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ABSTRACT 
AISI 321 austenitic stainless steel was treated using rf plasma carbonitriding with the intention of use low-cost 
orthopedic implant material in biomedical applications. The treatment process was carried at low working gas 
pressure of 0.075 mbar in nitrogen-acetylene gaseous mixture to form a superficial carbonitrided layer. The 
samples were treated using rf inductively coupled at a fixed plasma-processing power of 500 W and for a 
processing time varied from 4 to 20 minutes. The microstructural, mechanical and tribological properties of the 
untreated and treated samples were studied. The surface hardness is improved by rf plasma carbonitriding to a 
maximum of 1468 HV0.1 for plasma-processing time of 16 min. To evaluate the biocompatibility performance, 
the blood was cultured in RPMI media to test the adhesion of blood cells on the untreated and treated samples. It 
has been found that the blood adhesion on the treated samples is enhanced with increasing the plasma- 
processing time. The contact angle of the carbonitrided surfaces is decreased to lower values compared to that of 
the untreated surface. Furthermore, the carbonitrided layer in-vitro corrosion was tested in Ringer’s solution. A 
degradation in the corrosion resistance was observed for the sample carbonitrided at low plasma processing time 
of 4 min. However, the corrosion resistance increased to a maximum value at a plasma-processing time of 8 min 
then gradually decreased with further increase of plasma processing time. 
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1. Introduction 
AISI 321 is a stabilized austenitic stainless steel alloy 
containing low amount of titanium to minimize in-
ter-granular attack under certain service conditions [1,2]. 
Accordingly, the improvement in the inter-granular cor-
rosion resistance makes this austenitic grade very moti-
vating for high temperature applications such as industri-
al heat exchangers and nuclear power plants [1,3-5]. 
Furthermore, it is considered as an interesting biomedical 
material in the fabrication of the economical orthopedic 
implants [6,7]. However, the poor surface hardness leads 
to degradation in tribological properties which frustrate 
many of these industrial and biomedical applications  

[1,8]. Therefore, different plasma surface treatment tech-
niques are applied to develop the mechanical perfor-
mance and to increase the service life of this alloy for 
various applications [9]. Among these techniques, rf 
plasma carbonitriding with nitrogen/acetylene gaseous 
mixture has been previously used for surface modifica-
tion of different austenitic stainless steel alloys including 
AISI 321 grade [1,10,11]. It has been succeeded to achi- 
eve an anticorrosive and wear-resistant superficial top 
layer with low friction coefficient [1,12]. The superior 
improvement of the tribological properties was ascribed 
to formation of hard nitrides and carbides phases and the 
existence of superficial carbonitrided top layer [1,13]. 
Contact angle and surface energy measurements were 
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fundamentally conducted to recognize the biocompatibil-
ity of the metallic and modified metallic alloys such as 
surface ability to protein adsorption and cells adhesion 
[14]. Directed Cell adhesion has been considered as an 
important criterion of implant and tissue engineering 
technology [15]. Generally, the surface energy is propor-
tional to cellular adhesion strength [15]. Cellular adhe-
sion on metals demonstrated a linear correlation with 
surface energy. Materials of higher surface energy have 
higher cellular adhesion. 

This work was initiated to obtain a thick carbonitrided 
layer into the top of AISI 321 substrate with high tribo-
logical, mechanical and biocombatibility performance for 
low-cost orthopedic implants. The biocompatibility tests 
including blood culture and protein adsorption are ap-
plied to the carbonitrided AISI 321 substrates. Further-
more, the carbonitrided layer in-vitro corrosion was 
tested in Ringer’s solution. This is to improve the level of 
in-vitro biocompatibility assessment required for the 
specific use of the treated austenitic substrates in the hu-
man body. 

2. Experimental Work 
2.1. Sample Preparation 
The austenitic stainless steel AISI 321 consisted of 1.7 
mm thick rolled sheet, cut into pieces with small dimen-
sions of 10 mm × 10 mm × 1.7 mm. The chemical com-
position of AISI 321 in wt% is꞉ 0.042 C, 1.10 Mn, 17.50 
Cr, 10.70 Ni, 2.06 Mo, 0.23 Ti, 0.39 Si, 0.005 P, 0.01 S 
and Fe balance. The samples were ultrasonically cleaned 
in acetone bath for 15 min before they were inserted into 
the plasma reactor tube. The samples were carbonitrided 
using radio frequency (rf) plasma inductively coupled 
operated in continuous mode. Details of the carbonitrid-
ing system can be found somewhere else [16,17]. In brief, 
the rf plasma system is comprised of a quartz reactor 
tube with length of 500 mm and a diameter of 41.5 mm 
and it was evacuated to a base pressure of 1.0 × 10−2 
mbar by a two-stage rotary pump. A gas mixture of 85% 
nitrogen and 15% acetylene was introduced and the gas 
flow rates were adjusted to establish a total gas pressure 
of 7.5 × 10−2 mbar, as measured by a capacitance mano-
meter. The induction copper coil, energized by a 13.65 
MHz rf power generator (model HFS 2500 D) via a tun-
able matching network. The samples were supported on a 
water-cooled copper sample holder and the water cooling 
rate of the substrate was adjusted to be 3200 cm3/min. 
The sample temperature was around 500˚C and measured 
during the rf plasma process by a Chromel-Alumel ther-
mocouple, which was placed close to the surface of the 
sample. The samples were treated at a fixed plasma- 
processing power of 500 W and for a processing time 
varied from 4 to 20 minutes. It is important to state that, 

this treatment process was performed without using any 
external source of heating. After carbonitriding process, 
the samples were allowed to cool slowly to the room 
temperature in the evacuated reactor plasma tube. 

2.2. Samples Testing and Characterization 
Different techniques have been used to test and charac-
terize the untreated and carbonitrided AISI 321 samples. 
X-ray diffraction (XRD) using Philips-PW1710 diffrac-
tometer with Co Kα radiation of λ = 1.78896 Å was used 
to characterize the crystallographic configuration of the 
samples. The XRD scan was run between 40˚ and 100˚, 
with step interval of 0.02˚ and scan rate of 2˚/min. The 
treated samples were exposed to the standard metallo-
graphic procedure including sectioning, mounting, grind- 
ing, polishing and etching. The surface and cross-section 
morphologies of the untreated and carbonitrided AISI 321 
samples were investigated using Olympus BX51 optical 
microscope.  

Vickers microhardness measurements of the untreated 
and carbonitrided AISI 321 samples were carried out 
using a Leitz Durimet microhardness tester with a con-
tact load of 100 gmf. The microhardness measurements 
were performed according to ASTM E384-11 standard 
test method at temperature of 25˚C ± 3˚C [18]. The mi-
crohardness tester has been accredited according to ISO/ 
IEC 17025:2005 requirements. The wear measurements 
were performed at room temperature in air atmosphere 
with humidity of 35% - 40% using an oscillating ball-on- 
disk type tribometer wear tester without lubrication. The 
wear measurements were performed according to ASTM 
G 133-10 standard test method (linearly reciprocating ball-on 
flat sliding wear). The 3 mm ball of cobalt tungsten car-
bide moves at a mean sliding speed of 30 mm/s with a 
normal load of 2 N has been used. During the wear mea-
surements, the friction coefficient was continuously 
measured by using a force sensor. The oscillating ball-on- 
disk type tribometer wear tester is accredited according to 
ISO/IEC 17025:2005 requirements. The surface rough-
ness of the investigated samples was performed using a 
Form Talysurf 50 which has been accredited according to 
ISO/IEC 17025:2005 requirements. 

The water contact angle measurement, at room tem-
perature, was performed using Phoenix 300 (Contact 
Angle Analyzer manufactured by S.E.O Co. Ltd). The 
Phoenix 300 utilized a precision camera and advanced 
PC technology to capture the static droplet image and 
calculate the contact angle measurement by Sessile Drop 
method. The Electrochemical experiments were per-
formed in Ringer’s solution using the potentiodynamic 
technique at temperature of 25˚C ± 3˚C and humidity of 
38% ± 5%. The effective area of samples exposed to 
corrosive solution was fixed at 0.36 cm2. The test was 
performed using three-electrodes; silver-silver chloride 
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saturated electrode as a reference electrode, platinum as a 
counter electrode and the investigated sample as a work-
ing electrode. The potential–current corrosion curve is 
recorded and plotted with potential scan rate of 1 mV/s 
using Gill AC instrument and ACM program version 5. 

In order to investigate the biocompatibility of the un-
treated and carbonitrided AISI 321 samples, the blood 
culture and protein adsorption tests have been performed. 
The blood culture test is performed in RPMI media. In-
itially, the investigated samples were cleaned by alcohol 
90% and sterilized in autoclave (KGemmy FA-260MA) 
for 40 minutes. The untreated and carbonitrided samples 
were immersed in the blood in RPMI media for 3 days at 
temperature of 37˚C. After that, the samples were 
washed in Phosphate buffer solutions to be prepared for 
blood culture investigations. For protein adsorption test, 
the untreated and carbonitrided AISI 321 were immersed 
in bovine serum albumin (BSA) soluble in phosphate 
buffer solution at constant PH of 7.4 for one day. The 
blood culture and protein adsorption for the samples 
were investigated using Olympus BX51 optical micro-
scopy. 

3. Results and Discussion 
3.1. Layer Thickness and Carbonitriding Rate 
Figure 1 shows the variation of treated layer thickness 
and carbonitriding rate as a function of plasma-proce- 
ssing time. The carbonitriding thickness is calculated as 
average value taken from five different positions on the 
cross-section image. The carbonitriding rate is calculated 
using the formula of d2/t, where d is the average thick-
ness of the treated layer in μm, and t is the plasma 
processing time in sec. It is demonstrated from this figure 
that with an increase in processing time from 4 to 8 min, 
a significant increase in the layer thickness from 6.9 to 
23.3 µm is observed. Afterword, the thickness is slowly 
increased with a further increase of processing time. The  
 

 
Figure 1. Carbonitriding layer thickness and carbonitriding 
rate as a function of plasma-processing time. 

significant increase in layer thickness is attributed to the 
large variation in carbonitriding rate (from 0.2 µm2/s to 
1.13 µm2/s). Comparable results and carbonitriding me-
chanism discussion are reported in previous work of 
plasma surface treatment [1,19,20]. Concentration gra-
dient diffusion, surface porous and microcracks were 
suggested for interpretation such high rate of carboni-
triding. Plasma species diffuses into the bulk substrate 
and the activated surface creates microcracks and porous 
(microdefects) [21,22]. These surface microdefects serve 
as effective channels for the incorporation of reactant 
plasma species into the surface immersed in plasma en-
vironment [19]. Further, the fast incorporation of plasma 
species through the grain boundaries is also considered 
as a natural diffusion path. Plasma processing for 8 min, 
was enough to overcome the barrier of native oxide layer. 
Moreover, the carbonitriding layer was not thick and 
dense enough to block the nitrogen-carbon plasma spe-
cies through the microdefects. However, at longer pro- 
cessing plasma times, the wide and dense carbonitrided 
layer decreases the effect of microdefects hence the car-
bonitriding rate should depends mainly on the diffusion 
process.  

3.2. Microstructure Analysis 
The XRD patterns of the carbonitrided samples and the 
as-received substrate are presented in Figure 2. The pat-
terns confirm that the untreated substrate consists mainly 
of fcc γ-austenitic phase and bcc α-ferritic phase [11,23, 
24]. After plasma carbonitriding for 4 min, broaden peak 
of austenitic phase is observed which results from the 
interstitial dissolution of carbon atoms in the austenite 
lattice [25,26]. This phase is identified as carbon expanded 
austenite (γC) phase, which is observed with a maximum 
peak shift less than 1%. A similar peak shift of γC-phase  
 

 
Figure 2. X-ray diffraction patterns of the untreated and 
carbonitriding AISI 321 using rf plasma for different pro- 
cessing times. 
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has been observed elsewhere [1,23,26]. Additionally, the 
treated surface contains a further phase of iron carbide 
(Fe2C) which is completely disappeared after increasing 
the plasma-processing times. However, for plasma pro- 
cessing time ≥ 8 min, carbonitriding process induced 
much peak broadening in the austenite phase. This is 
owed to the interstitial dissolution of nitrogen atoms in-
stead of carbon in austenite lattice and the phase is called 
nitrogen expanded austenite (γN). It is combined with a 
lattice expansion of about 6% compared to the as-re- 
ceived substrate, which was in agreement with that esti-
mated by others [1,23,27]. It has been observed that the 
intensity of nitrided phases for the sample treated at 
processing time of 16 min is high. The treated layer 
formed at 16 and 20 min provides traces amount of CrN 
phase with a less intense broad peaks compared to pre-
vious studies [1,23,28] 

3.3. Mechanical and Tribological Properties 
3.3.1. Surface Microhardness 
Hardness is a material property that is interesting for 
mechanical applications. It is correlated with wear resis-
tance and other tribological properties. Figure 3 shows 
the surface microhardness of the untreated and carboni-
trided AISI 321 at different plasma-processing times. 
From this figure one can observe, the microhardness of 
the untreated sample is 196 HV0.1. After carbonitriding 
process, the microhardnes of AISI 321 increases inces-
santly as the plasma-processing time increases up to 16 
min to reach a value of 1468 HV0.1. Afterward the mi-
crohardness decreases to reach a value of 1141 HV0.1 at a 
plasma- processing time of 20 min. The formation of Fe2C, 
γN, γC and the precipitation of CrN on the grain boundaries 
are the main reasons for the increment in the hardness. 
The sample that was treated at a plasma-processing time 
of 16 min recorded high intensity of carbide and nitride 
phases. The low hardness for the sample that was treated  
 

 
Figure 3. Surface microhardness, 100 gf, versus carboni-
triding plasma-processing time. 

at a plasma-processing time of 20 min is ascribed to the 
low intensity of γN and γC phases. The expansion of ni-
tride and carbide phases might block the formed micro-
cracks in the treated layer. Therefore, the penetration rate 
of nitrogen and carbon species through these microcracks 
decreases. Consequently, the nitrogen and carbon con-
centration in the far depth region of the compound layer 
decreases and the microhardness reduces to lower values 
[29]. 

3.3.2. Wear Performance 
Figure 4 shows the optical micrograph of the wear track 
of the untreated and carbonitrided AISI 321 samples at 
different plasma-processing times. Generally, it has been 
observed that the track width of carbonitrided samples is 
narrower than that of the untreated sample, demonstrat-
ing the augmentation in wear resistance for the carboni- 
 

 
Figure 4. Wear track of (a) untreated and carbonitriding 
samples for plasma-processing time (b) 4 min and (c) 8 min. 
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trided samples. It has been reported that, the improve-
ment of mechanical and tribological properties is as-
cribed to the surface strengthening resulting from the 
formation of carbon/nitrogen solid solution hard phases 
and CrN precipitates in the near-surface region [30]. The 
high hardness of these phases combining with high duc-
tility imparts considerable strength to the surface and 
accordingly enrichment in wear resistance. During the 
wear measurements, the recording of the friction coeffi-
cient was incessantly measured by using a force sensor. 
Figure 5 represents the friction coefficient of the un-
treated and carbonitrided AISI 321 samples at different 
plasma-processing times. From this figure one can ob-
serve that, the friction coefficient for the carbonitrided 
samples decreases from nearly 0.5 for the untreated sam-
ple to nearly 0.25 for all carbonitrided samples; repre- 
senting a reduction of 50%. The subsistence of a large 
volume fraction of nitrogen and carbon species modifies 
the surface composition that accompanied by a reduction 
in coefficient of friction and enhancement in wear resis-
tance. 

3.3.3. Surface Roughness 
Figure 6 shows the roughness average (Ra) for the un-
treated and carbonitrided AISI 321 samples at different 
plasma-processing time. One can see from this figure, the 
as–received sample recorded an initial surface roughness 
of approximately 0.35 µm. The Ra decreased to approx-
imately 0.26 µm for the carbonitrided samples. The for-
mation of CN amorphous layer on the top surface of the 
carbonitrided samples could be the reason for the de-
crease in the surface roughness. This layer is previously 
reported by Abd El-Rahman [1] and acts as a mask for 
the irregularities on the top surface. 

3.3.4. Surface Energy 
Figure 7 shows the surface energy and the contact angle  
 

 
Figure 5. Friction coefficient variation with plasma-pro- 
cessing time of untreated and carbonitrided AISI 321. 

 
Figure 6. Diagram representing average roughness (Ra) for 
untreated and treated AISI 321 samples. 
 

 
Figure 7. Contact angle and surface energy variation as a 
function of plasma-processing time. 
 
for the untreated and carbonitrided AISI 321 samples at 
different plasma-processing times. One can observe from 
this figure that the surface energy increases as the plas-
ma-processing time increases up to 16 min to reach a 
value of 70.2 mN/m. After that it decreases to reach a 
value of 62 mN/m for a plasma processing time of 20 
min. The surface wettability has the same behavior of 
surface energy. The data trend of surface energy has been 
correlated with the surface microhardness. There are 
numerous reports demonstrated that the surface energy 
increases with increasing the surface microhardness 
[29,31-33]. The formation of Fe2C, γN, γC and CrN hard 
phases increase the surface strengthening and conse-
quently increase the surface energy.  

3.3.5. Corrosion Performance 
Figure 8 displays open circuit potential (OCP) versus 
immersion time for untreated and treated samples in a 
corrosive medium of Ringer’s solution at room tempera- 
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Figure 8. Open circuit potential of untreated and carboni-
trided samples; were immersed in Ringer’s solution for 
3000 s. 
 
ture. It is measured between the working and reference 
electrodes when no potential or current is being applied 
to the cell. The OCP curve is used as a criterion for the 
characterization of corrosion behaviors. It is presently 
used to determine approximately the potential at which 
the metallic surface freely corrodes. The typical value of 
the corrosion potential can be determined from potenti-
odynamic polarization tests. As shown in Figure 8, the 
open circuit potential for the untreated sample decreases 
gradually with increasing the immersion time up to 400 
sec. After that, it rabidly decreases to a negative value of 
−50 mv. A continues descent can be seen up to a steady- 
state negative potential of −100 mv with further increase 
of the immersion time. The rapid decay is owing to the 
dissolution of a passive film, which is thin (order of na-
nometer) oxide layer that form on the metal surface [34]. 
However, reaching a steady potential is an indicator for 
the formation of a passive film on the surface; giving a 
protective character to the AISI 321 steel [35]. For the 
sample treated at processing time of 4 min, the OCP in-
creases up to about 205 mv followed by a decrease with 
similar behavior to that of the untreated, but with a posi-
tive potential around 150 mv. On the other hand, the 
OCP of the samples treated at higher processing time ˃ 4 
min increase with further increase of the immersion time 
and tend to reach a higher steady state positive potential 
compared with the untreated one. The higher positive 
potential values reflecting the formation of strong passive 
layer with the existence of dense carbonitriding layer 
consists of nitrogen and carbon solid solutions [36,37]. 
Moreover, the OCP profile of the sample treated at 
processing time of 8 min has higher positive shift (136 
mv) while the samples treated for 16 and 20 min, have 62 
and 70 mv, respectively. Consequently, the sample sur-
face has more noble effect and leads to low corrosion 
rate and high corrosion resistance. 

Potentiodynamic polarization curves of untreated and 
treated AISI 321 samples immersed in Ringer’s solution 
are shown in Figure 9. Potentiodynamic polarization 
curve expresses anodic- and cathodic-polarization reac- 
tions that can take place on the immersed surface. The 
corrosion potential and current for all investigated sam- 
ples are summarized in Table 1. The measured corrosion 
potentials for the AISI 321 treated samples show more 
positive values than the untreated, which means that the 
treated layer needs more energy to initiate the corrosion 
reaction [38]. The sample treated at processing time of 8 
min shows a maximum corrosion potential and a min- 
imum corrosion current in comparison with the other 
samples. Wen-Ta Tsai and Shyan-Liang Chou have re- 
ported that the nitrogen has beneficial effect on improv- 
ing the corrosion potential [39]. Further, the solid solu- 
tion γC and γN phases have more passivity than the auste- 
nite phase [36,40,41]. It is also observed that the un- 
treated sample suffers from pitting corrosion at high po- 
tential of 1000 mv but sample carbonitrided at processing 
time of 8 min reveals a clear improve in the passive 
range and achieves high pitting corrosion resistance. On 
the other hand, traces of CrN phase are detected in the 
samples treated for 16 and 20 min, leading to a degrada- 
 

 
Figure 9. Tafel curves of the untreated and carbonitrided 
samples for different plasma-processing times measured in 
Ringer’s solution. 
 
Table 1. Corrosion data for untreated and treated samples 
investigated in Ringer’s solution. 

Plasma  
processing time (min) 

Icorr  
(×10−4 mA/cm2) 

Ecorr 
(mv) 

Corrosion Rate 
(×10−3 mm/year) 

As-received AISI-321 8.566 83.97 1.08 

4 107.53 205.25 13.58 

8 7.316 317.28 0.90 

16 48.5 189.70 6.13 

20 46.4 196.10 5.86 
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tion in the corrosion resistance which meets high corro-
sion current density and low corrosion potential [42,43]. 
However, the sample treated at 4 min exhibits lowest 
corrosion resistance which might be ascribed to the dif-
ference in the microstructure with the absence of nitrides. 

3.4. Biocompatibility Tests 
Figures 10 and 11 show the cell culture and protein ad-
sorption on the carbonitrided surfaces for different plas-
ma processing times in comparison with the untreated 
AISI 321 surface. The untreated surface has not any at-
tracted blood cells or protein adsorption. The low posi-
tively surface charge and the relatively low surface 
energy are the main causes. The surface charge of a solid 
surface is one of the important factors affecting the ad-
sorption and desorption behaviors of proteins [44]. Once 
the austenitic substrate is carbonitrided, the surface be-
came more active by increasing its positively surface 
charge in the phosphate buffer solution; leading to attract 
more blood cells under the attractive Coulomb force be-
tween the positively charged surface and negatively 
charged blood cells. At these conditions, the modified 
surface has the ability to capture blood cells from the 
solution with high adhesion. The same behavior is ob-
served for the protein adsorption as shown in Figure 11. 
 

 
Figure 10. blood cells adhesion on untreated and carboni- 
trided samples; were immersed in blood culture for 3 days. 
 

 
Figure 11. BSA adsorption onto untreated and carboni- 
trided samples; for one day immersion in phosphate buffer 
solution at constant PH of 7.4. 

As shown in Figure 7, the AISI 321 surface modified 
for different plasma processing times has a varied contact 
angles, wettability and surface energy due to changing in 
the microstructure which provide different manner to 
cells adhesion and protein adsorption. Further, the exis-
tence of CrN precipitates on the surface of the treated 
samples at higher times lead to increase the number of 
cell adhesion and density of adsorbed protein [45]. This 
behavior is typically observed for sample treated at 
plasma processing time of 16 and 20 min which have 
higher values of surface energy and wettability compared 
to other samples. 

It is well known that, surface morphology, structure 
and surface wettability influence on blood cells adhesion 
and protein adsorption [46]. However, the effect of sur-
face energy has found to be more significant compared to 
the surface roughness on cellular adhesion strength and 
proliferation [46]. It means that, samples with high sur-
face roughness not always reflect an improvement in the 
cell adhesion [47]. Furthermore, the cell adhesion and 
protein adsorption are found to be much improved by the 
enhancement of the wettability characteristics of the 
treated surfaces [46,48]. 

4. Conclusion 
RF plasma carbonitriding achieved a modified surface 
layer into AISI 321 substrate with a layer thickness va-
ried from 6.5 µm up to 30 µm. It has been found that the 
nitrogen/carbon solid solutions improve the surface hard- 
ness of the treated layer by more than 7 times compared 
to the untreated one. The tribological performance of the 
carbonitrided layer has been improved with a significant 
decrease in the friction coefficient and increase in wear 
resistance. The contact angle of the modified surface, and 
thus the wettability can be controlled through the time of 
the plasma processing. Moreover, the modified micro-
structure enriched with nitrogen solid solutions led to a 
relative improvement in the corrosion resistance of sam-
ple treated for plasma time of 8 min. Considering the 
blood cell culture and protein adsorption tests, excellent 
results were established for the biocompatibility perfor-
mance of the modified AISI 321 samples in comparison 
with the untreated one.  
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