
Applied Mathematics, 2012, 3, 1877-1881 
http://dx.doi.org/10.4236/am.2012.312256 Published Online December 2012 (http://www.SciRP.org/journal/am) 

A Model of Spatial Spread of an Infection with  
Applications to HIV/AIDS in Mali 

Ouaténi Diallo1, Yaya Koné1, Jérôme Pousin2 
1Faculté des Sciences et Techniques, USTTB, Bamako, Mali 

2Institut Camille Jordan, INSA de Lyon, Lyon, France 
Email: ouateni@yahoo.fr 

 
Received July 27, 2012; revised November 21, 2012; accepted November 29, 2012 

ABSTRACT 

In this paper we introduce a classical SI model to capture the spread of an infectious disease within a population. More 
precisely, the spatial diffusion of HIV/AIDS in a population is modeled. For that, we assume that the spread is due to 
the anarchical comportment of infected individuals along a road, especially, “lorry drivers”. The question which con-
sists of the control of the infection is also addressed. Infected individuals moving from a town to another one, the diffu-
sion is then anisotropic with a main direction of propagation, namely the road direction. Using a semi-group argument 
and a maximum principle, the uniqueness of a solution to the problem is established. This solution is also estimated. We 
end this paper by considering some numerical experiments in the case of HIV/AIDS spread in Mali along a road con-
necting two towns. 
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1. Introduction 

Let  be an open bounded lipschitzian domain of  
satisfying the cone property in which it will be assumed 
that the population is fixed. To describe the disease 
transmission, a traditional  model is introduced. 
Each member of the population is supposed to belong to 
one of the these two classes: Susceptible individuals 
(denoted by ) or Infected individuals (denoted by 

 2

SI

S I ). 
Each individual which begins in the class , moves to 
the class 

S
I , having had a contact with an infected per- 

son. Infected individuals eventually recover from the 
disease due to a medical treatment. The disease is as- 
sumed to be transmitted from infected to susceptible in- 
dividuals with a probability 0  , by a “mass action” 
contact term and spreads spatially with the coefficient 

0  . The infected individuals are assumed to recover 
at a per capita rate of 0  . Demographic changes are 
neglected under the assumption that the duration of the 
epidemic is short in comparison with the average life 
span of an individual. Assuming these assumptions to be 
relevant, we suppose that the following holds: there are 
positive constants 

0 ; 0 ; 0          

such that functions  and sat- 
isfy:  

0, , ;C     



  ,t x   

 , ;t x     

 0 ,t x ;    

 , .t x     

At an initial time 0t  , we have two nonnegative, 
regular     0

0 0;I 2S C H   functions satisfying:    

 0 00 S x S  ;  0 00 I x I  . 

The no flux boundary conditions mean that the system 
is isolated. 

The propagation of the disease for a fixed 0 T  is 
governed by the following simple model: 

 
 

   
       0 0

in 0,

in 0, ;

0; , 0, ;

0, ; 0, ; ;

t

t

S IS T

I I I IS T

I
t x T

n
I x I x S x S x x


  

   
     


  
   

   (1) 

where  denotes the outward normal vector to n  . 
System (1) has also been used to modelling chemistry 

reactions (with a different sign in reaction term) [1] or 
combustion phenomenon. 

Even if the dynamics of the system (1) is quite simple, 
the question we address in this work is: are there para- 
meters that allow to control the system in a finite time in 
case where the spacial diffusion is directed? In [2] a 
model structured by spatial position in a bounded one- 
dimensional environment is proposed and analyzed. The 

Copyright © 2012 SciRes.                                                                                  AM 



O. DIALLO  ET  AL. 1878 

spatial mobility is assumed to be governed by random 
diffusion with coefficients 1  and 2  for the suscep- 
tible and infected individuals, respectively. 

k k

In the present paper, the susceptible population doesn’t 
move away, so that its diffusion coefficient is equal to 
zero. Many other models of epidemics with spatial dif- 
fusion are studied, see for example [3,4]. 

The paper is organized as follows: 
In Section 2 some a priori estimates are derived for the 

solution  of the system (1). In Section 3 the exis- 
tence and uniqueness of solutions are studied. In Section 
4, the existence of coefficients 

 ,S I 

  and   allowing to 
control the system (1) in a finite time is derived. This 
section is ended with some numerical results which take 
into account the data of the spread of VIH/AIDS in Mali. 

2. A Priori Estimates 

We denote by  (respectively,  1H   2H  ) the 
classical Sobolev space of order 1 (respectively, Sobolev 
space of order 2) [5]. Let  be fixed. By integrating 
the first equation of the system (1) we obtain 

0 T

       0 , , d
0, e

t x I x
S t x S x .

             (2) 

Definition 2.1. A pair of functions  , I S  defined on 
 0;T  is said to be a solution to the system (1) whether 

         0 2 1 10, ; 0, ; ;I C T H T H      

       0 10, 0, ; .S C T C T C   0 



 

Lemma 2.2. Let  ,I S  be a solution of the system 
(1), then the following holds: 

   , 0;t x T    

   0 0
0 0e , e ; 0 ,S T S T

0.I I t x I S t x S          (3) 

Proof. Define the function    0, e ,S tt x I t x   for 
   , 0;t x T  . A very easy computation provides the 
following equation, for the function  , 

 
   

   

0

0

0 in ;

0 , 0, ;

0, ;

t S S

t x T
n

x I x x

      





       

    


  


T

    (4) 

where  0, .T T    The weak maximum principle 
applies [5] and thus 

 
 

 
 0

0; 0;
, ,maxmin

T T
0I t x t x I 

 
           (5) 

3. Existence of a Solution 

Existence of solution to (1) will be obtained using some 
classical arguments. Define the unbounded linear opera- 

tor 

    2 2:

=

A D A L L

A    
   

  

          (6) 

with homogeneous Neumann boundary conditions and 
where    2D A H  . 

It is well known that A  is strongly elliptic and in- 
vertible [6,7]. Define the function 

       0 , d
0

:

, , , e
t x z

F

t x z t x S x z
  





   


 

Lemma 3.1. Let  
     0, 0, ,

L
B M L T M  

     be given. 
The operator  

       : 0, 0, 0,F B M L T L T      

which associates   to  is Lipschitzian 
with a Lipschitz constant 

  , , ,F     
 2 e MTK MT    . 

Proof. Since the function F  is continuously differ- 
entiable, its derivative is bounded on . We then 
obtain the estimate by using the fundamental theorem of 
calculus. 

0,B M 

Theorem 3.2. Assume that the assumptions on the 
functions  ;  ;   and  0 0, I S  hold. Then for all 
0 T , the problem (1) has a unique solution  ,I S . 

Proof. Problem (1) is rewritten in the following way: 

 d
, , .

d
I AI F I

t
                 (7) 

The operator A  generates an analytical semigroup. 
According to Lemma 2.2 we consider Problem (7) on a 
bounded subset of L . From Lemma 3.1 we know that 
F  is Lipschitzian. Therefore, one obtains the existence 
and uniqueness of a solution by using Theorem 3.1 and 
3.3 in [7]. 

4. Controllability of Problem (1) with the 
Functions α and β 

Problem (1) is expressed in  0, TT     as: 

       

   

   

0 , , d
0

0

d
, e

d

0 , 0,

0, ;

t x I x
I I I t x S x I

t
I

t x T
n

I x I x x

          

    


   


 (8) 

Theorem 4.1. Assume that the assumptions on the 
functions  ;  ;   and  0 0, I S  hold and that   
has  regularity. Let  be given and let 2C 0 T

 0,O T   be an open subset and let 0 I  be 
fixed. For  ,I S  the solution to Problem (1) there is a 
real 0   such that, if the functions  ,   satisfy 
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5. Numerical Applications and Discussions the following condition: 

 
    

 
 0

,,
max , e min , 0I

x t Ox t O
t x S x t x 


      (9) In the following figures we give the isovalues of the in- 

fection in a two dimensional environment. 
then    ,max ,x t O I t x I  . Figure 1 corresponds to the case in which the diffu- 

sion is isotropic. Proof. The solution to Problem (1) is a classical solu-
tion. Since the boundary of the domain  is regular, 
from the theory of analytical semigroup, we know that 

 Figure 2 corresponds to the unisotropic case. We can 
see in the two cases the spread of the infection. 

Now we give some numerical results in order to show 
the effect of the medical care effort on the intensity of the 
epidemic in two different areas: site 1 and site 2, repre- 
senting two cities with two different incidence rates. 

  0d
0,

d
I C T

t
   

because the time derivative of I  is bounded in the 
graph norm of a fractional power of the generator A  
([7] Chapter 2 Section 2.6 and Theorem 8.4.3). The 
strong maximum principle applies. Assume the maxi- 
mum mI I  of the function I  is reached at the point 
   0,t x T ,m m O  , from Equation (8) we deduce 
that 

In Figure 3 we suppose that no effort for medical care 
is made. 

In Figure 4 we consider that the rates of medical care 
effort are 1 0.15   in the site 1 and 2 0.0   in the 
site 2. Then we note a decrease of the intensity of the 
infection in all the two sites. 

         

       

0

0

, , d
0

, d
0

0 < , e ,

0 < , e , .

tm
m

tm
m

x I x
m m m m m

I x
m m m m m

t x S x t x

t x S x t x

   

  




















 (10) 

In Figure 5 we consider a medical care effort rate 
0.   in site 1 and 0.5   in the site 2. Then we note 

a decrease of the intensity of the infection in all the two 
sites. These results mean that all medical care effort in 
one of the regions contributes to the decrease of the epi- 
demic in the other one. 

Since I  is uniformly continuous, there is 0   in-
dependent of mI  such that 

   , ,
2
m

m m m

I
t t t I t x      .  

In Figure 6 we use simultaneously the same medical 
care effort rate in the two sites: , then 
we can see that the intensity of the infection decreases 
more. 

 1 2 0.15  

We have: 

     

 
    

 
 

0

0
,,

0 < , e ,

max , e min ,

mI
m m m m m

I

x t Ox t O

t x S x t x

t x S x t x





 

 









  
 

These results show that we can control the spread of 
the epidemic if we augment the medical care effort. A 
best result can be obtained, in the two sites, if efficient 
actions are done simultaneously in the two sites. 

and we get a contradiction. Therefore, by a policy of education we can operate on  
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(a)                                                              (b) 

Figure 1. Isotropic case: isovalues of the spread in the domain at (a) t = 100; (b) t = 500. 
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(a)                                                              (b) 

Figure 2. Unisotropic case: isovalues of the spread along the road at (a) t = 10; (b) t = 1000. 
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(a)                                                              (b) 

Figure 3. Unisotropic diffusion without medical care effort (β1 = β2 = 0) in the two areas at t = 300 and t = 350. 
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(a)                                                              (b) 

Figure 4. Unisotropic diffusion with t = 300, (a) β1 = 0.15, β2 = 0; (b) β1 = 0, β2 = 0.15. 
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(a)                                                              (b) 

Figure 5. Unisotropic diffusion, t = 300. (a) β1 = 0, β2 = 0.30; (b) β1 = 0.15, β2 = 0.15. 
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(a)                                                              (b) 

Figure 6. Unisotropic diffusion, t = 300. (a) β1 = 0.2, β2 = 0.2; (b) α1 = α2 = 0.013, β1 = 0.15, β2 = 0.15. 
 
the incidence rate in the two sites and well control the 
spread of the infection (Figure 6(b) where  

1 2 ; 1 20.013; 0.15       ). 
In this way, it will be important that the leaders in the 

countries of the same area define together their policies 
in the fight against HIV spread. 

In conclusion, we can say that, in addition to the medi-
cal treatment, if in the two sites, we reduce the incidence 
rate by more sensitization, then we can expect that the 
epidemic is controllable. That must be an operational aim 
for the deciders to fight against the spread of VIH/AIDS. 

REFERENCES 
[1] E. Maisse, “Analyse et Simulation Numérique de Phé- 

nomènes de Diffusion-Dissolution/Précipitation en Milieu 
Poreux, Appliquuées au Stockage de Déchets,” Thèse de 
doctorat, Université Claude Bernard-Lyon1, Lyon, 1998.  

[2] G. F. Webb, “A Reaction-Difusion Model for a Determi- 
nistic Diffusive Epidemic,” Journal of Mathematical 

Analysis and Applications, Vol. 84, No. 1, 1981, pp. 150- 
161. doi:10.1016/0022-247X(81)90156-6 

[3] L. Melkemi, A. Z. Mokrane and A. Youkana, “On the 
Uniform Boundedness of the Solutions of Systems of Re- 
action-Diffusion Equations,” Electronic Journal of Quali-
tative Theory of Differential Equations, Vol. 2005, No. 24, 
2005, pp. 1-10.  

[4] F. A. Milner and R. Zhao, “Analysis of an S-I-R Model of 
Epidemics with Directed Spatial Diffusion,” 2011. 
http://biblioteca.universia.net/html_bura/ficha/params/titl
e/analysis-of-an-s-i-r-model-of-epidemics-with/id/460367
97.html 

[5] H. Brezis, “Analyse fonctionnelle,” Théorie et applica-
tions, Dunod, 2002.  

[6] R. Dautray and J. L. Lions, “Analyse Mathématique et 
Calcul Numérique Pour les Sciences et les Techniques,” 
Vol. 3, Masson, Paris, 1985.  

[7] A. Pazy, “Semigroup of Linear Operators and Applica-
tions to Partial Differential Equations,” Springer-Verlag, 
New York, 1983. doi:10.1007/978-1-4612-5561-1 

http://dx.doi.org/10.1016/0022-247X(81)90156-6
http://dx.doi.org/10.1007/978-1-4612-5561-1

