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ABSTRACT 

We have employed a recent implementation of genetic algorithms to study a range of standard benchmark functions for 
global optimization. It turns out that some of them are not very useful as challenging test functions, since they neither 
allow for a discrimination between different variants of genetic operators nor exhibit a dimensionality scaling resem-
bling that of real-world problems, for example that of global structure optimization of atomic and molecular clusters. 
The latter properties seem to be simulated better by two other types of benchmark functions. One type is designed to be 
deceptive, exemplified here by Lunacek’s function. The other type offers additional advantages of markedly increased 
complexity and of broad tunability in search space characteristics. For the latter type, we use an implementation based 
on randomly distributed Gaussians. We advocate the use of the latter types of test functions for algorithm development 
and benchmarking. 
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1. Introduction 

Global optimization has a lot of real-world applications, 
both of discrete and non-discrete nature. Among them are 
chemical applications such as structure optimization of 
molecules and clusters, engineering problems such as 
component design, logistics problems like scheduling 
and routing, and many others. Despite the typical practi-
cal finding that a general global optimization algorithm 
usually is much less efficient than specific versions tuned 
to the problem at hand, it is still of interest to gauge the 
baseline performance of a global optimization scheme 
using benchmark problems. Even in the most recent ex-
amples of such tests [1-6] (selected at random from the 
recent literature), it is customary to employ certain stan-
dard benchmark functions, with the implicit (but untested) 
assumption that the difficulty of these benchmark func-
tions roughly matches that of real-world applications. 
Some of these benchmark functions even are advertised 
as particularly challenging.  

We have developed evolutionary algorithm (EA) 
based global optimization strategies in the challenging, 
real-life area of atomic and molecular cluster structure 
optimization [7-12]. When we apply our algorithms to 
those traditional, abstract benchmark functions, however, 
neither of those two claims (challenge, and similarity to 
real-world applications) stands up. In fact, similar suspi-
cions have been voiced earlier. For example, already in 
1996 Whitley et al. [13] argued that many of the standard  

benchmark functions should be relatively easily solvable 
due to inherent characteristics like symmetry and separa-
bility. Some functions even appeared to get easier as the 
dimensionality of the function increases. Nevertheless, as 
the citations in the previous paragraph indicate, the same 
set of traditional benchmark functions continues to be 
used indiscriminately to the present day, by the majority 
of researchers in various fields. Therefore, with the pre-
sent article, we address the need to re-emphasize those 
earlier findings from a practical point of view, add in 
other test functions, and extend the testing to higher di-
mensionality. In addition, we stress the conclusions that 
these traditional benchmark problems appear to be too 
simple to allow for meaningful comparisons between 
algorithms or implementation details, and that they do 
not allow conclusions about the performance of global 
optimization algorithms in real-life situations. We show 
that the latter is achieved better when using different 
kinds of benchmark functions. 

In these contexts, theoretical considerations often fo-
cus on classifying a problem as N or NP [14,15], or on 
evaluation of marginally different parameter representa-
tions [13,16] or hybrid combinations of known test func-
tions [13]. Additionally, translations and rotations as well 
as randomized noise are typically added to the normal 
benchmark functions [6]. Albeit being a potentially vi-
able approach to complicate the benchmark, it constrains 
the comparability of different benchmark results by in-
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troducing additional parameters and thereby incompati-
bilities. As this is of central importance when comparing 
independently developed, novel algorithms, this discus-
sion will not contain benchmark functions modified in 
this manner. Quite independent of such problem classifi-
cations and algorithm characteristics, however, in most 
real-world applications scaling with problem dimension 
(i.e. number of parameters to be optimized) plays a piv-
otal role. Chemical structure optimization of clusters is 
an obvious example: Of central practical importance are 
phenomena like cluster aggregation and fragmentation, 
or the dependence of properties on cluster size, while 
isolating a single cluster size is a formidable experimen-
tal challenge. Therefore, one does not study a single 
cluster size but tries to systematically study a range of 
clusters [8,9,17-19], only limited by the maximum com-
puting capacity one has. It is obvious that smallest de-
creases in scaling (e.g. from (N3.5) to (N3)) may allow 
for significantly larger cluster sizes to be studied. 

The problem dimensionality scaling of the number of 
global optimization steps needed is of course linked to 
features of the global optimization algorithm. For evolu-
tionary algorithms, this includes crossover and mutation 
operators, possible local optimization steps and prob-
lem-specifically tuned additional operators. We would 
like to present here latest results of some standard 
benchmark functions in the context of our recently de-
veloped framework for the evolutionary global optimiza-
tion of chemical problems, OGOLEM [11]. By screening 
the needed amount of global minimizing steps for solv-
ing up to 500 (in one case 10,000) dimensional bench-
mark functions, we obtain the scaling of different cross-
over operators with the dimensionality of these functions. 
Additionally, we compare runs with and without local 
optimization steps in some cases to investigate the effect 
of gradient based minimization on the scaling. Last but 
not least, we compare the performance on these standard 
benchmark functions with that on different kinds of 
benchmark function that apparently present more serious 
challenges, coming closer to real-world problems in 
some respects. 

The present work contributes to defining a new base-
line and standard for benchmarking global optimization 
algorithms. By demonstrating how a modern implemen-
tation of genetic algorithms scales in solving the re-  

viewed benchmark functions, we want to encourage 
other developers of global optimization techniques to 
report not only results for a particular dimensionality of a 
defined benchmark function but focus on the scaling be-
haviour and compare their results to our empirical base-
line. 

2. Methods and Techniques 

All calculations mentioned in this paper were carried out 
using our OGOLEM framework [11] written in Java with 
SMP parallelism enabled. Since differing concurrency 
conditions can obviously have an impact on the bench-
marking results, all calculations were carried out with 24 
concurrent threads. 

OGOLEM is using a genetic algorithm (GA), loosely 
based on the standard GA proposed in Ref. [20] but dif-
fering in the treatment of the genetic population. Instead 
of a classical generation based global optimization scheme, 
a pool algorithm [10] is used. This has the advantage of 
both eliminating serial bottlenecks and reducing the 
number of tunables since, e.g. elitism is build-in and no 
rate needs to be explicitly specified.  

Tunables remaining with this approach are mentioned 
in Table 1 with values kept constant in the benchmark 
runs. 

The genetic operators are based upon a real number 
representation of the parameters. Within the crossover 
operator, the cutting is genotype-based. Different cross-
over operators used below differ only in the numbers and 
positions of cuts through the genome. The positions are 
defined by randomized number(s) either being linearly 
distributed or Gaussian distributed1, with the maximum 
of the Gaussian being in the middle of the genome and 
with the resulting Gaussian-distributed random numbers 
multiplied with 0.3 to make the distribution sharper. In 
Table 2 the used algorithms are summarized and ex-
plained. 

Mutation and mating are the same for all algorithms 
and tests. The mutation is a standard one-point genotype 
mutation with a probability of 5%. The actual gene to be 
mutated is chosen with a linearly distributed random 
number and replaced with a random number in between 
allowed borders specific to every function, application, 
or parameter. 

 
Table 1. Tunables in the pool algorithm and their values during the benchmark. 

Tunable (pool approach) Representation (generation approach) Value 

pool size generation size 1000 

Global optimization steps Generation size times number of generations Till minimum is reached 

Fitness diversity Threshold which individuals are considered to be the same 10−8 

 
 

1We are using in both cases the standard PRNG provided by the Java Virtual Machine (JVM) and defined by the Java standard. 
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Table 2. Definition of the used algorithms. 

Algorithm Crossing Number of crossings Crossing point

Holland No 0 n/a 

Germany Yes 1 Gaussian 

Portugal: 1 Yes 1 Linear 

Portugal: 3 Yes 3 Linear 

Portugal: 5 Yes 5 Linear 

Portugal: 7 Yes 7 Linear 

 
Mating is accomplished by choosing two parents from 

the genetic pool. The mother is chosen purely randomly, 
whilst the father is chosen based on a fitness criterion. 
All structures in the pool are ranked by their fitness, a 
Gaussian distributed random number shaped with the 
factor 0.1 is chosen with its absolute value mapped to the 
rank in the pool. 

If a local optimization step is carried out, it is a stan-
dard L-BFGS, as described in Ref. [21,22] and imple-
mented in RISO [23], with very tight convergence crite-
ria (e.g. 10−8 in fitness). The needed gradients are ana-
lytical in all cases. 

Once the crossing, mutation and (if applicable) local 
optimization steps have been carried out on both children, 
only the fitter one will be returned to the pool. This fitter 
child will actually be added to the pool if it has a lower 
function value than the individual with the highest func-
tion value in the pool and does not violate the fitness 
diversity criterion. The fitness diversity is a measure to 
avoid premature convergence of the pool. Additionally, it 
promotes exploration by maintaining a minimum level of 
search space diversity, indirectly controlled via fitness 
values. For example, by assuming that two individuals 
with the same fitness (within a threshold) are the same, it 
eliminates duplicates. Since the pool size stays constant, 
the worst individual will be dropped automatically, 
keeping the pool dynamically updated. 

For the benchmarking, we do not measure timings 
since they are of course dependent upon convergence 
criteria of the local optimization and potentially even on 
the exact algorithm used for the local optimization (e.g. 
L-BFGS vs. BFGS vs. CG). Therefore, our benchmark-
ing procedure measures the number of global optimiza-
tion steps where a step is defined to consist of mating, 
crossing, mutation and (if applicable) local optimization. 
The second difficulty is to define when the global opti-
mum is found. We are using the function value as a crite-
rion, trying to minimize the amount of bias one intro-
duces by any measure. 

It should be explicitly noted here that within the 
benchmarking of a given test function, this value stays 
constant in all dimensionalities which should in principle 

increase the difficulty with higher dimensionalities, again 
minimizing the amount of (positive) bias introduced. For 
all local tests with local optimization enabled, five inde-
pendent runs have been carried out and a standard devia-
tion is given. 

3. Standard Benchmark Functions 

Any approach towards global optimization should be 
validated with a set of published benchmark functions 
and/or problems. In the area of benchmark functions a 
broad range of published test functions exists, designed 
to stress different parts of a global optimization algo-
rithm. Among the most popular ones are Schwefel’s, 
Rastrigin’s, Ackley’s, Schaffer’s F7 and Schaffer’s F6 
functions. They have the strength of an analytical ex-
pression with a known global minimum and, in the case 
of all but the last function, they are extendable to arbi-
trary dimensionality allowing for scaling investigations. 
Contrary to assumptions made frequently, however, most 
of these benchmark functions do not allow to discrimi-
nate between algorithmic variations in the global optimi-
zation, nor do they give a true impression of the diffi-
culty to be expected in real-life applications, as we will 
demonstrate in the following subsections. 

3.1. Ackley’s Function 

Ackley's function has been first published in Ref. [24] 
and has been extended to arbitrary dimensionality in Ref. 
[25]. It is of the form 
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with the global minimum at xi = 0.0. We considered this 
to be a relatively trivial function due to its shape consist-
ing of a single funnel (see Figure 1). Nevertheless, this 
function type potentially has relevance for real-world 
applications since, e.g., the free energy hypersurface of 
proteins is considered to be of similar, yet less symmetric, 
shape. 

The initial randomized points were drawn from the in-
terval 

32.768 32.768ix              (2) 

for all xi, which is to our knowledge the normal bench-
mark procedure for this function. 

As can be seen from Figure 2, without local optimiza-
tion steps the choice of genotype operator makes almost 
no difference; all cases exhibit excellent linear scaling. 
The only deviating case is the mutation-only algorithm, 
Holland, which has a higher prefactor in comparison to  
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4 

Figure 1. 2D-plot of Ackley’s Function, full search space 
(top) and fine structure (bottom). 
 

 

 

Figure 2. Scaling results for Ackley’s function, without (top) 
and with local optimization (bottom). 
 
the other algorithms but still exhibits the same (linear) 
scaling. With local optimization enabled, the results do 

vary more. Results up to 500 dimensions do not allow for 
a concise statement on the superiority of a specific 
crossover operator. We therefore extended the bench-
marking range up to one thousand dimensions, hoping 
for a clearer picture. It should be noted here that on a 
standard contemporary 24-core compute node, these cal-
culations took 3.5 minutes on average (openJDK7 on an 
openSUSE 11.4), demonstrating the good performance of 
our framework. 

Still, these results obviously allow for the conclusion 
that Ackley’s benchmark function should be considered 
to be of trivial difficulty since linear scaling is achievable 
already without local optimization. Any state-of-the-art 
global optimization algorithm should be capable of solv-
ing it with a scaling close to linear. 

Also, we want to demonstrate an interesting aspect of 
Ackley’s benchmark function when manipulating the 
analytical gradient expression in a distinct manner. In 
general the modification of gradients in order to simplify 
the problem is not unheard of in applications of global 
optimization techniques to chemical problems (see e.g. 
Ref. [26]) and we therefore consider it to be of interest. 
The analytical gradient for a gradient element i is defined 
as 
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does not only drastically simplify the gradient expression, 
but also further helps to simplify the global optimization 
problem. As can be seen in Figure 3, this simplification 
effectively decouples the dimensions, thereby smoothing 
the search space. 

With this simplification in place, Ackley’s function 
can be solved by simply locally optimizing a couple of 
randomized individuals (the first step of our global opti-  
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Figure 3. Contour plots of gradient element ×1 of a 2D Ack-
ley’s Function, exact (top) and simplified (bottom). 
 
mization algorithms) up to 10000 dimensions with con-
stant effort (see Figure 4). 

3.2. Rastrigin’s Function 

Rastrigin’s function [27,28] does have fewer minima 
within the defined search space of 

5.12 5.12ix               (8) 

but its overall shape is flatter than Ackley’s function 
which should complicate the general convergence to-
wards the global optimum at xi = 0.0. 

We defined Rastrigin’s function (Figure 5) with an 
additional harmonic potential outside the search space to 
force the solution to stay within those boundaries when 
using unrestricted local optimization steps. 
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As can be seen from Figure 6, the scaling is excellent 
with all tested crossing operators; Holland again being 
the easily rationalizable exception, in the case without 
local optimization. In the case with local optimization, a 
contrasting picture can be seen. 

The scaling once more does not deviate much between 
the different algorithms with the prefactor making the 
major difference. Interestingly, by far the best prefactor 
and scaling is obtained with Holland. Probably, the 
rather non-intrusive behaviour of a mutation-only opera-
tor fits this problem best since it provides a better 
short-range exploration than any of the crossing algo-
rithms. We assume the rather high number of global op-
timization steps (also in comparison to the non-locopt 
case) to be due to a repeated finding of the same, non- 

 

Figure 4. Scaling behavior of Ackley’s function with a 
modified gradient expression. 
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Figure 5. 2D plot of Rastrigin’s function. 
 
optimal minima. Inclusion of taboo-search features [29] 
into the algorithm might be of help for real-world prob-
lems of such a type, not reducing the number of global 
optimization steps but the amount of time spent in local 
optimizations rediscovering already known minima. 

Just as Ackley’s function discussed earlier, it is possi-
ble to conclude that Rastrigin’s function should be solv-
able with almost linear scaling using contemporary algo-
rithms. 

3.3. Schwefel’s Function 

In comparision to Rastrigin’s function, Schwefel’s func-
tion [30] (Figure 7) adds the difficulty of being less 
symmetric and having the global minimum at the edge of 
the search space 

500.0 500.0ix              (10) 

at position xi = 420.9687. Additionally, there is no over-
all, guiding slope towards the global minimum like in 
Ackley’s, or less extreme, in Rastrigin’s function. 

Again, we added a harmonic potential around the 
search space 
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Figure 6. Scaling results for Rastrigin’s function; without 
local optimization (top), with local optimization (middle) 
and zoom with local optimization (bottom). 
 

 

Figure 7. 2D plot of Schwefel’s function. 

since otherwise our unrestricted local optimization finds 
lower-lying minima outside the principal borders. As can 
be seen from Figure 8, sub-quadratic scaling can be 
achieved with and without local optimization. Once more, 
without local optimization the non-crossing algorithm 
has a higher prefactor but the same scaling as the others, 
which is equalized when turning on local optimizations. 
In this particular case, the usage of local optimization 
steps has the potential to slightly affect the scaling from 
1.15 to 1.75. 

Again, we must come to the conclusion that a sub- 
quadratic scaling is far better than what we would expect 
to obtain for real-world problems, restricting the usage of 
Schwefel’s function as a test-case for algorithms de-
signed to solve the latter. 

3.4. Schaffer’s F7 Function 

Schaffer’s F7 function is defined as 
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Figure 8. Scaling results for Schwefel’s function, without 
(top) and with local optimization (bottom). 
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in n-dimensional space within the boundaries 

100.0 100.0ix               (14) 

As can be seen from Figure 9, concentric barriers 
need to be overcome to reach the global minimum xi = 
0.0. 

Judging from the results depicted in Figure 10, this 
function is capable of discriminating between different 
algorithmic implementations. For the Gaussian-based 
single point crossover (germany) the scaling is quartic, 
while all the other algorithms are scaling linearly with 
the problem size. The sublinear scaling is an artifact of 
the high ratio of crossover cuts (up to seven) to problem 
size (only 40D) and it can be expected to increase to lin-
ear for higher dimensionalities. Interestingly, the per-
formance of the mutation-only algorithm again is on par 
with the algorithms employing crossover operators. We 
see such a bias with all the benchmark functions so far, 
and this does not conform to our experience with real-life 
problems. Therefore, conclusions on the importance of 
mutation for global optimization may be too positive 
when based on an analysis using only these functions. 

Nevertheless, we consider Schaffer’s F7 function the 
most interesting of the benchmark functions studied so 
far. It should be explicitly noted though that a forty-di- 
mensional problem size will definitely be too small when 
exclusively analyzing algorithms employing multiple 
crossover cuts. 
 

 

Figure 9. Schaffer’s F7 function, full search space (top) and 
fine structure (bottom). 

 

 

Figure 10. Scaling results for Schaffer’s F7 function, with 
local optimization. 

3.5. Schaffer’s F6 Function 

For completeness, we would like to present some non- 
scaling results using Schaffer’s F6 function as a bench- 
mark: 
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As can be seen in Figure 11, the difficulty in this 
function is that the size of the potential maxima that need 
to be overcome to get to a minimum increases the closer 
one gets to the global minimum. 

In Table 3, results can be found which were obtained 
with Holland and with the one-point crossover operators 
(obviously, with a real-number encoded genotype ap-
proach, not more cuts can take place for a two-dimen- 
sional function). The results are outcomes of three suc-
cessive runs which is sufficient to obtain a general pic-
ture of the trend. 

The difference between the Portugal and Germany 
approach in this very special case is that Germany in 
contrast to Portugal can also yield a crossover point be-
fore the first number, effectively reducing it to a partial 
non-crossing approach. 

Interestingly, we do see converse tendencies between  
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Figure 11. Plot of Schaffer’s F6 function. 
 
Table 3. Different results for Schaffer’s F6 function with 
one-point and zero-point crossover operators. 

Algorithm w/Locopt w/o Locopt 

Holland 990 ± 325 180,284 ± 134,848 

Germany 1901 ± 1282 1,609,516 ± 1,905,293

Portugal:1 620 ± 473 832,919 ± 436,006 

 
the case with and without local optimization. We see a 
clear preference of the Germany crossover operator over 
Portugal without local optimization. Taking the results 
of the non-crossing operator into account, it seems clear 
that without local optimization too much crossing is 
harmful in terms of convergence to the global minimum. 
With local optimization enabled, these differences dis-
appear, sometimes even allowing the global minimum to 
be found in the initial (and therefore never crossed) pool 
of solutions. 

Although Schaffer’s function shows an impressive dif-
ficulty for a two-dimensional function, it should still be 
easily solvable with and without local optimization. 

3.6. Scatter of the Benchmarking Results 

Obviously any stochastic approach is difficult to bench-
mark in a reliable manner. Therefore, we would like to 
discuss the scatter of the benchmarking results. We will 
try to approximate possible deviations for every cross-
over operator used with and without local optimization 
for a two hundred dimensional Ackley’s function. For 

this, we present in Table 4 results from ten runs per 
crossover operator used. 

Of course, the results do not and cannot take all or the 
maximum possible deviations into account since in prin-
ciple there should be a probability distribution from a 
single iteration up to infinity which can only be captured 
adequately by an infinite amount of successive runs. 
Nevertheless, ten successive runs can be considered to 
give a rough idea of the location of the maximum. 

The impression gained in the previous sections, 
namely that the exact nature of the genotype operator 
does not seem to make a difference when using local 
optimization, holds true also with enhanced statistics for 
this case. Similarly, the differences seen in the runs 
without local optimizations between the crossing opera-
tors and the non-crossing operator, Holland, remain also 
when averaging over more runs. 

This allows for the conclusion that the results pre-
sented in the previous sections are giving a reasonably 
accurate picture, despite of course suffering from the 
inherent uncertainty in all stochastic methods which 
cannot be circumvented. 

Upon closer examination of the data in Table 4, some 
seemingly systematic trends can be observed, calling for 
speculative explanations. A general tendency observed is 
the reduced spread when local optimization is turned off, 
probably because a higher diversity can be maintained 
providing a better and more reliable convergence. An-
other tendency is the reduced spread when more—or 
no—crossover points are used. In the case of more cross- 
over points this can be explained with more crossover 
points causing bigger changes in each step; this improves 
search space coverage, which in turn makes the runs more 
reproducible. For the reduced scatter of the non-crossing 
 
Table 4. Different results for Schaffer’s F6 function with 
one-point and zero-point crossover operators. 

Algorithm/locopt Maximum (% Dev.) Minimum (% Dev.) Average

Holland (w) 8991 18.5 6113 19.5 7590

Holland (w/o) 10,323,905 13.0 7,805,543 14.5 9,132,168

Germany (w) 11,289 57.1 4758 33.8 7186

Germany (w/o) 4,312,566 28.1 2,704,586 19.6 3,365,305

Portugal1 (w) 20,464 126.8 5191 42.5 9023

Portugal1 (w/o) 4,748,780 36.7 2,095,005 39.7 3,473,084

Portugal3 (w) 7172 27.6 4704 16.3 5621

Portugal3 (w/o) 4,640,199 45.5 2,328,333 27.0 3,189,287

Portugal5 (w) 6268 20.2 4873 6.6 5215

Portugal5 (w/o) 4,745,643 39.4 2,160,887 35.6 3,403,532

Portugal7 (w) 6510 15.3 4858 14.0 5646

Portugal7 (w/o) 4,221,855 29.9 2,541,700 21.8 3,249,622
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operator, the explanation is obviously the opposite, since 
this operator minimizes changes to the genome, allowing 
for a better close-range exploration. 

Despite of these interesting observations, we refrain 
from further analysis since this would lead us outside of 
the scope of the present article. 

4. Gaussian Benchmark Class 

To our experience from the global optimization of che- 
mical systems, real-world problems are considerably 
more challenging than the benchmark functions de-
scribed above. For example, in the case of the relatively 
trivial Lennard-Jones (LJ) clusters, the best scaling we 
could reach is cubic [8]. Therefore, we feel a need for 
benchmarks with a difficulty more closely resembling 
real-world problems. 

Defining new benchmark functions is of course not 
trivial since they should fulfill certain criteria. 
1. Not trivial to solve, 
2. Easy to extend to higher dimensions, causing higher 

difficulty, 
3. Possibility to define an analytical gradient, for gradi-

ent-based methods, 
4. Of multimodal nature, with a single, well-defined 

global minimum. 
To have better control over these criteria when gener-

ating benchmark functions, a few “search landscape gen-
erators” have been proposed in recent years [31-33]. The 
simplest and most flexible of these is the one based on 
randomly distributed Gaussians [31]. For convenience, 
we have used our own implementation of this concept, 
abbreviated GRUNGE (GRUNGE: Randomized, UNcor-
related Gaussian Extrema), defined and discussed in the 
following. We would like to emphasize already at this 
point that our intention in using GRUNGE is not to 
re-iterate known results from Ref. [31] and similar work, 
but to directly contrast the OGOLEM behavior displayed 
in section III with its different behavior in the GRUNGE 
benchmark. This shows strikingly that the rather uniform 
results in section III are not a feature of OGOLEM but 
rather a defect of that benchmark function class. 

We define a function as a set of randomized Gaussians 

   2

0
0 0

, , exp
N M

M i i i j
i j

f x x x  
 


    


 





 (16) 

with the random numbers ξi, ζi and κi being the weight, 
width and position of the i-th Gaussian in M-dimensional 
space. As can be easily seen, this class of benchmarking 
problems provides (besides the search space size) two 
degrees of freedom. One is the number N of randomized 
Gaussians in the search space and M being the dimen-

sionality of the Gaussians2. More subtly, there is also a 
connection between these two characteristics and the 
Gaussian widths within the maximal coordinate interval 
(i.e. the Gaussian density). With proper choices of these 
numbers, one can smoothly tune such a benchmark func-
tion between the two extremes of a “mountain range” 
(many overlapping Gaussians) and a “golf course” (iso-
lated Gaussians with large flat patches in-between). 

Functions in this class of benchmarks are not easy to 
solve, easily extendable in dimensionality and—through 
the use of Gaussians—the definition of an analytical gra-
dient is trivial. The only problem remaining is to pre- 
determine the position and depth of the global minimum. 
Here, other benchmark function generators like, e.g. the 
polynomial ones proposed by Gaviano et al. [33] and 
Locatelli et al. [32], allow for more control, but at the 
price of more uniform overall features of the generated 
test functions, which is exactly what we want to avoid. 
We also do not want to enforce a known global minimum 
by introducing a single, dominating Gaussian with ex-
cessively large weight by hand. Thus, the only remaining 
possibility is to define a fine grid over the search space 
and to run local optimizations starting at every grid point, 
to obtain a complete enumeration of all minima within 
the search space. Due to the simple functional form and 
to the availability of an analytical gradient, this is a real-
istic proposition for moderately-dimensioned examples 
(10D) containing a sufficiently great number of suffi-
ciently wide Gaussians. In contrast to the traditional 
benchmarks examined in the previous sections, the 
GRUNGE function is not deliberately designed to be 
deceptive, in any number of dimensions. Instead, due to 
the heavy use of random numbers in its definition, it does 
not contain any correlations whatsoever. To our experi-
ence, this feature makes GRUNGE benchmarks much 
harder than any of the traditional benchmarks. We cannot 
offer formal proofs at this stage, but our distinct impres-
sion from many years of global optimization experience 
is that realistic problems tend to fall in-between these 
two extremes, being harder than traditional benchmarks 
but less difficult (less uncorrelated) than GRUNGE. 

Obviously, a full exploration of the randomize Gaus-
sians set of benchmark functions requires an exclusive 
and extensive study, which has already been started by 
others [31]. As already mentioned above, our sole inten-
tion here is to provide a contrast to the OGOLEM be-
havior noted in section 3. To this end, we present results 
based on solving a ten-dimensional GRUNGE bench-
mark with 2000 gaussians (GRUNGE[10,2000]) within a 
search space of 

0.0 10.0ix              (17) 

with local optimization enabled. 2As a side note, we write GRUNGE[M,N], e.g. for 2000 gaussians in a 
ten dimensional space GRUNGE[10,2000]. As can be seen from the results in Table 5, the average  
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Table 5. GRUNGE[10,2000] benchmarking results with 
local optimization steps. 

Algorithm Run 1 Run 2 Run 3 Average 

Holland 5725 7676 6228 6543 

Germany 2390 153 5390 2644 

Portugal: 1 3145 7637 4077 4953 

Portugal: 3 1879 2575 1339 1931 

Portugal: 5 2441 1647 4888 2992 

Portugal: 7 5533 369 6322 4074 

 
of three independent runs of all algorithms yields results 
within the same order of magnitude. When comparing 
the numbers in Table 5 with the results given above for 
the conventional benchmark functions, e.g. with those in 
Table 4, one should remember the differences in dimen-
sionality: Here we are dealing with a 10-dimensional 
problem with 2000 minima, whereas in Table 4 we re-
ported the performance on the 200-dimensional Ackley 
function with the number of minima being several orders 
of magnitude higher. This gives an indication of what we 
experience as a big difference in difficulty. 

It should be noted, however, that in two cases the 
global optimum could be found within the locally opti-
mized initial parameter sets. While this demonstrates 
once more that a randomly distributed initial parameter 
set can have an extraordinary fitness, it also indicates that 
higher dimensional GRUNGE benchmarks are necessary 
to better emulate real-world problems. 

We also did some tests without local optimization, 
showing that the GRUNGE benchmark with our ran-
domly generated Gaussians is extremely difficult to solve 
without local optimization, requiring almost 19 million 
global optimization steps with Portugal: 3. We suspect 
that this level of difficulty is related to inherent features 
of the GRUNGE benchmark (e.g. to the completely 
missing correlation between the locations and depths of 
the minima) but also to features of the specific 
GRUNGE[10,2000] incarnation used here (i.e. this par-
ticular Gaussian distribution and density), but decide to 
leave this sidetrack at this point. 

5. Lunacek’s Function 

Lunacek’s function [34], also known as the bi- or dou-
ble-Rastrigin function, is a hybrid function consisting of 
a Rastrigin and a double-sphere part and is designed to 
model the double-funnel character of some difficult LJ 
cases, in particular LJ38. 
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             (19) 

This indicates that there is an interest in developing 
benchmark functions of higher difficulty, and indeed the 
developed function provides an interesting level of diffi-
culty, as we show below. Nevertheless, we would like to 
dispute the notion that it resemb
problems and the source of their difficulty. Specifically, 
Lu

vation that we can support from some tests on 30-di- 

les certain real-world 

nacek et al. claim that the global optimization of ho-
mogeneous LJ clusters is one of the most important ap-
plications of global optimization in the field of computa-
tional chemistry. Furthermore, they claim that the most 
difficult instances of the LJ problem possess a dou-
ble-funnel landscape. The former claim is a rather biased 
view and promotes the importance of homogenous LJ 
clusters from a mere benchmark system to a hot-spot of 
current research. As the broad literature on global cluster 
structure optimization documents (cf. Reviews [11,35-37] 
and references cited therein), current challenges in this 
field rather are directed towards additional complications 
in real-life applications, e.g. how to taylor search steps to 
dual-level challenges of intra- and intermolecular con-
formational search in clusters of flexible molecules, or 
how to reconcile the vast number of necessary function 
evaluations with their excessive cost at the ab-initio 
quantum chemistry level. In terms of search difficulty, 
the homogeneous LJ case is now recognized as rather 
easy for most cluster sizes, interspersed with a few more 
challenging problem realizations at certain sizes, with 
LJ38 being the smallest and hence the simplest of them. 
This connects to the second claim by Lunacek et al., 
namely that the difficulty of LJ38 arises from the dou-
ble-funnel shape of its search landscape, which is cap-
tured by their test function design. It is indeed tempting 
to conclude from the disconnectivity graph analysis by 
Doye, Miller and Wales [38] that there are two funnels, a 
narrow one containing the fcc global minimum, separated 
by a high barrier from the broad but less deep one con-
taining all the icosahedral minima. Even if this were true 
(to our knowledge, such a neat separation of the two 
structural types in search space has not been shown), it 
would give rise to only two funnels in a 108-dimensional 
search space, which is not necessarily an overwhelming 
challenge and also not quite the same as what Equation 
18 offers. Lunacek’s function is specifically designed to 
poison global optimization strategies working with big-
ger population sizes. This is achieved through the double 
sphere contribution which constructs in every dimension 
a fake minimum, e.g. when using the settings s = 0.7, d = 
1.0, with the optimal minimum located at xi = 2.5. As 
Lunacek et al. have proven in their initial publication, the 
function is very efficient in doing this. This is an obser-
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mensional cases. 
Clearly, this is a markedly different behavior than that 

observed above for Ackley’s, Rastrigin’s, Schwefel’s or 
Schaffer’s functions, coming closer to what we experi-
enced in tough application cases. Therefore, it is not sur-
prising that additional measures developed there are also 
of some help here. One possibility is to adopt a niching 
strategy, similar to what was applied to reduce the solu-
tio

er dimensionalities (e.g. 100D) with this 
ap

Dimensio-nality Static grid Steps to solution MNIC

n expense for the tough cases of homogenous LJ clus-
ters to that of the simpler ones [8]. In essence, this en-
sures a minimum amount of diversity in the population, 
preventing premature collapse into a non-globally opti-
mal solution. 

The most trivial implementation of niching is to em-
ploy a static grid over search space and to allow only a 
certain maximal population per grid cell (MNIC, maxi-
mum number of individuals per grid cell). Already this 
trivial change allows the previously unsolvable function 
to be solved in 30 dimensions, as can be seen from Table 
6. Solving high

proach suffers again from dimensionality explosion, 
this time in the number of grid cells. Additionally, such a 
basic implementation truncates the exploitation abilities 
of the global optimization algorithm. This causes the 
algorithm with static niches to require more steps in 
those low dimensional cases where the problem can also 
be solved without. From our experience with LJ clusters, 
we expect more advanced niching strategies, for example 
dynamic grids, to prove useful with higher dimensional-
ities and render the function even less difficult. 
 
Table 6. Exemplary benchmarking results of the Lunacek 
function. All results obtained with local optimization and 
the germany algorithm. Not found corresponds to more 
than 10 million unsuccessful global optimization steps. 
MNIC is the maximum number of individuals allowed per 
grid cell. 

2 w/o 833 n/a 

 w 1063 250 

5 w/o 2186 n/a 

 w 4184 100 

13,

15 w/o 45

60

20 w/o Not 

1,

30 w/o No

 w 2,826,707 20 

10 w/o 392,006 n/a 

 w 922 100 

9,317 n/a 

 w 4,954 50 

found n/a 

 w 153,811 50 

t found n/a 

As it seems to b  wi rea
cations do contain so  degree of dece
differen egrees of m a correlation ll a if-
ferent landscape characteristics, samplin ssib es 
betwee lf courses nnels. All n b p-
tured with the GRUNGE setup. It thus offers all the nec-
essary flexibility and simplicity, com  a single 
functio finition. T bvious dow e th b-
sence of a pre-defined bal minimu  ca so 
be

real-world problems (often in-
cluding system-specific additions): All benchmarks but 

atic scaling, whereas in 

e common sdom in this a , appli-
me
inim

ptiveness
, as we

 and 
s dt d

g all po iliti
n go and fu of that ca e ca

bined in
n de he o nsides ar e a

glo m (which n al
 interpreted as a guarantee for avoiding biases towards 

it) and the need to tune many parameters to achieve a 
desired landscape shape. 

6. Summary and Outlook 

Scaling investigations for four different, standard 
benchmark functions have been presented, supplemented 
by performance tests on a fifth function. Using straight-
forward GA techniques without problem-specific ingre-
dients, the behavior we observe in all these cases is 
markedly different from what we observe upon applying 
the same techniques to 

one can be solved with sub-quadr
real-world applications we can get cubic scaling at best 
and often have to settle for much worse. In addition, the 
benchmarks often do not allow for statistically significant 
conclusions regarding the performance of different 
crossover operators, nor for a decision on whether to 
include local optimization or not. Thus, overall, bench-
marks of this type do not seem to fulfill their purpose of 
test beds with relevance for practical applications in 
global cluster structure optimization or similar areas. 

We have contrasted the behavior on those traditional 
benchmark functions with that on two different types of 
functions. One type is the “landscape generator” class, 
shown here in a particularly simple realization, namely 
search landscapes generated by randomly distributed 
Gaussians. Varying Gaussian characteristics (depth, 
width, density, dimensionality), search space features can 
be tuned at will, on the full scale between a “mountain 
range” and a “golf course”. In addition, since the consti-
tuting Gaussians are completely uncorrelated, the diffi-
culty of this problem class is inherently larger than that 
of the traditional benchmark functions where the minima 
characteristics follow a simple rule by construction. This 
is strikingly reflected in our tests results on this bench-
mark class. 

As yet another class of benchmark functions we have 
shown the deceptive type, designed to lead global opti-
mization astray. Their difficulty can be diminished sig-
nificantly by making the global search more sophisti-
cated, in the case of population-based searches by ensur-
ing a sufficient degree of diversity in the population. 
Given a sufficiently flexible setup, this benchmark class 
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merely is a subclass of the landscape generators. 
Further work will be required to confirm our suspicion 

that real-world problems often fall in-between the t
tio

tion al

doi:10.1016/j.amc.2010.01.071

radi-
nal, rather simple benchmark functions on the one 

hand and the less correlated, more deceptive ones on the 
other hand, both with respect to their search space char-
acteristics and to the difficulty they present for global 
optimization algorithms. In any case, we hope to have 
shown convincingly that due to their simplicity functions 
from the traditional benchmark functions should not be 
used on their own, neither to aid global optimiza
go

-
rithm development nor to judge performance. 
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