discontinui-
ties in the Raman and current flow studies (see [15]) provided final support for 
our kink discontinuities as phase-transition onset. About 10 further examples 
using the more costly and highly specialized techniques are known. Correct in-
dentation analysis obtains transitions right away with high frequency for all 
kinds of materials with transition onset and transition energy by simple indenta-
tion using Equation (1). Only the elucidation of the polymorph structures re-
quires preferably onsite diffraction with highly focused synchrotron irradiation. 
Numerous confirmed phase transitions under hydrostatic pressure are long 
known, but these techniques are expensive and laborious without providing 
transition energies. Phase transition onset detections are indispensable for prop-
er analyses of indentations.  

A further application of Equation (1) with the penetration resistance k is the 
reliability control of published measurements on the strict physical basis [8]. All 
partial deviations are either particular physical properties of the material (e.g. 
surface effects, phase changes, gradients, etc.) or experimental errors (e.g. poor 
calibration of force linearity, non-vertical indents, mix-up events, etc.). Impor-
tantly, the unphysical “exponent 2 on h” claim for the loading parabola enforced 
several multi-parameter polynomial iterations that prevented data checks by 
wiping out all particular effects including the phase transitions. Only Equation 
(1) with its linear plots sorts out the special effects from published loading 
curves and detects deviations from unsuitable experimentation. These include 
too close indentations, false assignment of materials or polymorphs at large in-
dents, integrations over phase transition onset discontinuities, false transition 
energy sign, and further flaws that are discussed below. These checks remove 
severe additional errors of published H and Er next to all other systematic errors, 
even with calibration standards. Some further types for disclosed errors can be 
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found in the corresponding Section below.  
Further applications use phase transition energies at different temperatures 

for the determination of phase transition activation energies [15]. Also multiple 
consecutive phase transitions have been published [14], and the transition ener-
gies of SrTiO3 on (011), α-quartz on (010), InGaAs2 on (001) are already known 
[10]. However, the surface dependent anisotropy of phase transition energies 
awaited elucidation. Quartz is available in amorphous state and as hexagonal 
crystal it has different crystallographic faces. It is a particularly valuable material 
for that purpose. We describe the first anisotropies at four prominent crystal 
faces of α-quartz. 

2. Materials and Methods 

A fully calibrated Hysitron Inc. Triboscope Nanomechanical Test Instrument 
with 2D transducer and leveling device, connected to a Nanoscope AFM was 
used for the own indentations. The apex radii of the cube corner (55 nm) and 
Berkovich (110 nm) diamond indenter were directly measured by AFM in tap-
ping mode. The leveling to ±1˚ was in x and y direction. Loading times were 30 s 
up to 5000 µN final load. All our measurements were performed with the same 
cube corner with the effective cone angle of α = 42.28˚. The original data with 
about 1500 points each of our loading curves for α-quartz (rock crystal) from [2] 
[6], and [7] were now used with more precise calculation (up to 10 significant 
figures) for the determination of the phase transition energies. Thus, rounding 
errors are minimized and Table 1 with many numbers characterize the specific 
data set as precisely as necessary. Loading data from the literature have been di-
gitized with the Plot Digitizer 2.5.1 program (http://www.softpedia.com/). Elec-
tronic fittings or iterations whatsoever were never performed. The crystal struc-
ture data (P3(2)21, a 4.914, c 5.405) are from [16]. The crystal models were cal-
culated using the Schakal 97 program [17]. 

A single well developed rock crystal with smooth surfaces and excellent color-
less clarity was the α-quartz sample without twins at the surface. Its indexed 
major faces were horizontally leveled to slopes of ±1˚ in x and y direction under 
AFM control at disabled plane-fit. All FN and h data pairs from the loading 
curves were loaded to Excel (Microsoft; Redmond, USA, WA) for the calcula-
tion of the h3/2 values and the linear branches of the regression lines provided the 
slopes (penetration resistances) k1 and k2, and the axis cuts F1-a and F2-a. They 
were used with all of their figures for avoiding rounding errors. The linear re-
gression coefficients R2 were in all cases > 0.999 - 0.9999. The precise sharp in-
tersection point (transition onset) was obtained by equalizing of the regression 
line equations and the so obtained hkink and FNkink values were calculated by using 
Equation (2). All necessary terms are thus obtained, as hmax and FNmax are directly 
available.  

3 2
N 1-aF kh F= + .                           (2) 
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Table1. Physical parameters from the cube corner indentations onto four different surfaces of α-quartz (rock crystal) up to 5000 
µN load.  

Entry 
Surface 

(hkl) 
k1 (µN/nm3/2) k2 (µN/nm3/2) hkink (nm) FNkink (µN nm) 

ƩWapplied/5000 
(µNnm/µN) 

Wtrans/µN(a) 
(µNnm/µN) 

1 (011) 2.5443 1.8609 85.75601036 2097.594374 97.6134 −15.744 

2 (010) 2.1574 1.7169 105.8103095 2237.798772 101.3803 −11.048 

3 (1−10) 2.2037 1.6475 101.5669094 2264.183535 104.5936 −14.663 

4 (101) 2.2147 1.6773 100.3591866 2241.625060 103.4883 −14.032 

(a)For practical reasons we do not use the factor 0.8 to the µN values for the normalizations from kink to the final force. 
 

( )1-applied kink N-kink 1-a kink0.5W h F F h= + .                   (3) 

1-indent 1-applied0.8W W= .                         (4) 

( ) ( )5 2 5 2
2-indent kink 2-a kink0.4W k h h F h h= − + − .               (5) 

applied N-max maxfull 0.5W F h= .                      (6) 

( )transition applied appliedfullW W W= −Σ .                   (7) 

The used Equations (2)-(7) for the calculations contain all of the obvious cor-
rections [14]. The meaning of the terms has already been explained. Fa corrects 
for axis cuts of the regression lines that are due to surface effects. Only F1-a is also 
influenced by the apical tip rounding radius (R), giving larger penetration resis-
tance up to hcone = R (1-sinα). It varies with the surface properties (including 
water layers). These depend on ambient conditions, which exclude their tabula-
tion. The W1-indent is calculated from W1-applied according to Equation (4). W2-indent 
must use integration and correction with F2-a as in Equation (5), and W2-applied is 
then obtained by multiplication with 1.25 in analogy to Equation (4). The bal-
ance of Equation (6) and Equation (7) gives the transition energy Wtrans that was 
reasonable rounded in Table 1. 

3. Results and Discussion 
3.1. Quartz, Aluminium, Tungsten, and Sapphire as Calibration  

Standards of ISO 

Unfortunately, all indentations of the most cited publication of Oliver-Pharr in 
1992 [3] with their iterated values of hardness H and reduced elastic modulus Er 
(from there with Poisson’s ratio elastic modulus E, which has been unduly called 
“Young’s modulus” [13]). They became standards for instrument calibration and 
numerous further quantities of materials for iterations and finite element calcu-
lations. It appears therefore of primary importance to check the validity of these 
old though still used measurements that lacked the 1992 not available physical 
insights. The authors of [3] did not have universal Equation (1) and thus missed 
that their force linearity and so their instrument compliance were not well ad-
justed above 90 mN to120 mN load for their published curves as designated with 
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aluminium (their Figure 4), “quarts” on (001) (their Figure 5), sapphire (their 
Figure 7), and tungsten (their (Figure 9). That is consistently revealed by strong 
positive deviations from linearity (without kink appearance) above about 90 mN 
in our Kaupp plots (1). Defective tip surface cannot be the reason, as these devi-
ations occur at different depths h. There is only one exception in [3]: the Kaupp 
plot of their Figure 6 for soda lime glass has the last branch staying linear up to 
120 mN load. Nevertheless, the iterated standard values of hardness H and mod-
ulus Er that use the maximal force are in error for all 5 examples: the faulty calibra-
tion adds to the unphysical h2, the energy law violation, and the non-consideration 
of the phase transition onsets that occur before that load. Not the pristine ma-
terial is tried to be characterized! These errors perpetuate in all further iterations 
that are made to converge to these values and the numerous qualities that are 
deduced from all of these values. They have at least influenced various reference 
table entries, not to speak of finite element calculations. Particularly troublesome 
are the errors in [3] for aluminium, which is often used as a standard for micro-
indentation. Its phase change onset under Berkovich is known to be at 30 - 40 
mN, which became first known in 2013 [2]. And there are further errors in [3]. 
The designation of their Figure 8 in [3] with “fused quartz” is in error. It reveals 
three linear branches (k1 = 76.044, k2 = 109.12, and k3 = 123.3 mN/µm3/2, all with 
R2 > 0.999) when plotted with Equation (1). This corresponds so perfectly with 
the soda lime glass values from their Figure 6 of [3] (k1 = 77.909, k2 = 105.28, 
and k3 = 122.0 mN/µm3/2) that the claimed “fused quartz” curve must in fact be-
long to the result from another soda lime glass indentation, despite the about 
250 nm different maximal depths. Furthermore, their Figure 5 in [3] of crystal-
line quartz on (001) is totally misinterpreted. The authors do not realize the sit-
uation from 0 to 5 mN loads that is not really discernible in the Kaupp plot (1) 
up to 120 mN. As expected for crystalline quartz it rightfully starts steeply and 
soon thereafter continues less steeply, apparently by producing fused quartz 
around the Berkovich with its then endothermic phase transition. The initial ex-
othermic α-quartz transition [6] [7] can however not be analyzed in more detail 
at that loading range without a large number of original data points. But it is ex-
tremely troublesome to the reader of their Figure 5 in [3], who became mis-
guided about the mechanical properties of crystalline quartz until [6] and [7] 
had appeared. Clearly, the indentation of fused quartz up to 120 mN deserves 
new investigation. The exothermic α-quartz indentations ending at 5 mN are 
discussed in Table 1. Importantly, the properties of tungsten (k1 = 95.57, k2 = 
114.50 mN/µm3/2; kink ≈ 35.6 mN) and sapphire on (0001) (k1 = 236.58 and k2 = 
264.68 mN/mm3/2, kink ≈ 31.5 mN) (the better older curve up to 90 mN load of 
[18] was used) are poor calibration standards for the harder materials without 
consideration of their phase transitions. Further phase transitions are detected in 
macro-indentations for example sapphire transforms also at about 12 N load and 
5.9 µm depth [2], and so does soda-lime glass at about 14 N at 11.7 µm when the 
loading curves with a Vickers indenter of [19] are analyzed with the Kaupp plot 

https://doi.org/10.4236/ampc.2019.94006


G. Kaupp 
 

 

DOI: 10.4236/ampc.2019.94006 64 Advances in Materials Physics and Chemistry 
 

(1), and we mention here to the four consecutive phase transition onsets of NaCl 
at 0.003397, 2.487, 9.1186, and 24.4284 N loads [14]. Any non-consideration of 
phase transitions generates errors at hardness and modulus iterations, including 
other materials and finite element calculations as these values concern not de-
tected polymorphs, but not the pristine material. We complain that apparently 
nobody else did check all these grave inconsistencies since 1992 and hope that 
the new physical insights and possibilities will be used, instead of violating basic 
physics.  

3.2. Fused Quarts, Transition Energy 

Fused quartz is the most used calibration standard for nanoindentations. We 
analyze therefore the corresponding Berkovich (with half angle θ of 65.3˚) load-
ing curves of prominent instrument provider Handbooks with respect to the 
Equations (1)-(7) and use of the new applications without any iteration. The first 
point is the detection of the long known amorphous to amorphous phase transi-
tion [20] under indentation [1], because hardness and modulus of pristine mate-
rials must be determined at loads before the first phase transition onset. The 
early onset of this endothermic transition (k2 > k1) has been denied on the basis 
of poor, or fitted, or too extended curves with low precision (e.g. [12], and many 
others), but a more detailed analysis with the Kaupp plot (1) reveals the transi-
tion as long as these are experimental [14] and so do the excellent loading curves 
from instrument builders as analyzed in [1]. However, the energetics of such 
transition is still unknown. The calculation is therefore performed by using the 
loading curves as published in the TriboScope manuals of Hysitron and of 
CISCO for UMIS. Both linearized loading curves give two linear branches that 
correlate with R2 = 0.9999, each upon regression with the Kaupp plot (1). Their 
penetration resistance values are for k1 1.9654 and 1.9672 and those for k2 are 
2.4392 and 2.3936 µN/nm3/2 for Hysitron and CISCO, respectively. This leads after 
surface-cut corrections to transition onset depths of 109.6476605 and 100.682078 
nm at 2.348 and 2.117 mN. These differences reflect different measurement con-
ditions. Most likely are different force calibrations or horizontal sample leveling 
devices that are not specified. It is therefore not surprising that the calculated 
normalized per µN transition energy values also differ: we calculate 6.206 and 
3.563 µNnm/µN, respectively, for the endothermic transitions. These values are 
remarkably large when compared with the exothermic transitions that give the 
negative values of crystalline quartz (Table 1).  

3.3. α-Quartz, Transition Energies at Different Faces 

Unlike fused quartz, crystalline α-quartz in the form of rock crystal undergoes 
exothermic phase transition upon sufficient indentation stress. The projected 
images of the studied surfaces are shown in Figure 1. Anisotropic behavior for 
the transition energies upon cube-corner indentation is to be expected, as the 
crystal packing is different. In particular the penetration resistances k1 and k2 
had already been shown to be anisotropic with different indentation works Windent 
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[2]. Table 1 with Miller indices (hkl) for simplicity (as the “i” in (hkil) is redun-
dant) repeats less rounded k and kink values. The structure of the indented sur-
face is important for the understanding of the varying Wtrans values of Table 1. 
Channels will facilitate penetration the better these are vertically aligned. That is 
roughly reflected by the k1, hkink, and Wtrans/µN values (entries 1 and 2 are most 
different, 3 and 4 are in between), but not by k2, FNkink, and ƩWapplied/µN. Clearly, 
there is also the force that acts normal to the surface of the cube corner with the 
opposite of its half angle θ = 35.26˚. It is therefore important to also consider the 
location of channels exiting from the side faces at the indenter surface for the 
transition energies. We therefore construct such surfaces at 35˚ and assume that 
not all of their so seen shapes will be destructed while the cube corner penetrates. 
They are obtained by rotation of the crystal structure around the X axis by + and 
− 35˚ (rX ± 35˚ ≡  180˚ ± 35˚) and the same around an Y axis (as rY ± 35˚ ≡  
180˚ ± 35˚). The resulting images are projected (Figure 2 and Figure 3) and vi-
sually analyzed. The differences on the determined circumventing skew faces 
prove large enough to be helpful for the understanding of the different results. It 
turns out that the highest amount of normalized exothermic energy Wtrans = 
−15.744 µNnm/µN is produced by indentation upon the (011) surface (entry 1) 
of α-quartz with a cube corner indenter. The (011) packing exhibits not very fa-
vorable skew channels, as can be best seen in the center of the image where the  

 

 
Figure 1. Surface projections on α-quartz with four different tetrahedrons upon each 
other in the center areas; (a) (011); (b) 010); (c) (1−10); (d) (101); the bar corresponds to 
5 Å length. 

https://doi.org/10.4236/ampc.2019.94006


G. Kaupp 
 

 

DOI: 10.4236/ampc.2019.94006 66 Advances in Materials Physics and Chemistry 
 

 
Figure 2. α-Quartz 35˚ skew side faces under the (011) surface ; (a) rX 35˚; (b) rX −35˚; 
(c) rY 35˚; (d) rY −35˚. 
 

 
Figure 3. α-Quartz 35˚ skew side faces under the (010) surface; (a) rX 35˚; (b) rX −35˚; 
(c) rY 35˚; (d) rY −35˚. 
 
view goes through 5 of the interlocked pyramidal layers (Figure 1(a)). The nor-
mal indentation depth for the phase transition onset hkink and FNkink are the least 
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of all studied cases and the required work down to the transition onset force is 
lower than with the other surfaces. Furthermore, Figure 2 shows four of the 
eight 35˚ skew side structures around the cube corner under (011). In that case 
only comparatively small channels are available all around the cube corner. 
Therefore, the exothermic phase-transition is produced in a highly concentrated 
manner. This does not cost much displacement energy. It just detracts least from 
the transition energy, leaving more for it. 

Consistently, the least exothermic transition energy among the tested surfaces 
is produced under the (010) surface (entry 2) with −11.0485 µNnm/µN. It exhi-
bits straight channels (Figure 1(b)). The penetration down to the phase transi-
tion onset is deep and the required onset energy from FNkink is high (Table 1). 
The cube corner is surrounded by large 35˚ skew faces with almost orthogonal 
channels that are well shaped for the transport of materials (Figure 3). Such 
materials transports cost energy, which detracts from the exothermic transition 
energy. This certainly helps to understand the reasons for the extremes under 
the (011) and (010) surfaces. Consistently, the normalized transition energies 
(under (1−10) and (101) indentations (entries 3 and 4) are between these ex-
tremes. They penetrate almost with the similar depth of entry 2 and their 35˚ 
skew side walls (not shown here) are less favorable under (011) and (010). Thus, 
their normalized Wtrans values are almost equal and between the extremes (Table 
1). Clearly, the complicated variations of the normalized anisotropic transition 
energies require the whole anisotropic 3D packing of the crystal. All qualities of 
Table 1 interact. This has to be taken into account for all crystals and other 
non-isotropic materials.  

4. Conclusion 

The universal Equations (1)-(7) are physically and mathematically deduced 
beyond any doubt for vertical indentations with self-similar indenters [8] [10]. 
All depend on the physical exponent 3/2 on h rather than on the assumed expo-
nent 2 that requires iterations with violation of the first energy law. The now 
possible detections of phase transition onsets and phase transition energies are 
indispensable for the characterization of materials and proper analyses of inden-
tations. They are of theoretical and practical importance. Their unprecedented 
anisotropy deserves consideration with further crystals, not uniform materials, 
and composites for a better understanding of their failures. Numerous further 
studies on those lines are therefore essential. We used the iteration-less physical 
analysis of common normal force-depth parabolas not only for data checks, but 
also for the detection of phase transitions under load. These include the most 
cited force-depth curves in [3]. Unfortunately these data of Oliver Pharr were 
taken as the basis for ISO14577, without knowing of their force calibration er-
rors and the further errors in the absence of the physical data check possibilities 
from Equation (1). Their definition of HISO and Er-ISO does not consider phase 
transitions under load and they violate the first energy law. For example [21] fit-
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ted the incorrect data for aluminium and tungsten, and others continued with 
fitting of loading curves without considering initial effects, phase transitions, 
and other particularities. All of these errors with iterations since 1992 must be 
corrected with physically sound analyses. We tell here how the various and ob-
vious errors of the iterative indentation treatments are avoided: the closed for-
mulas (1)-(7) for the calculations are presented and used at characteristic exam-
ples. They rely on excellent linear correlations, contain the corrections for initial 
effects, and do not violate the first energy law. Unfortunately, there was no other 
protest against the first energy law violation for 70 years, even though the re-
maining pressure for elastic moduli and long-range plasticization were always 
known and discussed. Surprisingly enough, it was not asked from where the ne-
cessary force and energy might come from. We continue to urge ISO for chang-
ing its 14,577 standard, so that the very common phase transitions upon inden-
tations do not longer stay undetected, etc. It is certainly good scientific practice 
to consider the physically enforced formulas (1)-(7). Their perhaps most impor-
tant advances are the unprecedented applications of nano-, micro- and ma-
cro-indentations without violating the first energy law. We cannot live with [3] 
and ISO followers who still want to “produce” the pressure plus plasticization 
work from nothing. Only the iteration-free physical formulas are able to obtain 
reliable materials’ properties, including the phase transitions and their energies 
under load. That applies to crystalline, amorphous, and plastic materials under 
mechanical stress that must always be smaller than the phase transition stress for 
avoiding failure of materials in daily life, not to speak of liability problems. 
Clearly, first order phase transformations produce polymorph’s interfaces that 
increase the probability for cracking [14]. Reversibility of phase transitions upon 
pressure release is more likely for the endothermic transitions than for exother-
mic ones. It has already been shown that the activation energies of phase transi-
tions can be obtained by temperature dependent indentations with their phase 
transitions [15]. So this appears particularly important for the choice of proper 
materials that are stressed by both load and temperature. That will be particu-
larly important for the field of super alloys [10]. Such measurements are easily 
and cheaply available with presently existing instrumentation. 
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