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Abstract 
Stoichiometric mixtures of FeO and Y2O3 were milled and heat treated to obtain yttrium iron gar-
net, Y3Fe5O12. Two types of heating systems were used: one, a spark plasma sintering machine and 
the second, an electrical oven. The magnetic properties of the resulting specimens have been ana-
lyzed and discussed as a function of the grain size and the particles’ morphology. The partial for-
mation of garnet and orthoferrite phases was revealed on the obtained powder through micro-
structural analyses after 9 h of ball milling. The milled powders were transformed into the ortho-
ferrite phase after the SPS-treatment at 700˚C and 900˚C. Magnetic-saturation studies revealed 
magnetic responses up to 12.7 emu/g for specimens SPS-treated at 700˚C, whereas 2.1 emu/g for 
samples SPS-treated at 900˚C. Conventionally treated specimens at 700˚C developed 0.36 emu/g of 
magnetization, while 0.93 emu/g was registered for those treated at 900˚C. 
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1. Introduction 
Yttrium iron garnet (YIG, Y3Fe5O12) is a ferromagnetic material that has a wide range of applications in the 
communication field because it possesses the highest quality factor in the range 1 - 10 GHz, the bandwidth of 
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microwave [1]-[3]. YIG is often used in devices such as circulators, isolators, oscillators, phase shifters for the 
microwave region like storage units, sensors, lasers, phosphorescent sources, and electrochemical devices. Its 
frequent use is due to its electromagnetic properties such as large Faraday rotation, low propagation loss, high 
and controllable saturation magnetization, moderate thermal expansion coefficients, energy transfer efficiency, 
and narrow line-width in ferromagnetic resonance [4] [5]. On the other hand, yttrium orthoferrite (YFeO3) has 
been used as a magnetic insulator, for information processing, magneto-optical devices, cathodes and catalysts 
supports. This is due to its magnetic moment in the Fe sublattice, which is antiparallel, and its transparency in 
the visible and near infrared regions [6]-[10].  

The conventional methods of obtaining YIG consist in a solid-state reaction of Fe2O3 and Y2O3 at high sinter-
ing temperatures (>1350˚C) and long sintering times (>10 h) in conventional furnaces [1] [4], leading to an in-
creased particle size. Other techniques to obtain YIG are co-precipitation [5] [11] [12], auto-combustion of ni-
trate-citrate gel [13]-[15], spray plasma processes [15], and microwave [16] [17]. The conventional method of 
obtaining orthoferrite is mixing the precursor powders of Y2O3 and Fe2O3 in stoichiometric relation and heating 
to 1100˚C [1]. 

It is well known that magnetic properties such as the coercive field and saturation magnetization are strongly 
dependent upon the microstructure, shape, and size of crystals, crystal size distribution, and phase purity [4] 
[14].  

The mechano-synthesis process is often carried out through an efficient high-energy ball milling technique 
that reduces processing time and energy consumption due to low operation temperatures. This converts me-
chanical energy into chemical energy [18]. However, since the spark plasma sintering (SPS) technique can be 
carried out within just few minutes, it allows for a lower temperature and shorter sintering time [19], while 
keeping the final products small grain sized.  

Another important consideration has to be made regarding the magnetic properties related to non-stoichiome- 
try. Many efforts have been made to produce mostly pure YIG, but only a few studies have been found to corre-
late nonstoichiometry and oxidation number effects on the final magnetic properties in both YIG and orthoferrite 
ceramics [20]-[22]. 

Fernández-García et al obtained bulk YIG specimens by calcining powder from 1000˚C to 1200˚C and start-
ing from a mixture of Fe2O3 and Y2O3. Powders calcined at 1200˚C with further spark plasma sintering allowed 
for the appearance of orthoferrite peaks in the case of holding times at about 15 and 30 minutes [19].  

This paper presents the effect of both processing and precursors in the final magnetic properties of YFeO3 and 
Y3Fe5O12 comparing solid-state reaction, mechano-synthesis plus SPS, and mechano-synthesis plus conventional 
heating in air and argon. 

2. Experimental  
Samples were prepared following four experimental routes, namely: 1) solid state reaction (SSR), 2) mecha-
no-synthesis followed by conventional heat treatment (MSHT), 3) mechano-synthesis followed by spark plasma 
sintering (MSSPS), and 4) mechano-synthesis followed by heat treatment in argon (MSHTAr). In all cases, the 
precursor materials were the same: FeO and Y2O3 (Sigma Aldrich, 99.90% purity).  

For the first processing route, SSR 1), stoichiometric amounts of FeO and Y2O3 powders were mixed for 15 
min and then annealed at 700˚C or 900˚C for 3h in air to obtain YIG, following the reaction: 

( ) ( )2 3 3 5 12exc 2 from vial3 2Y O  5FeO  O  Y Fe O δ−+ + →                           (1) 

For the MSHT route 2), stoichiometric amounts of FeO and Y2O3 powders as precursors, according to equa-
tion (1), were milled in air using a high-energy ball mill (SPEX 8000D) at room temperature for 9 h. Steel balls 
of 1.27 cm in diameter and a steel cylindrical vial of 50 cm3 were used, setting up a ball to powder weight ratio 
of 10:1. This action was then applied alternatively with a 90 min cycle of milling, followed by a 30 min break. 
Powders were eventually annealed at 700˚C or 900˚C for 3 h in air.  

In the case of the MSSPS route 3), the mixture of powders released after mechano-synthesis (90 min of mill- 
ing) was sintered at 700˚C and 900˚C, with a heating rate of 100˚C/min, using the spark plasma sintering (SPS) 
apparatus Dr. Sinter 1050, applying 5KN of axial load and 6 × 10−2 Pa vacuum. The powder to be sintered was 
placed inside a graphite cylinder matrix of 10 mm diameter, setting holding times at 700˚C and/or 900˚C for 10 
min.  

Finally, MSHTAr route 4) was performed by heating mechano-synthesized powders in a chamber under Ar 
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atmosphere as part of an X-ray diffraction using Panalytical X-Pert Pro equipment from 25˚C to 950˚C. 
Specimens obtained by the four different routes: SSR, MS, MSHT, and MSSPS, were characterized by X-ray 

diffractometry (XRD) using a Siemens D5000 diffractometer using CoKα1 (λ = 1.7889 Å) radiation, while the 
MSHTAr sample was characterized in a Panalytical X-Pert Pro equipped with a multichannel detector 
(X’celerator) and by using Co-Kα radiation. The specimens’ fracture morphology was analyzed using a field 
emission image FEI Quanta 3D FEG scanning electron microscope operated at 25 kV. The magnetic susceptibil-
ity and magnetization studies were performed at room temperature using an LDJ 9600 vibrating sample magne-
tometer with a maximum field of 16 kOe.  

3. Results and Discussion 
3.1. Structural Characterization  
The X-ray diffraction patterns (XRD) of samples were obtained by different methods: i) as ball-milled powder 
for 9 hours, ii) Y2O3 and FeO powder conventionally heat-treated at 700˚C (SSR), iii) both mechano-synthe- 
sized and SPS-treated powder (MSSPS) at 700˚C, iv) both mechano-synthesized and conventionally heat treated 
(MSHT) specimens at 700˚C, and v) mechano-synthesized and heat treated under argon atmosphere (MSHTAr). 
These XRD patterns are shown in Figure 1(a).  

In the XRD corresponding to Y2O3 and FeO powder mixture milled for 9 hours (see Figure 1(i)), the forma-
tion of yttrium ferrite with both perovskite and garnet structures (YFeO3 ICSD # 43260, Y5Fe3O12 ICSD # 2012, 
respectively), being predominant in the orthoferrite phase, can be seen. A reflection peak of elemental iron, Fe0 
(ICSD # 64998), is also observed (marked with an arrow in the figure) which can be associated with a reduction 
of FeO. The evidence of wüstite, FeO (ICSD # 76639), as traces in this pattern is due to the excess of reactant 
originally introduced into the vial (regarding stoichiometric orthoferrite) in order to assure garnet structure. 
Meanwhile, isolated Y2O3 (ICSD # 78581) diffraction peaks were not detected in the as-milled condition. In the 
same Figure 1(a), the X-ray diffraction patterns derived from the powder mixture subjected to the solid state 
reaction (SSR) route, heat treated at 700˚C, discloses mainly Fe2O3 and Y2O3 peaks, which suggest the partial 
oxidation of Fe2+ to Fe3+ due to the heating, whereas the garnet phase is neither detected nor are or thoferrite 
peaks observed. In the case of the sample MSSPS treated at 700˚C, the perovskite phase formation takes place, 
while the garnet phase almost disappears. In this pattern, the FeO peaks were not detected, but the presence of 
Fe0 peaks is evident. Although in the XRD patterns corresponding to the MSHT route, the most important phase 
 

 
Figure 1. X-ray powder diffraction patterns of: i) FeO + Y2O3 as milled; ii) SSR: mixture heat treated at 700˚C; iii) MSSPS: 
samples milled and spark plasma sintered at 700˚C; iv) MSHT: samples milled and heat treated at 700˚C; v) MSHTAr: me-
chano-synthesized powders heat treated under argon atmosphere at 700˚C; vi) SSR: mixture heat treated at 900˚C; vii) 
MSSPS: samples milled and spark plasma sintered at 900˚C; viii) MSHT: samples milled and heat treated at 900˚C and ix) 
MSHTAr: mechano-synthesized powders heat treated under argon atmosphere at 900˚C.                               
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detected is perovskite. The Fe2O3 (ICSD # 43465) phase was found, which indicates an oxidation of FeO, as in 
SSR route. Also, it is observed for a sample heat treated under argon atmosphere, MSHTAr, that the presence of 
Fe2O3 is as that heat treated in air, but there is also a small peak for Fe0.  

For all analyzed cases in Figure 1(a) diffraction peaks become narrow and sharp where their intensities in-
crease which implies the grain growth in the microstructure of products, as long as the powder is heated.  

The X-ray diffraction patterns of the next samples: vi) conventionally heat-treated FeO and yttria powder 
mixture at 900˚C (SSR), vii) as ball-milled powder for 9 hours and SPS sintered (MSSPS) specimens at 900˚C, 
and viii) mechano-synthesized and annealed specimens (MSHT), and ix) mechano-synthesized powders heat 
treated under argon atmosphere at 900˚C are shown in Figure 1(b). In the case of the solid-state reaction (SSR), 
the diffraction XRD pattern predominantly shows the presence of the orthoferrite phase, and also hematite and 
yttrium oxide peaks. In this pattern, diffraction peaks of the garnet phase were not detected. As for the powder 
mixture treated by MSSPS at 900˚C, the XRD pattern showed a complete disappearance of YIG. Here, the Y2O3 
and FeO peaks were detected. Despite that diffraction, peaks of Fe2O3 were observed to disappear at 700˚C and 
900˚C, but the elemental Fe0 peak remains. Both perosvkite and garnet phases were detected for the MSHT- 
sample, the latter acting as the major phase.  

By contrast to Figure 1(a), the Bragg peaks reported in Figure 1(b) obtained after any treatment at 900˚C do 
present narrower and enlarged peaks (large relative intensities) indicating a growth of grains.  

The Rietveld refinement results for the weight percentage of each phase obtained from the XRD patterns ana-
lyses are presented in Table 1. These results confirm the microstructural behavior previously described. 

3.2. Scanning Electron Microscopy 
The scanning electron microscopy (SEM) images of samples sintered at 700˚C with SPS (MSSPS) are presented 
in Figure 2. Figure 2(a), annealed (MSHT) and Figure 2(b), solid-state reaction (SSR). Figure 2(c) shows that 
particles are highly agglomerated and the grain size is not uniform; the grains do not have a regular shape.  

Morphology of the fracture for samples sintered at 900˚C with SPS is shown in Figure 3(a). Here, it is ob-
served that the formation of particles with acute edges is associated with the orthoferrite phase. On the other 
hand, the mechano-synthesis plus annealed sample of Figure 3(b) clearly shows neck formation. In both series 
of samples (Figures 2 and 3) grain growth can be seen. In the sample of solid-state reaction Figure 3(c) the 
formation of liquid-like morphology for joint, but not compacted, particles can be observed. 

3.3. Magnetic Properties  
The magnetic hysteresis loops recorded from specimens processed and sintered by the experimental routes ex-
plained in this work are shown in Figure 4. On the left side of Figure 4, samples treated at 700˚C are shown, 
whereas their counterparts treated at 900˚C are shown to the right. There are clear differences in the magnetic 
response of specimens obtained from the proposed routes. The largest saturation of magnetization induced into 
the powder mixture, as studied in this work, is attained when following the mechano-synthesis route with sub-
sequent annealing (MSHT) at 900˚C; i.e., specimens could develop values in the order of 25 emu/g, which is 
close to that of bulk (26 emu/g) [15], even with the presence of YFeO3, which should reduce its magnetization 
due to its canted antiferromagnetic behavior [29]. This is followed by the mechano-synthesized specimens with 
subsequent SPS treatment at 700˚C leading to values around 12.7 emu/g, this magnetic behavior can be influ-  
 
Table 1. Data from Rietveld refinement of XRD patterns in each method.                                           

Weight % Milled 9 h MSSPS 700˚C MSHT 700˚C SSR 
700˚C 

MSSPS 
900˚C 

MSHT 
900˚C 

SSR 
900˚C 

FeO [23] 1.7 0 0 0 2.53 0 0 

Y2O3 [24] 0.6 0 0.18 44.87 0.67 0 21.86 

Y3Fe5O12 [25] 44.6 3.55 0.36 0 0 89.73 2.12 

YFeO3 [26] 49.9 81.19 84.47 8.12 90.85 10.27 46.08 

Fe0 [27] 3.2 15.26 0 0 5.95 0 0 

Fe2O3 [28] 0 0 14.94 47.01 0 0 29.94 
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Figure 2. SEM images of the powder mixture after (a) mechano-synthesis plus SPS at 700˚C; (b) mechano-synthesis plus 
heat treatment at 700˚C and (c) solid state reaction at 700˚C.                                                     
 

 
Figure 3. SEM images of the powder mixture after (a) mechano-synthesis plus SPS at 900˚C; (b) mechano-synthesis plus 
annealing treatment at 900˚C and (c) solid state reaction at 900˚C.                                                 
 

 
Figure 4. Saturation magnetization (Ms) measured at room temperature for YIG obtain of different methods at 700˚C and 
900˚C.                                                                                                
 
enced by the presence of Fe0, increasing the saturation magnetization due to its high values (~221 emu/g) [30]. 
In the processing case of solid-state reaction, the saturation magnetization of samples treated at 700˚C and 
900˚C are 0.36 and 0.96 emu/g, respectively. Contrary to what was expected, mixtures obtained do not follow an 
ideal behavior, i.e. there are interactions between them, which increases its saturation magnetization. On the 
other hand, as expected, the coercive field seems to be higher for MSSPS samples (see Figure 4) due to lower 
particle size, only in the case of 700˚C treatment. In the case of 900˚C, MSSPS samples show a diminution in its 
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coercivity associated with grain growth, as is shown in Figure 3(a).  

4. Conclusion 

Four experimental routes have been analyzed in this work as to the preparation of YIG materials, starting from 
wüstite, FeO, and ittria Y2O3 powders. When such a ceramic powder mixture is heat-treated, it undergoes dif-
ferent phase precipitations, but without garnet formation, after 900˚C, mainly orthoferrite is obtained. The me-
chano-synthesis processing route followed by heat treatment (MSHT), as conducted in this work, has been 
shown to be the most convenient method to increase the Y3Fe5O12/YFeO3 ratio, thus improving the magnetic 
properties. On the other hand, the precipitation of YFeO3 crystals with larger grain sizes occurring after the SPS 
treatment at 900˚C provides clear indications on the garnets’ decomposition, due to the severe sintering condi-
tions causing an increment in coercive field and diminution in magnetization saturation. Finally, reducing at-
mosphere for SPS samples as for heat-treated samples under argon allows the reduction of iron oxide to metallic 
iron. 
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