
Applied Mathematics, 2012, 3, 1351-1356 
http://dx.doi.org/10.4236/am.2012.330191 Published Online October 2012 (http://www.SciRP.org/journal/am) 

Analysis of Ringing and Noise in FE and FDTD Calculated 
Acoustic Pulse Profiles 

Arthur Every1, Laurent Aebi2, Jurg Dual2 
1School of Physics, University of the Witwatersrand, Johannesburg, South Africa 
2Department of Mechanical and Process Engineering, ETH, Zurich, Switzerland 

Email: arthur.every@wits.ac.za 
 

Received July 3, 2012; revised August 6, 2012; accepted August 13, 2012 

ABSTRACT 

Ringing, i.e. the emergence of an oscillatory tail behind a wave pulse as it propagates through a medium, is a pervasive 
artefact in FE and FDTD calculated waveforms. It is known to be a consequence of numerical dispersion arising from 
the discretization of the equations of motion. The use of an irregular mesh in a FE code has the further consequence of 
rendering the displacement field increasingly noisy with distance behind the wave front. In this paper these effects are 
illustrated using the commercial FE package ABAQUS with square and irregular triangular meshes to calculate the 
progress of a longitudinally polarized Ricker pulse along the axis of a cylindrically shaped aluminium specimen. We are 
able to give a precise analytical account of the evolution of ringing on the basis of a low order approximation for the 
dispersion relation of the discretized equations of motion. A qualitative account is provided of the generation of noise in 
the use of an irregular triangular mesh. 
 
Keywords: Numerical Dispersion; Wave Field Modelling; FE; FDTD Calculations 

1. Introduction 

Ringing, i.e. the emergence of an oscillatory tail behind a 
wave pulse as it propagates through a medium, is a 
pervasive artefact in finite element (FE) and finite 
difference time domain (FDTD) calculated waveforms. It 
is known to be a consequence of numerical dispersion 
arising from the discretization of the equations of motion 
[1]. Considerable effort has been devoted by many 
investigators over the years to developing strategies for 
reducing numerical dispersion in FE codes, see e.g. Refs. 
[2-5], although ringing in itself has not featured as a 
central issue in most of these works. The presence of 
noise in wave forms obtained with irregular meshes has 
also been noted previously [1]. Our attention has been 
drawn to these effects through our analysis of elastic 
wave propagation in a scanning probe tip [6,7], and the 
present paper sets out to examine these effects and 
explore their underlying mechanisms. 

In this paper these effects are illustrated using the 
commercial FE package ABAQUS with square and 
irregular triangular meshes to calculate the progress of a 
longitudinally polarized Ricker pulse along the axis of a 
cylindrically shaped aluminium specimen. We are able to 
give a precise analytical account of the evolution of 
ringing on the basis of a low order approximation for the 
dispersion relation of the discretized equations of motion. 

A clear understanding of ringing may suggest action for 
mitigating its effects, or provide a useful metric for 
assessing dispersion. 

In FE calculated waveforms based on irregular spatial 
meshes another pervasive artefact is the build up of noise. 
In a 2D (x, t) or (x, y) colour or gray scale plot, this noise 
to some extent resembles laser speckle, and can obscure 
less prominent mode conversions and other wave arrivals 
trailing the main pulse. The build up of noise is a 
cumulative effect from the quasi-random-phase scat- 
tering by the irregularly sized and shaped elements. 

2. FE Calculations 

To illustrate the emergence of ringing and noise in FE 
calculated pulse shapes we use the commercial FE 
package ABAQUS/Explicit [8] to obtain the time 
dependent velocity field in an aluminium cylinder, of 
length and radius both 1mm, resulting from the 
application of a pre- ssure pulse  distributed 
uniformly over the upper surface of the cylinder, and 
having time dependence  in the form of a Ricker 
pulse 
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where   is the time constant. The Ricker pulse and its 
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Fourier transform 
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are depicted in Figure 1. 
Because of the axial symmetry of the physical situ- 

ation, in cylindrical coordinates the displacement field 
has only radial (r) and axial (z) components, and is 
independent of the azimuthal angle (θ). The calculations 
have accordingly been performed in cylindrical coordi- 
nates requiring only 2D meshing [9]. 

The rz domain has been meshed in two ways, by a 
1000 × 1000 square mesh (spatial step ) and by 
an irregular triangular mesh of approximately the same 
number, 106, of linear elements of area on average 

1μmh 

 

 
(a) 

 
(b) 

Figure 1. (a) The Ricker pulse for   = 1,  

      2 21 exp 2T t t t   and (b) its Fourier transform 

     2 2exp 2F    . The Ricker pressure pulse, in- 

tegrated over time is zero and so delivers no net impulse. 

21.0 μmA  . In the second case the nodes on the 
boundary of the integration domain were specified, but 
no further control was exerted over ABAQUS regarding 
the meshing within the domain. Examination of the 
meshing that was generated showed it to contain a fairly 
large proportion of triangles of similar size, and more or 
less equilateral in shape, but there are also a significant 
number of triangles of other shapes and sizes. These 
features are illustrated in Figure 2, which depicts part of 
a square domain meshed into irregular triangular ele- 
ments. It is not obvious what the effective value of  is 
for such a mesh, although it must scale as 

h
A , and so 

we have treated h as a parameter to be determined by 
fitting analytic to FE calculated waveforms. A lower 
limit for h can reasonably be supposed to be 

1.0 μmA   and a reasonable upper limit is the side of 
the average equilateral triangle,  42 / 3 1.52 μmA  . 
The time step δ has been taken as 0.05 ns in the 
simulations with both meshes. 

The density and Lamé elastic constants of aluminium 
have been taken as 32700 kg m  , 26.493 GPa   
and 56.297 GPa  , yielding longitudinal and trans- 
verse velocities 6362.0 m sLV   and 3132.4 m sTV   
respectively. We have taken the time constant in the 
Ricker pulse to be 0.748 ns  . The dominant angular 
frequency 0 , as given by the position of the maximum 
in  F  , and period  of the Ricker are related to 0T    

by 0

0

22

2π

T
, yielding 0 3.323 nsT   . The  


 

dominant wavelength of the longitudinal pulse launched 
into the specimen is 0 0 21.14 μmLV T h.     The 
numerical wave speed 20000 m s Lh V   , as re- 
quired for stability of the FE calculation [10]. 

Figure 3 depicts the FE calculated velocity field 
 ,zv r z  at 0.1175 μst   in the cylinder, resulting 

from the Ricker pressure pulse applied to upper surface. 
The calculation for (a) pertains to the square mesh, and 
that for (b) to the irregular triangular mesh. In addition to 
the main L pulse, there are circular L and T edge waves  

 

 

Figure 2. Part of a square domain meshed into irregular 
triangular elements. 
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(LEW, TEW) spreading out from the top right hand 
corner, the straight Head wave (HW) trailing the main L 
pulse and tangential to the TEW, and the Rayleigh 
surface wave (RW) on the upper surface following 
closely on the TEW. All these waves display various 
degrees of ringing, i.e. multiple ripples trailing the main 
pulse. These ripples diminish in amplitude and wave- 
length with distance from the main pulse. Ringing is the 
consequence of numerical dispersion arising from the 
discretization of the equations of motion in the FE code. 
In simple terms the higher spatial frequency Fourier 
components of the waveform travel slower than the 
lower frequency ones, and so lag behind the main arrival. 
Although there is no specific cut-off to the ringing, there 
are a finite number of ripple periods that can be 
discerned for each wave in Figure 3 before the signal 
merges into the background. This number is greater, the 
greater the degree of dispersion, which depends on the 
ratios 0δ T  and 0 0h h VT  , where 0T  is the cha- 
racteristic period of the pressure pulse. The second ratio 
is smallest for the L pulse in (a). It is larger for the L 
pulse in (b) because of the larger effective value of h for 
the triangular mesh, and it is larger for the TEW because 
of the smaller value of the transverse wave velocity V as 
compared with the longitudinal velocity. 

The results for the irregular mesh calculation in (b) 
show the marked presence of noise, which builds up 
steadily in intensity with distance behind the wave front. 
Noise has an obscuring effect on the finer ripples in the 
wave form. A quantitative account of ringing follows in 
the next section, and a brief discussion of noise is 
provided in the last section. 

3. Quantitative Account of the Ringing in FE 
Calculated Waveforms 

We show here that ringing in FE calculated wave forms 
can be quantitatively accounted for very precisely on the 
basis of the non-linear dispersion relation resulting from 
the discretization of the wave equation.  

A simple uniform discretization of the one-dimen- 
sional wave equation or a 2D or 3D staggered grid FD 
scheme such as described in Fellinger et al. [10] yields a 
dispersion relation of the form 

num

sin sin ,
2 2

V kh

V

      
   

         (3) 

where δ and h are the time and space discretization 
intervals respectively, V is the physical wave speed, 
which we will take to be the longitudinal wave speed, 

numV h   is called the numerical wave speed, ω is the 
angular frequency, 2πk   is the wave vector and λ is 
the wavelength. Stability of the solution of the 
discretized wave equation, indeed merely the ability to 
reproduce a signal travelling at velocity V, requires that  

 
(a) 

 
(b) 

Figure 3. Colour scale representation of a “snapshot” of the 
velocity field vz(r, z) in the cylinder at t = 0.1175 μs resulting 
from the Ricker pressure pulse applied to upper surface, (a) 
calculation based on square mesh; (b) calculation based on 
irregular triangular mesh. The axis of cylinder is on the left. 
In addition to the main L pulse travelling vertically down- 
wards, there are the circular L and T edge waves (LEW, 
TEW) spreading outwards from the top right hand corner, 
the straight Head wave (HW) trailing the main L pulse, and 
the Rayleigh surface wave (RW) on the upper surface 
following closely on the TEW. All of these waves exhibit 
oscillatory tails, and there are interesting interference 
effects between several of them. The irregular mesh 
calculation (b) shows the marked presence of noise. 

 

num  and hence V V h V  . [11] For 2D and 3D 
rectangular grids the constraints are  

 2 2
1 21 1/ 1/ 2V h h h V     

and     2 2 2
1 2 31 1/ 1/ 1/ 3V h h h h V      

respectively, where 1 , 2  and 3  are the spatial 
discretization intervals in the three orthogonal directions 
[11], which when equal, yield the simplified results shown. 

h h h
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In the striving for numerical accuracy at minimal 
computational cost it is common practice to take the 
shortest wavelength in the signal to be discretized by at 
least eight points[11] but not much more. If the highest 
frequency in the signal is , this requires taking  maxf

max max8 10
R TV V

h
f f

  , where RV  and  are the Rayleigh  TV

and transverse wave speeds respectively. Taking 

max 01 3.323 nsf T   and 3132.4 m sTV  , it follows  

that 
max

1.041
10

TV
m

f
 .If we consider just the L pulse,  

then 0 21.1LL V T

h h


  . 

Expanding the sine functions in Equation (3) to third 
order in their arguments, one obtains after some 
manipulation, the dispersion relation in the form 
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The phase and group velocities derived from Equation 
(4) taking 0V   are respectively 
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Their variation with N is depicted in Figure 4. 
As can be seen from Equation (4), the dispersive 

effects associated with δ and h are opposite in sign and 
tend to partially cancel. In 1D, by choosing h V  , 
the so-called magic time step at the limit of stability, 
dispersion is cancelled totally, while in 2D and 3D there 
can only be partial cancellation, and less so for the slower 
longer wavelength T modes than for the L mode. 

 

 

Figure 4. Variation of Vphase/V (upper curve) and Vgroup/V 
(lower curve) with N =λ/h. 

We compare below FE simulations and analytical 
calculations we have done in parallel that demonstrate 
that ringing is a deterministic and precisely predictable 
effect that depends on the original pulse shape and 
distance travelled, and on the time and spatial intervals δ 
and h. 

In treating the effects of dispersion on the pulse shape 
analytically, we consider the medium to be infinite in 
extent and the velocity field of the longitudinally 
polarized pulse launched in the specimen at 0t   and 
travelling in the positive z direction to be 
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where         4.759 μmLV     

and         617.18 10 Pa.s mLZ V     

is the L wave acoustic impedance of aluminium. In our 
FE and analytic calculations we have set the value of 

0 1m sP Z  . 
The evolution of the pulse shape is determined as 

follows. The velocity field for the pulse launched into the 
solid can at time 0t   be expressed in terms of its 
spatial Fourier transform 

  3 2 2 2exp 2 ,k k k           (7) 

as follows 

     1
; 0 exp d

2π
v z t k ikz k   .    (8) 

After time t has elapsed, the pulse will have evolved to 
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With change of integration variable to s k  and 
introducing a position dependent time origin 0t z V , 
and shifted time 0t t t   the time dependent field at 
point z is given by 
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For the square mesh the values of the constants in (10) 
are  

0.748 ns  , 4.759 μmLV    

and            2 0.001654   . 

Figure 5(a) compares the regular square mesh FE 
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calculated time dependent velocity field at a point z = 
0.75 mm with the analytically calculated field, taking 

 and 1 μmh  0.3181 μmV  . As can be seen, the 
analytically calculated wave form is virtually indis- 
tinguishable from the FE calculated waveform.  

Figure 5(b) compares the linear element irregular tri- 
angular mesh FE calculated time dependent velocity field 
at the off-axis point z = 0.50 mm, r = 0.20 mm with the 
analytically calculated field for 0.3181 μmV   and 
the adjusted value , which gives the best 
fit to the FE waveform for 

1.428 μmh 
0 0. μst z V   1 . This 

corresponds fairly closely to 2h  A , where A is the 
average area of the triangular elements, while taking 
h  A  yields a waveform that does not match the FE 
wave form at all well. 

 

 
(a) 

 
(b) 

Figure 5. Comparison between FE calculated Ricker wave 
form and analytic wave forms (a) for a 1000 × 1000 regular 
square mesh and (b) for an irregular triangular mesh of 
approximately 106 linear elements, Vδ = 0.3181 μm. For (a) 
h = 1.0 μm, the actual spatial interval and there is no free 

parameter in the fit. For (b) h = 1.428 μm ≈ 2A  gives the 
best fit. 

These results demonstrates how ringing in FE wave- 
forms can be precisely accounted for analytically, and 
provides a quantitative measure, the effective value of h, 
for comparing the dispersive effects of different FE 
meshes. Table 1 lists the values of h and  for the two 
simulations. Clearly the square grid comes out as supe- 
rior to the irregular grid both in measure of dispersion. 

δV

4. Noise and Attenuation in FE Waveforms 

As can be seen in Figure 5(b), the fit between FE and 
analytic waveforms for the irregular triangular mesh cal- 
culations taking 1.428 μmh  , while close initially, de- 
teriorates markedly for 0.1 μst z V  . This is because 
of the steady build up of noise behind the main wave 
arrival, which is displayed over a longer time scale in 
Figure 6, which is a plot of the time dependence of the 
difference between the FE and analytic calculated 
waveforms, analyticFEv v , at the point z = 0.50 mm; r = 
0.20 mm. This noise, which in Figure 3(b) to some 
extent resembles laser speckle, tends to obscure finer 
features in that image. The build up of the noise is a 
cumulative effect from the quasi-random-phase scat- 
tering by the individual elements. The noise level is 
essentially zero in front of the leading Ricker pulse, and 
then builds up steadily in intensity with distance behind 
this arrival. If one excludes the region between t = 0 and 

0.02 μst  ,  
 

Table 1. Mesh comparisons. 

Mesh Elements Vδ (μm) h (μm) 

Square 106 0.3181 1.0 A  

Triangular, irregular 
linear elements 

106 0.3181 1.428 2A

 

 

Figure 6. Time dependence of the difference between the FE 
and analytic calculated waveforms at the point z = 0.50 mm; 
r = 0.20 mm for an irregular triangular mesh of approxi- 
mately 106 linear elements, taking Vδ = 0.3181 μm and h = 
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1.428 μm, which gives the best fit. 
where the signal amplitude is large and even the small 
fractional difference between FE  and tic  results 
in a fairly large value of their difference, the value of 

analyticFE  increases approximately linearly with time 
after the arrival 

v  analyv

v v
t z V , as indicated by the dashed lines 

in Figure 6. This is because the space-time domain from 
which scattering can contribute to the noise intensity at 
any point and time is greater, the further that point is 
from the leading edge of the Ricker arrival. In the case of 
the regular square mesh the scattering by the individual 
elements is coherent and does not generate noise, and 
noise is absent from Figures 3(a) and 5(a). In both cases 
the dispersion of the pulse can be interpreted as due to 
the coherent component of the scattering. Similar conclu- 
sions have been reached by Huthwaite et al. [1] regard- 
ing the generation of noise in irregular mesh FE simula- 
tions. The energy routed into noise subtracts from that in 
the coherent field, and this will result in attenuation of 
the Ricker pulse. In our calculations the effect is, how- 
ever, rather small, and we have not as yet established a 
quantitative correlation between noise and attenuation in 
this study. 
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