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ABSTRACT 

The Bioprocessing industry delivers high-value protein-based pharmaceutical products produced using microbial or 
animal cells. Animal cell culture, the only method currently available for the production of proteins with human-like 
post-translational modifications, is an expensive and labor-intensive process, as animal cells have complex nutrient re-
quirements. Optimization studies have typically been limited to experimental studies, although there has recently been 
increased interest in combined experimental and computational approaches. In this work, we present the results of a 
dynamic optimization approach to improving animal cell bioprocesses. We have based this on a model validated over 
batch and fed-batch conditions and have examined four possible objective functions. Our results indicate that the maxi-
mization of the product concentration or the integral of viable cell concentration over time give equivalent results and 
can improve the product titer up to 70% over non-optimized fed-batch cultures. 
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1. Introduction 

The Bioprocessing industry is responsible for the pro-
duction of several hundred therapeutic agents and diag-
nostic tools of biological origin. In their majority, these 
products are high-value protein-based drugs, such as an-
tibodies, growth factors, hormones, which are used in the 
treatment of diseases such as cancer, autoimmune disor-
ders, severe anemia, as well as the prevention of trans-
plant rejection. They represent the fastest growing field 
within the pharmaceutical sector with a growth rate of 
6.5% in the USA. in 2010 and account for over $50 bil-
lion in sales [1]. 

Unlike the chemicals and petrochemicals industries, 
process optimization within the Bioprocessing industry 
remains empirical. This has two main disadvantages: first, 
it relies heavily on costly and time-consuming experi-
mentation and sample analysis. Secondly, it does not 
formally consider interactions between operating pa-
rameters. Model-based approaches can provide a plat-
form for system analysis and process optimization, based 
on the organization and interpretation of experimental 
measurements through their integration with fundamental 
biological knowledge expressed in mathematical terms. 
A prerequisite for such an exercise is a robust model 
structure and reliable parameter values. 

Recent studies combining experimentation with 
mathematical modeling in cell culture systems have 

demonstrated the benefit of such an integrated approach. 
Nolan and Lee [2] presented a new kinetic model of me-
tabolism for a Chinese hamster ovary (CHO) cell line 
producing a recombinant monoclonal antibody and a 
novel framework for simulating the dynamics of meta-
bolic and biosynthetic pathways of these cells grown in 
fed-batch culture. Their simulation results demonstrate 
that the model can accurately predict the effects of tem-
perature shift, seeding density, and nutrient concentra-
tions on cell and product concentrations. Similarly, Sel-
varasu et al. [3] complemented modelling with me-
tabolomic analysis to gain a deeper insight into the 
metabolic behaviour and stress responses in CHO cells 
grown in fed-batch culture. This combined approach en-
abled them to identify major growth-limiting factors in-
cluding the oxidative stress and depletion of lipid me-
tabolites, therefore providing valuable information for 
process development. 

In a previous study [4], we presented the development 
and validation of a model of antibody-producing mam-
malian cell cultures. The model and the underlying as-
sumptions are presented Appendix A. Cell growth de-
pends on the availability of two key nutrients, glucose 
and glutamine, and is inhibited by the accumulation of 
two toxic metabolites, lactate and ammonia. Cell death 
depends on the accumulation of ammonia due to gluta-
mine metabolism and spontaneous degradation in the 
medium. The synthesis of IgG1 antibody product is de-
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scribed starting from the gene copy number, the synthesis 
of heavy- and light-chain mRNA molecules, followed by 
their translation into heavy and light chains and the as-
sembly of these to form the antibody molecule in the 
endoplasmic reticulum. The antibody is then transported 
to the Golgi apparatus before being secreted into the ex-
tracellular environment. This model was validated using 
the methodology outlined in Figure 1, as described in the 
next section. 

In this work, we present the results of dynamic opti-
misation studies based on the aforementioned model. We 
have sought to evaluate the optimisation results for four 
objective functions of relevance to this system: the spe-
cific antibody production rate, qMAb, the extracellular 
antibody concentration, [MAb], the viable cell concen-
tration, Xv, and the integral of viable cell concentration 
over time, IVCC. The latter gives an indication of the 
total number of viable cell hours, which are available for 
antibody production. The results are compared on the 
basis of typical cell culture performance indicators, in-
cluding the final antibody concentration in the extracel-
lular environment, the production of which is the ulti-
mate goal of industrial bioprocesses. 

2. Methodology 

2.1. Experimental Materials and Methods 

2.1.1. Cell Line Maintenance 
Hybridoma cell line HFN7.1 expressing IgG1 against 
fibronectin from human plasma (CRL-1606, ATCC) was 
cultured in high-glucose DMEM (Gibco), which contains 
29.1 mM glucose and 4.9 mM glutamine, supplemented 
with 2.5% bovine calf serum (ATCC). Batch cultures 
were carried out in triplicate flasks 1L Erlenmeyer flasks 
with a working volume of 200 mL and seeding density of 
2 × 108 cells/L, at 37˚C and 5% CO2. Fed-batch cultures 
were carried out in duplicate flasks 1 L Erlenmeyer 
flasks with a working volume of 200 mL and seeding 
density of 2 × 108 cells/L. The initial formulation con-
tained 25.1 mM glucose and 5.01 mM glutamine. The 
feed consisted of concentrated medium which was rich in 
glucose (500 mM) and glutamine (100 mM). The maxi-
mum total volume of feed was fixed at 8.75 mL, which 
represents less than 5% of the total culture volume (200 
mL), so as to avoid dilution effects. The viable cell con-
centration was determined by the Trypan blue dye exclu-
sion method using a Neubauer hemacytometer. 
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Figure 1. Model development and validation framework. 
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2.1.2. Assays 
Samples of 1.5 mL were withdrawn from the cultures 
and centrifuged at 104 g for 5 minutes. The supernatant 
was removed and stored at −20˚C for further analysis. 
Extracellular glucose, glutamine, lactate and ammonia 
concentrations were determined using the YSI Biopro-
filer 200 (Nova Biomedical, UK). Antibody concentra-
tion in the supernatant was determined by indirect sand-
wich enzyme-linked immunosorbent assay (ELISA). The 
coating buffer was 0.05 M sodium bicarbonate, pH 9.6 
with 1 μg/mL anti-human fibronectin antibody from rab-
bit (Sigma) and the washing buffer was phosphate buff-
ered saline with 0.05% Tween. Non-specific binding was 
blocked with coating buffer supplemented with cassein 
hammerstein (Sigma). The antigen was mouse anti-hu- 
man fibronectin antibody (Sigma) diluted in PBS at a 
ratio of 1:5000 and the secondary antibody was anti- 
mouse Fc antibody from goat (supplied at a concentra-
tion of 6.4 mg/mL, Sigma) diluted in PBS at a ratio of 
1:10,000. Visualisation of the reaction was achieved by 
addition of 3,3’,5,5’-tetramethylbenzene kit (TMB; 
Sigma-Aldrich T3405) as per the manufacturer’s instruc-
tions and the absorbance was read at 450 nm on a mi-
croplate reader (BioTek Instruments, Inc., USA). 

2.2. Model Development and Validation  
Methodology 

Model development followed the framework outlined in 
Figure 1 and described in detail in [4]. Specifically, once 
the initial mechanistic model was formulated based on 
knowledge about the underlying biological phenomena, 
the model structure was verified by comparison to litera-
ture or preliminary experimental data. This model struc-
ture is presented in Appendix A and consists of 28 dif-
ferential and algebraic equations and 30 parameters. The 
experimental data also provided initial guesses for pa-
rameter values. Following this, the Sobol’ global sensi-
tivity analysis method along with a one-at-a-time 
screening with respect to all other measured variables 
was employed to identify the model parameters to which 
the model output (antibody concentration in this case) 
was most sensitive, prompting the need for their accurate 
estimation from experimental data. The results helped 
narrow down the number of important parameters to just 
seven, namely the yield of cells on glucose (Yx,glc), the 
yield of cells on glutamine (Yx,gln), the yield of lactate on 
glucose (Ylac,glc), the yield of ammonia on glutamine 
(Yamm,gln), the rate of dead cell lysis (Klysis), the maximum 
specific cell growth rate (μmax), and the gene copy num-
ber of antibody heavy chains (NH).  

The accurate estimation of these parameters was tar-
geted through D-optimal experimental design, while the 
remaining parameters were set at their nominal values.  

The D-optimal dynamic experiments were designed based 
on fed-batch culture operation (semi-continuous process), 
which also enabled us to extend the validity of the model. 
The design was conducted in the gPROMS modelling 
environment [5], which uses a SRQPD sequential quad-
ratic programming code. The resulting experimental re-
sults were used for parameter estimation, which was 
again conducted using gPROMS based on the maximum 
likelihood formulation. This determines values for the 
uncertain physical and variance model parameters that 
maximise the probability that the model will predict the 
measurement values obtained from the experiments. The 
statistical model of constant variance was used in this 
case and the validation process was successful after one 
fed-batch experiment as the 95% confidence intervals 
were deemed satisfactory at ±10% of the final parameter 
values. 

2.3. Model-Based Optimization Strategy 

Our optimization studies were performed within the time 
horizon for which the model has been validated and for 
the same volume range. Specifically, the time horizon 
was allowed to vary between 96.5 h, which was the dura-
tion of the batch culture experiments, and 186.6 h, which 
was the duration of the fed-batch experiments. In order to 
avoid dilution effects, the maximum allowable inlet 
volume was limited to 20% of initial volume, i.e. 40 mL. 
This volume is achievable within the experimental set-up 
for which the model was validated, i.e. Erlenmeyer flasks. 
Extrapolating to a volume of 1 L and beyond was 
deemed to be outside the predictive range of the model, 
since such cell culture volume are handled in lab-scale 
bioreactors, in which the culture behavior can be signifi-
cantly different. Finally, the inlet glucose and glutamine 
concentrations kept constant at 500 mM and 100 mM, 
respectively, as in the fed-batch experiments conducted 
for parameter estimation and model validation. 

We chose to compare the results for four biologi-
cally-meaningful objective functions; the specific anti-
body production rate, qMAb, the extracellular antibody 
concentration, [MAb], the viable cell concentration, Xv, 
and the integral of viable cell concentration over time 
(IVCC). The dynamic optimisation studies were per-
formed using the relevant entity in the gPROMS model-
ling environment [5], based on the SRQPD solver, which 
employs a sequential quadratic programming method for 
the solution of the nonlinear programming problem. In 
the formulation of the optimization problem, the control 
variable was the inlet flow rate, which was assumed to be 
piece-wise constant, since feeds are usually supple-
mented in bolus additions experimentally. The feed could 
be introduced every 13.7 h to 24 h at amounts varying 
between 0mL and 6.7 mL. All aforementioned objective 
functions were sought to be maximized independently. 
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3. Results and Discussion 

The model presented in Appendix A has been validated 
for batch and fed-batch cell culture operation as demon-
strated in Figures 2 and 3, and its parameter values esti-
mated as in Table 1. Specifically, Figure 2 compares 
model simulation results for the viable cell concentration 
and the extracellular antibody concentrations with ex-
perimental data. In batch mode, model predictions are in 
close alignment with the data. In fed-batch mode, the 
model closely tracks the data for viable cell concentra-
tion during the first 70 hours of the culture, i.e. during 
the lag and exponential growth phases (top), but un-
der-predicts the peak in concentration. However, later 
predictions match the data and the IVCC is equivalent. 
Simulation results for antibody concentration are consis-
tently in agreement with experimental data.  

Figure 3 shows the agreement of model results with 
experimental data for glucose (top) and glutamine (bot-
tom) concentrations in the extracellular environment. 
Reliable predictions for these variables is essential, as 
these nutrients are growth-limiting and their addition to 
the culture during fed-batch operation is a means for 
prolonging viability and enhancing antibody production. 

As shown in this Figure, the model simulation results 
are in agreement with experimental data for both these 
variables. The proposed model is therefore suitable for 
optimisation studies. 

Following the strategy outlined in the previous section, 
we performed dynamic optimization studies where we 
sought to optimize key performance indicators of cell 
culture processes. We examined four potential indicators 
as objective functions, the specific antibody production 
rate (qMAb), the extracellular antibody concentration 
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Figure 2. Model simulation results and experimental data for the viable cell (a) and extracellular antibody (b) concentrations 
under batch and fed-batch culture conditions. 

Copyright © 2012 SciRes.                                                                                  AM 



G. KOUMPOURAS, C. KONTORAVDI 1491

0

5

10

15

20

25

30

35

0 50 100 150 200

E
xt

ra
ce

llu
la

r g
lu

co
se

 c
o

n
ce

n
tr

a
tio

n
 

(m
M

)

Time (h)

Batch, exp

Batch, sim

Fed-batch, exp

Fed-batch, sim

 
(a) 

0

1

2

3

4

5

6

0 50 100 150 200

E
xt

ra
ce

llu
la

r g
lu

ta
m

in
e

 c
o

n
ce

n
tr

a
tio

n
 

(m
M

)

Time (h)

Batch, exp

Batch, sim

Fed-batch, exp

Fed-batch, sim

 
(b) 

Figure 3. Model simulation results and experimental data for the extracellular glucose (a) and glutamine (b) concentrations 
under batch and fed-batch culture conditions. 
 
([MAb]), the viable cell concentration (Xv), and the 
IVCC. 

The results are shown in Table 2, where they are 
compared in terms of the final antibody titre, the IVCC, 
the maximum specific antibody production rate achieved, 
and operating parameters, namely the time horizon and 
the volume of feed added. 

The time profile of the extracellular antibody concen-
tration achieved under each optimal feeding schedule is 
presented in Figure 4. It can be seen that optimization of 
the viable cell concentration or the specific antibody 
production rate yields significantly lower IVCC values 
and product titers than the other two functions considered, 
although product titers are improved compared to the 
non-optimized fed-batch culture by 23% and 13%, re-
spectively. The optimal time horizon for both sets of re-
sults is short, at 135 and 133 hours, respectively. Inter-
estingly, the maximum specific antibody production rate 

is 6.28 × 10−9 mg/viable cell-h, which as shown in Table 
2, is achieved for all objective functions and appears to 
be an inherent limitation of the cell line used in this 
study. 

When comparing the results for optimising the IVCC 
and the antibody concentration, it can be seen that both 
are significantly higher than the values achieved in 
non-optimised conditions. The former objective function 
achieves an IVCC of 3.33 × 1011 viable cell-h/L and a 
final antibody concentration of 3.975 g/L, while the latter 
yields an IVCC of 3.32 × 1011 viable cell-h/L and 4 g/L 
of product. These two sets of results are within 10% of 
each other, a percentage which is within the limit of ex-
perimental error associated with the techniques used for 
their quantification. The two objective functions can 
therefore be considered to perform equivalently. When 
compared to the non-optimised fed-batch culture used for 
model validation, the antibody titre improvement  
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Table 1. Parameter values estimated for fed-batch culture 
operations. 

Parameter Parameter value Unit 

K 10−1 h−1 

KA 10−6 cell/molecule-L 

Kd,amm 1.76 mM 

Kd,gln 9.6  10−3 h−1 

KER 6.9  10–1 h−1 

KG 1.4  10−1 h−1 

Kglc 7.5  10−1 mM 

Kgln 7.5  10−2 mM 

KIamm 28.48 mM 

KIlac 171.76 mM 

Klysis 3.0  10−2 h−1 

mglc 4.9  10−14 mmol/cell-h 

n 2 dimensionless 

NH 1.0  102 gene/cell 

NL 1.0  102 gene/cell 

SH 3  103 mRNA/gene-h 

SL 4.5103 mRNA/gene-h 

TH 17 chain/mRNA-h 

TL 11.5 chain/mRNA-h 

Yamm,gln 4.5  10−1 mmol/mmol 

Ylac,glc 2.0 mmol/mmol 

Yx,glc 2.6  108 cell/mmol 

Yx,gln 8  108 cell/mmol 

α1 3.4  10−13 mM L/cell-h 

α2 4 mM 

γ1 10−1 dimensionless 

γ2 2 h 

ε1 9.95  10−1 dimensionless 

ε2 1 dimensionless 

μmax 5.8  10−2 h−1 

μd,max 6  10−2 h−1 

reaches 70% within an equivalent time horizon (169 h). 
It is also interesting to note that although neither strategy 
used the full volume of feed available. This limits the 
accumulation of metabolites lactate and ammonia associ-
ated with the metabolism of the two key nutrients (glu-
cose and glutamine, respectively), which would inhibit 
cell growth. 

Overall, this study demonstrates the usefulness of us-
ing model-based tools for guiding experimentation. Our 
approach allows us to evaluate various operating condi-
tions and optimisation strategies in silico, and refine our 
experimental plan. The model presented herein can be 
extended to describe other important process variables 
that can act as controls. Examples include cell culture 
temperature, which can enhance the protein productivity 
[2,6], culture pH, which can affect cell growth and vi-
ability [7], and medium osmolarity, which can influence 
specific antibody production rates [8]. 

4. Conclusion 

A model-based dynamic optimization approach of fed- 
batch animal cell culture processes for the production of 
high-value antibody-based pharmaceuticals was pre-
sented. The results pinpoint the integral of viable cell 
concentration with time and the extracellular antibody 
concentration as being the most appropriate objective 
functions for optimizing cell culture performance with  
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Figure 4. Optimal antibody concentration profile for each 
objective function. 

 
Table 2. Summary of optimisation results. 

Objective function 
(max) 

Total volume fed 
(mL) 

Optimal time  
horizon (h) 

IVCC (viable 
cell-h/L) 

Antibody  
concentration (g/L) 

Maximum qMAb value 
(mg/viable cell-h) 

MAb 27 169 3.32E+11 4.002 6.28E−09 

Xv 22 135 2.36E+11 2.860 6.28E−09 

IVCC 30 169 3.33E+11 3.975 6.28E−09 

QMAb 20 133 2.12E+11 2.624 6.28E−09 
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respect to several key indicators. Optimization results 
indicate that the final antibody titer can be improved by 
up to 70%, although this remains to be experimentally 
confirmed. These findings can help guide experimental 
work in this area by indicating most promising dynamic 
feeding profiles and thus avoiding unnecessary expendi-
ture on trial-and-error experiments.  
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Notation 

[MAb]: extracellular antibody concentration (g/L) 
[AMM]: extracellular ammonia concentration (mM) 
Fin: inlet flow rate (L/h) 
finh: cell growth rate inhibiting function 
flim: cell growth rate limiting function 
Fout: outlet flow rate (L/h) 
[GLC]: extracellular glucose concentration (mM) 
[GLC]in: glucose concentration in the feed (mM) 
[GLN]: extracellular glutamine concentration (mM) 
[GLN]in: glutamine concentration in the feed (mM) 
[H]: free heavy chain concentration in the ER 

(chain/cell) 
[H2], [H2L]: concentrations of assembly intermediates 

in the ER (molecule/cell) 
[H2L2]ER: monoclonal antibody concentration in the ER 

(molecule/cell) 
[H2L2]G: monoclonal antibody concentration in the 

Golgi apparatus (molecule/cell) 
IVCC: integral viable cell concentration (viable 

cell-h/L) 
K: heavy- and light-chain mRNA decay rate (h−1) 
KA: assembly rate constant (cell/molecule/h) 
Kd,amm: ammonia constant for cell death (mM) 
Kd,gln: constant for glutamine degradation (h−1) 
KER: rate constant for ER-to-Golgi transport (h−1) 
KG: rate constants for Golgi-to-medium antibody 

transport (h−1) 
Kglc: Monod constant for glucose (mM) 
Kgln: Monod constant for glutamine (mM) 
KIamm: Monod constant for ammonia (mM) 
KIlac: Monod constant for lactate (mM) 
[LAC] : extracellular Lactate concentration (mM) 
mglc: maintenance coefficient of glucose (mmol/cell/h) 
mgln: maintenance coefficient of glutamine (mmol/ 

cell/h) 
mH, mL: intracellular heavy- and light-chain mRNA 
concentrations (mRNA/cell), respectively 
NH, NL: heavy- and light-chain gene copy number 

(gene/cell) 
Qamm: specific ammonia production rate (mmol/cell-h) 
Qglc: specific glucose uptake rate (mmol/cell-h) 
Qgln: specific glutamine uptake rate (mmol/cell-h) 
Qlac: specific lactate production rate (mmol/cell-h) 
QMAb: specific monoclonal antibody production rate 

(mg/viable cell-h) 
RH, RL: rates of heavy- and light-chain consumption in 

assembly (chain/cell/h) 
SH, SL: heavy- and light-chain gene specific transcrip-

tion rates (mRNA/gene/h) 
TH, TL: heavy- and light-chain specific translation rates 

(chain/mRNA/h) 
V: culture volume (L) 
Xv: viable cell concentration (cells/L) 
Xt: total cell concentration (cells/L) 
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Yamm,gln: yield of ammonia from glutamine (mmol/ 
mmol) 

Ylac,glc: yield of lactate from glucose (mmol/mmol) 
Yx,glc: yield of cells on glucose (cell/mmol) 
Yx,gln: yield of cells on glutamine (cell/mmol) 
Greek letters 
1, 2: constants of glutamine maintenance coefficient  
(mM L/cell/h and mM, respectively) 
1: constant for antibody production (h) 
2: constant for antibody production (dimensionless) 
1: ER glycosylation efficiency factor (dimensionless) 
2: Golgi apparatus glycosylation efficiency factor 

(dimensionless) 
: specific cell growth rate (h−1) 
d: specific cell death rate (h−1) 
dmax: maximum specific cell death rate (h−1) 
max: maximum specific cell growth rate (h−1) 

Appendix A: List of Model Equations from 
[4] 

The total mass balance around the bioreactor envelope is: 

in out

d

d

V
F F

t
  .            (1) 

The mass balances on the viable and total cell popula-
tions, assuming perfect mixing and negligible dilution 
effect, are: 

 
out

d

d
v

v d v

VX
VX VX F X

t
    v ,     (2) 

 
out

d

d
t

v

VX
VX F X

t
  t .       (3) 

The specific cell growth rate is limited by the concen-
tration of nutrients glucose and glutamine, and inhibited 
by the accumulation of toxic metabolites lactate and 
ammonia. Assuming it follows Monod kinetics, the spe-
cific cell growth rate can be calculated by: 

max lim inhf f  ,              (4) 

where 

 
 

 
 lim

lnglc g

GLC GLN
f

K GLC K GLN

 
     





   (5) 

and 

   
lac amm

inh
lac amm

KI KI
f

KI LAC KI AMM

 
     





.  (6) 

The specific cell death rate is assumed to depend on 
the accumulation of ammonia in the extracellular envi-
ronment and is given by: 

 

,max

,1

d
d n

d ammK

AMM


 

 
   
 

,             (7) 

where n > 1. The mass balances on glucose and gluta-
mine around the bioreactor are: 

     in outinglc v

d V GLC
Q VX F GLC F GLC

dt
     , (8) 

where 

,
glc glc

x glc

Q
Y


 m ,             (9) 

and 

    

  

ln ln

in outin

d

d g v dg

V GLN
Q VX K V GLN

t

F GLN F GLN

  

 

,  (10) 

where 

ln ln
, ln

g g
x g

Q
Y


 m ,            (11) 

 
 

1
ln

2
g

GLN
m

GLN







.            (12) 

The mass balances for lactate and ammonia are: 

   out

d

d lac v

V LAC
Q VX F LAC

t
   ,  (13) 

where 

,lac lac glc glcQ Y Q ,          (14) 

and 

    

 

ln

out

d

d amm v dg

V AMM
Q VX K V GLN

t

F AMM

 



, (15) 

where 

, ln lnamm amm g gQ Y Q .           (16) 

The mass balance of the heavy- and light-chain mRNA 
in the endoplasmic reticulum are: 

d

d
H

H H

m
N S Km

t
  H ,        (17) 

d

d
L

L L

m
N S Km

t
  L .         (18) 

The intraER heavy- and light-chain balances are: 

 d

d H H H

H
T m R

t
  ,         (19) 
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 d

d L L

L
T m R

t
 

      2 2
2 2

d

d
ER

A ER 2 ER

H L
K H L L K H L

t
  .  (25) L

where the rates of heavy and light chain assembly are: 

,         (20) 

Similarly, the antibody balance for the Golgi apparatus 
is: 

 22

3H AR K H ,          (21)     2 2
1 2 2 2 2

d

d
G

ER G ER G

H L
K H L K H L

t
  .  (26) 

     22L A AR K H L K H L L  2 ,  (22) 
Finally, the rate of antibody secretion is: 

And the balances on assembly intermediates are: 
     2 1 out

d

d MAb v

V MAb
Q VX F MAb

t
          22

2d 3 A A

d 1
2

H  , (27) K H K H L  ,  (23) 
t

where        2
2 2

d
2

d A A

H L
K H L K H L L

t
 

The antibody balance in the endoplasmic reticulum is: 

. (24)  2 2 2MAb G G
Q K H L  .          (28)

 


