
Applied Mathematics, 2012, 3, 1826-1835
http://dx.doi.org/10.4236/am.2012.331248 Published Online November 2012 (http://www.SciRP.org/journal/am)

Going beyond Computation and Its Limits:
Injecting Cognition into Computing

Rao Mikkilineni
Kawa Objects, Los Altos, USA
Email: rao@kawaobjects.com

Received August 7, 2012; revised September 7, 2012; accepted September 15, 2012

ABSTRACT

Cognition is the ability to process information, apply knowledge, and change the circumstance. Cognition is associated
with intent and its accomplishment through various processes that monitor and control a system and its environment.
Cognition is associated with a sense of “self” (the observer) and the systems with which it interacts (the environment or
the “observed”). Cognition extensively uses time and history in executing and regulating tasks that constitute a cogni-
tive process. Whether cognition is computation in the strict sense of adhering to Turing-Church thesis or needs addi-
tional constructs is a very relevant question for addressing the design of self-managing (autonomous) distributed com-
puting systems. In this paper we argue that cognition requires more than mere book-keeping provided by the Turing
machines and certain aspects of cognition such as self-identity, self-description, self-monitoring and self-management
can be implemented using parallel extensions to current serial von-Neumann stored program control (SPC) Turing ma-
chine implementations. We argue that the new DIME (Distributed Intelligent Computing Element) computing model,
recently introduced as the building block of the DIME network architecture, is an analogue of Turing’s O-machine and
extends it to implement a recursive managed distributed computing network, which can be viewed as an interconnected
group of such specialized Oracle machines, referred to as a DIME network. The DIME network architecture provides
the architectural resiliency, which is often associated with cellular organisms, through auto-failover; auto-scaling;
live-migration; and end-to-end transaction security assurance in a distributed system. We argue that the self-identity and
self-management processes of a DIME network inject the elements of cognition into Turing machine based computing
as is demonstrated by two prototypes eliminating the complexity introduced by hypervisors, virtual machines and other
layers of ad-hoc management software in today’s distributed computing environments.

Keywords: Cognition; Cognitive Process; Computationalism; Turing Machine; Turing O-Machine; DIME; DIME

Network Architecture

1. Introduction

“It is a fundamental problem of science, and whether we
study Gödel or Penrose, Lucas or Hofstadter, Searle or
Dennett, everyone agrees that the basic question is whe-
ther human-minds are super-mechanical, though there is
widespread disagreement about the answer.”1

Cockshott et al. [1] conclude their book “Computation
and its limits” with the paragraph “The key property of
general-purpose computer is that they are general pur-
pose. We can use them to deterministically model any
physical system, of which they are not themselves a part,
to an arbitrary degree of accuracy. Their logical limits
arise when we try to get them to model a part of the
world that includes themselves.” While the last statement
is not strictly correct (for example current operating sys-

tems facilitate incorporating computing resources and
their management interspersed with the computations
that attempt to model any physical system to be executed
in a Turing machine), it still points to a fundamental li-
mitation of current Turing machine implementations of
computations using the serial von Neumann stored pro-
gram control computing model. The universal Turing
machine allows a sequence of connected Turing ma-
chines synchronously model a physical system as a de-
scription specified by a third party (the modeler). The
context, constraints, communication abstractions and con-
trol of various aspects during the execution of the model
(which specifies the relationship between the computer
acting as the observer and the computed acting as the
observed) cannot be also included in the same descrip-
tion of the model because of Gödel’s theorems of incom-
pleteness and decidability.

1Andrew Hodges. “Alan Turing: An Introductory Biography” In:
Christof Teuscher, Alan Turing: Life and Legacy of a Great Thinker,
NY: Springer, 2004, p. 50. This paper begins where their book ends by proposing

Copyright © 2012 SciRes. AM

R. MIKKILINENI 1827

a way to push the computation beyond its current limits
circumventing the Gödel’s prohibition on self-reflection
in computing systems. The limitations of computers that
he helped design were very much on John von Neu-
mann’s mind, who, spent a great deal of time thinking
about designing reliable computers using unreliable com-
ponents [2]. In the Silliman lectures, and in the Hixon
symposium [3], he touches upon various shortcomings in
the computing model discussing how the computers be-
have differently from cellular organisms. Cellular organ-
isms are autonomic. As von Neumann pointed out “It is
very likely that on the basis of philosophy that every er-
ror has to be caught, explained, and corrected, a system
of the complexity of the living organism would not last
for a millisecond. Such a system is so integrated that it
can operate across errors. An error in it does not in gen-
eral indicate a degenerate tendency. The system is suffi-
ciently flexible and well organized that as soon as an
error shows up in any part of it, the system automatically
senses whether this error matters or not. If it doesn’t
matter, the system continues to operate without paying
any attention to it. If the error seems to the system to be
important, the system blocks that region out, by-passes it,
and proceeds along other channels. The system then ana-
lyzes the region separately at leisure and corrects what
goes on there, and if correction is impossible the system
just blocks the region off and by-passes it forever. The
duration of operability of the automation is determined
by the time it takes until so many incurable errors have
occurred, so many alterations and permanent by-passes
have been made, that finally the operability is really im-
paired. This is completely different philosophy from the
philosophy which proclaims that the end of the world is
at hand as soon as the first error has occurred.”

Autonomic computing, by definition implies two com-
ponents in the system: 1) the observer (or the “self”) and
2) the observed (or the environment) with which the ob-
server interacts by monitoring and controlling various
aspects that are of importance. It also implies that the
observer is aware of systemic goals in terms of best prac-
tices, to measure and control its interaction with the ob-
served. Autonomic computing systems attempt to model
system wide actors and their interactions to monitor and
control various domain specific goals also in terms of
best practices. However, cellular organisms take a more
selfish view of defining their models on how they inter-
act with their environment. The autonomic behavior in
living organisms is attributed to the “self” and “con-
sciousness” which contribute to defining one’s multiple
tasks to reach specific goals within a dynamic environ-
ment and adapting the behavior accordingly.

The autonomy in cellular organisms comes from three
sources:

1) Genetic knowledge that is transmitted by the survi-

vor to its successor in the form of executable workflows
and control structures that describe stable patterns to op-
timally deploy the resources available to assure the or-
ganism’s safe keeping in interacting with its environ-
ment.

2) The ability to dynamically monitor and control or-
ganism’s own behavior along with its interaction with its
environment using the genetic descriptions and

3) Developing a history through memorizing the trans-
actions and identifying new associations through analy-
sis.

In short, the genetic computing model allows the for-
mulation of descriptions of workflow components with
not only the content of how to accomplish a task but also
provide the context, constraints, control and communica-
tion to assure systemic coordination to accomplish the
overall purpose of the system. That the machine learning
need to mimic the learning behavior of at least the chil-
dren to go beyond the mere book-keeping possible with
the Turing machine limitations was not lost on Turing as
he points this out explicitly [4,5].

“In the process of trying to imitate an adult human
mind we are bound to think a good deal about the proc-
ess which has brought it to the state that it is in. We may
notice three components:

1) The initial state of the mind, say at birth;
2) The education to which it has been subjected;
3) Other experience, not to be described as education,

to which it has been subjected.
Instead of trying to produce a programme to simulate

the adult mind, why not rather try to produce one which
simulates the child’s? If this were then subjected to an
appropriate course of education one would obtain the
adult brain. Presumably the child brain is something like
a notebook as one buys it from the stationer’s. Rather
little mechanism, and lots of blank sheets (Mechanism
and writing are from our point of view almost synony-
mous). Our hope is that there is so little mechanism in
the child brain that something like it can be easily pro-
grammed. The amount of work in the education we can
assume, as a first approximation, to be much the same as
for the human child.”

However, the child’s mind already comes with a ge-
netic description of both execution and regulation models
supporting the genetic transactions [6] of replication,
repair, recombination and reconfiguration that go far be-
yond the capabilities of a general purpose computer im-
plementing Turing computations. Self-management and
interaction regulation capabilities are way beyond the
“little mechanism” albeit with plenty of blank paper to
write new programs. Even before the child is born, as
soon as the sperm and the egg combine to form the com-
plete single cell, the genes provide the complete descrip-
tion of how to survive not only by managing the self but

Copyright © 2012 SciRes. AM

R. MIKKILINENI 1828

also to interact with the environment and a lot of blank
pages to makeup own rules based on the context and con-
straints. According to Sean Caroll [7], there are two fac-
tors that define the form and function of the new cellular
organism that contains the genetic description. “The de-
velopment of form depends on the turning on and off of
genes at different times and places in the course of de-
velopment. Differences in form arise from evolutionary
changes in where and when genes are used, especially
those genes that affect the number, shape, or size of
structure.” In addition a class of genetic switches regu-
lates how the genes are used and play a great role in de-
fining the function of the living organism.

While Alan Turing and John von Neumann both
looked at the computing model analogies with neural
networks, and discussed hierarchical schemes to circum-
vent the consequences of Gödel’s theorems on the limita-
tions of Turing machines, they could not have foreseen
the current hardware breakthroughs that provide parallel
computation threads in many-core processors with a hi-
erarchy of high-bandwidth connections between the com-
puting elements. In this paper, we describe an extension
of the von Neumann stored program serial implementa-
tion of the Turing machine network using the same ab-
stractions of self-management and regulation that pro-
vide the elegant execution of life’s workflows with ap-
propriate context, constraints, control and communica-
tion processes. It exploits the performance, parallelism
and high bandwidth networks available in the new gen-
eration processors to inject real-time cognition into Tur-
ing computing machines. In Section 2, we briefly review
current arguments about cognition and computing and
come on the side of cognition is more than computing.
We identify the basic abstractions that are instrumental in
providing the self-management features that capture the
behavior of the observer and the observed with optimal
resource utilization in a dynamic non-deterministic envi-
ronment. In Section 3, we argue that the new DIME net-
work architecture recently introduced injects the self-
management features in a Turing machine and allows
building autonomic distributed systems where the com-
puter and the computed interact with each other pushing
the boundaries of Turing machines. We argue that the
DIME is analogous to an O-Machine introduced by Tur-
ing in his thesis [8,9] and the DIME network architecture
provides a model for a distributed recursive computing
engine that allows replication, repair, recombination and
reconfiguration of computing elements to implement dy-
namic self-managing distributed systems. In Sections 4
and 5, we discuss the impact of DNA on distributed sys-
tems design with visibility and control of the observer
(the computation that is managing resources) and the
observed (the computed). In Section 6, we conclude with
some observations on injecting cognition into computing.

2. Cognition and Computing

An autonomous system is typically considered to be a
self-determining system, as distinguished from a system
whose behavior is explicitly externally engineered and
controlled. The concept of autonomy (and autonomous
systems) is, therefore, crucial to understanding cognitive
systems. According to Maturana [10,11] a cognitive sys-
tem is a system whose organization defines a domain of
interactions in which it can act with relevance to the main-
tenance of itself, and the process of cognition is the ac-
tual (inductive) acting or behaving in this domain. If a
living system enters into a cognitive interaction, its in-
ternal state is changed in a manner relevant to its main-
tenance, and it enters into a new interaction without loss
of its identity. A cognitive system becomes an observer
through recursively generating representations of its in-
teractions, and by interacting with several representations
simultaneously it generates relations with the representa-
tions of which it can then interact and repeat this process
recursively, thus remaining in a domain of interactions
always larger than that of the representations. In addition,
it becomes self-conscious through self-observation; by
making descriptions of itself (representations), and by in-
teracting with the help of its descriptions it can describe
itself describing itself, in an endless recursive process.

According to Evan Thompson [12], autonomic sys-
tems exhibit dynamic co-emergence. Emergence describes
the arising of large-scale, collective patterns of behavior
in complex systems as diverse as cells, brains, ecosys-
tems, cities, and economies. Emergence is closely related
to self-organization and circular causality, both of which
involve the reciprocal influence of “bottom-up” and “top-
down” processes. Dynamic co-emergence means that a
whole not only arises from its parts, but the parts also
arise from the whole. Part and whole co-merge and mu-
tually specify each other. A whole cannot be reduced to
its parts, for the parts cannot be characterized independ-
ently of the whole; conversely, the parts cannot be re-
duced to the whole, for the whole cannot be character-
ized independently of the parts.

These observations lead us to conclude that self-ma-
nagement is an outcome of cognitive abilities of a system
with the following defining attributes of cognitive sys-
tems:

1) A self-identity that does not change when a state
change occurs with interaction;

2) A domains of interaction;
3) A cognitive interaction process support that allows

an observer to generate recursively representations of its
interactions. The observer by interacting with several
representations simultaneously, generates relations with
the representations of which it can then interact and re-
peat this process recursively, thus remaining in a domain

Copyright © 2012 SciRes. AM

R. MIKKILINENI 1829

of interactions always larger than that of the representa-
tions, and

4) Co-emergence
In the next section we will discuss the Turing O-ma-

chine and argue that it is more suitable to simulate the
cognitive activity and such a simulation transcends the
mere book-keeping capabilities of a Turing machine.

3. Turing O-Machine and the Scale
Invariant Structure Processes

Extending the three mutually exclusive positions discern-
ed by Johnson-Laird [13] which are the alternatives to
the conclusion “consciousness is not ‘scientifically expli-
cable’”, Copeland [9] introduces Turing’s O-machine as
an alternative to model brain or the brain’s cognitive ac-
tivity. The five alternatives that Copeland discusses are:

1) The human brain (or, variously, mind or mindbrain)
is a computer, equivalent to some Turing machine;

2) The activity of a human brain can be simulated per-
fectly by a Turing machine but the brain is not itself a
computing machine;

3) The brain’s cognitive activity cannot in its entirety
be simulated by a computing machine: a complete ac-
count of cognition will need “to rely on non-computable
procedures”;

4) The brain is what Turing called an O-machine; and
5) The cognitive activity of the brain can be simulated

perfectly by an O-machine, but the brain is not itself an
O-machine; such simulation cannot be effected by a Tur-
ing machine.

In this paper we argue that the DIME network archi-
tecture introduced to inject architectural resiliency in
distributed computing systems [14,15] supports the fifth
alternative introduced by Copeland.

The Turing machine is an abstract model that uses an
instruction cycle {read  compute (change state) 
write} to replace a man in the process of computing a
real number (using a paper and pencil) by a machine
which is only capable of finite number of conditions. In
modern terms, a program provides a description of the
Turing machine and the stored program control imple-
mentation in some hardware allows its execution. A uni-
versal Turing machine is also a Turing machine but with
the ability to simulate a sequence of synchronous Turing
machines each executing its own description. This allows
a sequence of programs to model and execute a descrip-
tion of the physical world as Cockshott et al. [1] point
out. However, the Turing’s system is limited to single,
sequential processes and is not amenable for expressing
dynamic concurrent processes where changes in one
process can influence changes in other processes while
the computation is still in progress in those processes

which is an essential requirement for describing cogni-
tive processes. Concurrent task execution and regulation
require a systemic view of the context, constraints, com-
munication and control where the identities, autonomic
behaviors and associations of individual components also
must be part of the description. However, an important
implication of Gödel’s incompleteness theorem [3] is that
it is not possible to have a finite description with the de-
scription itself as the proper part. In other words, it is not
possible to read yourself or process yourself as a process.

Turing himself discussed the mathematical objection
to his view that machines could think [16,17]. In reply to
the objection, he proposed designing computers that
could learn or discover new instructions, overcoming the
limitations imposed by Gödel’s results in the same way
that human mathematicians presumably do. He also poin-
ted out [18] that while Gödel’s theorem shows that every
system of logic is in a certain sense incomplete, it also
“indicates means whereby from a system L of logic a
more complete system L_ may be obtained. By repeating
the process we get a sequence L, L1 = L_, L2 = L_1 …
each more complete than the preceding. A logic Lω may
then be constructed in which the provable theorems are
the totality of theorems provable with the help of the lo-
gics L, L1, L2, … Proceeding in this way we can associ-
ate a system of logic with any constructive ordinal. It
may be asked whether such a sequence of logics of this
kind is complete in the sense that to any problem A there
corresponds an ordinal α such that A is solvable by
means of the logic Lα.” He also introduced the Oracle
machine in his thesis but stopped short of injecting cog-
nition into computing. “An O-machine is like a Turing
machine (TM) except that the machine is endowed with
an additional basic operation of a type that no Turing
machine can simulate.” Turing called the new operation
the “Oracle” and said that it works by “some unspecified
means”. When the Turing machine is in a certain internal
state, it can query the Oracle for an answer to a specific
question and act accordingly depending on the answer.
The O-machine provides a generalization of the Turing
machines to explore means to address the impact of
Gödel’s incompleteness theorems and problems that are
not explicitly computable but are limit computable using
relative reducibility and relative computability [19]. The
Oracle-machine influenced many theoretical advances
including the development of generalized recursion the-
ory that extended the concept of an algorithm [19,20].

In this paper we argue that the DIME network archi-
tecture recently introduced [14] incorporates a “regula-
tory” function to exert external influence on a Turing ma-
chine while computation is still in progress (and has not
halted yet), making it act more like an O-machine. A net-
work of such “regulated” Turing machines acts like a

Copyright © 2012 SciRes. AM

R. MIKKILINENI

Copyright © 2012 SciRes. AM

1830

4. DIME Network Architecture and
Cognitive Process Implementation

managed recursive distributed computing engine with
nested monitoring and control functions where each level
is managed by the Oracle-like machine at a higher level.
The resulting architecture allows descriptions of dynamic,
scale-invariant structure processes to represent the recip-
rocal influences of “bottom-up” and “top-down” proc-
esses. With the introduction of the Turing O-machine-
like regulation, the DIME network architecture circum-
vents both the halting and un-decidability problems by
pushing the knowledge about the context, constraints and
control of the computation up the hierarchy which regu-
lates the sequence of hierarchical and temporal events
required to implement homeostasis and self-management
of the computation. At the root level, the process work-
flow down the chain defines the stable computing pat-
terns that execute the events to accomplish the system’s
purpose and the goals specified at each level. The speci-
fication of the system’s purpose (or the intent that drives
a cognitive process) at the root level (initial conditions at
t = 0) is regulated by an external agent in terms of the
context and constraints that define the destiny of the
process flow. This architecture, resembling the self-or-
ganizing fractal structure [21,22] is suited to address
some of the concerns currently afflicting distributed com-
puting systems such as concurrency, mobility and syn-
chronization. Further research is in progress to provide a
way to implement features of π-calculus [23,24] includ-
ing mobility using the DIME network architecture.

In its simplest form a DIME is comprised of a policy
manager (determining the fault, configuration, account-
ing, performance, and security aspects often denoted by
FCAPS); a computing element called MICE (Managed
Intelligent Computing Element); and two communication
channels. The FCAPS elements of the DIME provide
setup, monitoring, analysis and reconfiguration based on
workload variations, system priorities based on policies
and latency constraints. They are interconnected and
controlled using a signaling channel which overlays a
computing channel that provides I/O connections to the
MICE) [14]. The DIME computing element acts like a
Turing O-machine introduced in his thesis and circum-
vents Gödel’s halting and un-decidability issues by sepa-
rating the computing and its management and pushing
the management to a higher level.

In this model, the controlled computing element (the
MICE) acts as a conventional Turing machine and the
FCAPS managers act as the Oracles. Figure 1 shows the
functioning of a DIME and its analogy to the Turing O-
machine.

There are three key modifications to the Turing ma-
chine which provide the abstractions required to provide
the cognitive system attributes identified in this paper:

1) The “read -> compute -> write” instruction cycle of
the Turing machine is modified to “interact with external
agent -> read -> compute -> interact with external agent
-> write” instruction cycle which allows the external
agent to influence the further evolution of computation

The DIME network architecture concerns itself with
process work-flows that contain the descriptions to exe-
cute and regulate the tasks described to accomplish an
intent. When the process is initiated by an external agent
at t = 0, the whole and the parts act as an integrated sys-
tem to accomplish the intent with the given descriptions
of both the task executions and their regulation.

2) The external agent consists of a set of parallel man-
agers monitoring and controlling the evolution of the
computation based on the context, constraints and avail-
able resources. The context, constraints and control op-

Figure 1. The Oracle function is implemented in a DIME using parallel fault, configuration, accounting, performance and
ecurity monitoring and control of the Turing machine implementing the algorithmic computation. s

R. MIKKILINENI 1831

tions are specified as a meta-model of the algorithm un-
der computation. The context refers to local resource
utilization and the computational state of progress ob-
tained through the interaction with the Turing machine.
Each DIME contains two parts; the service regulator (SR)
that specifies the algorithm context, constraints, commu-
nication abstractions and control commands which are
used to monitor and control the algorithm execution at
run-time; and the algorithm executable module (SP) that
can be loaded and run in the DIME.

3) In addition to read/write communication of the Tur-
ing machine, the managers communicate with external
agents using a parallel signaling channel. This allows the
external agents to influence the computation in progress
based on the context and constraints just as an Oracle is
expected to do. The external agent itself could be another
DIME in which case, changes in one computing element
could influence the evolution of another computing ele-
ment at run time without halting its Turing machine exe-
cuting the algorithm.

The separation of computing and its management at
the DIME is extended and scaled to become a two layer
DIME network. The DIME network thus provides a re-
gulatory (or signaling) network overlay over the com-
puting network. The DIME network [14] consists of four
components:

1) Nodes that encapsulate the managed intelligent
computing element, MICE, with self-management of
fault, configuration, accounting, performance and secu-
rity (FCAPS);

2) Message-based communications (loose coupling);
3) Channels for intra- and inter-DIME communication

and control; parallel and isolated channels for signaling
(FCAPS management) and data (information) exchange;

4) Support for distributed recursive processes that, at
some level, contain services that execute a set of tasks.

A generic structure model for the DIME network using
the π-calculus recursive operation [24,25] is shown in
Figure 2. In traditional procedural languages, recursion
is implemented by suspending the current iteration while
the next iteration executes, while in π-calculus the recur-
sive iterations operate concurrently.

Let C, D, M and R represent a set of communication
channels, DIME, Regulator and MICE nodes respec-
tively.

    i i i id r c m

where a Dime node, di is a set of concurrent processes

i , i and i and  and r R c C m M ic im rep-
resent a set of channels and Mice; the two sets of com-
munication channels of Figure 2 are together represented
by the set  ic

0! !D r D D   

    i i iD r c m D 

Figure 2. DIME Networks modeled in π-calculus.

where “!” is the π-calculus recursion operator, “|” repre-
sents concurrency, r0 represents the initial/root Regulator
(at start-up); [···] represents option, and {···} represents
a set.

Thus, from the above we know that a DIME network
consists of an initial (start-up) Regulator (the root regu-
lator, r0 that may be connected through a set of commu-
nication channels and operate concurrently with a DIME
network. We can visualize the DIME network from some
node, di, created in the ith iteration as:

    i i iD r c m D 

where D represent the ancestors and D the de-
scendants.

A DIME can abstract a network of DIMEs thus pro-
viding an FCAPS managed DIME composition scheme.
This allows us to implement both hierarchical and tem-
poral event flows constituting the business processes. It
is easy to see that the DIME’s self-identity, self-man-
agement, recursive network composition scheme to im-
plement managed network of computing elements and
the dynamic control offered by the signaling channel to
configure and reconfigure DIME networks provide a
powerful mechanism to implement the process flows
required to support cognitive process in computing sys-
tems.

Figure 3 shows various configurations that can be dy-
namically instantiated and reconfigured. It is easy to see
that the DIME network architecture supports [14] the
genetic transactions of replication, repair, recombination
and reconfiguration.

Figure 4 shows that a regulated cognitive process can
be implemented using the DIME network architecture.
The local, group-level and global cognitive process poli-
cies are implemented using the monitoring and manage-
ment capabilities offered by DIMEs. Each DIME can be
interrupted and influenced by the DIME at the higher

Copyright © 2012 SciRes. AM

R. MIKKILINENI 1832

Figure 3. DIME network configurations & π-calculus.

Figure 4. A DIME network implementing cognitive proc-
esses.

level using the Oracle-like instruction cycle. The DIME
network therefore describes and implements a dynamic
managed process flow exhibiting a meta-stable equilib-
rium where fluctuations are determined by the interac-
tions among the various elements and their environments.
More details of an application of these concepts in im-
proving the operation and management of distributed
computing in Linux and a native operating system called
Parallax-OS are described in [26-29].

5. DIME Network, Entropy and Metastable
Equilibrium

As mentioned above, DNA has been implemented in two
instances [26-29]:

1) Using the DIME computing model to provide
FCAPS management to a Linux process. This approach
allows any Linux executable to be endowed with self-
management and signaling capability thus allowing self-
repair, auto-scaling, dynamic performance monitoring
and management, and end-to-end transaction FCAPS ma-

nagement in a distributed system.
2) A native operating system to run in the next genera-

tion multi-core and many-core processor based comput-
ing devices to convert each core into a DIME and im-
plement managed workflows in a DIME network span-
ning across multiple computing devices and geographies
with network-wide policies based on business priorities,
workload fluctuations and latency constraints.

In this paper, we focus on Copeland’s fifth alternative
mentioned above to examine how cognitive processes are
simulated using DIME network architecture. The DIME
network provides a way to model the computer and the
computed and the system entropy depends on the overall
network configuration, resources (CPU, memory, band-
width, and storage at both the node level and at network
level) and the interactions between various components.
The Oracle nature of the DIME and the network-wide
signaling control to influence any computing element
provides a way to evolve the computing while it is in
progress.

Figure 5 shows the system’s entropy as a function of
time depending on the system configuration. The non-
determinism of a given configuration influenced by the
interactions provides a set of meta-stable equilibriums. A
configuration change provides a transition of one meta-
stable equilibrium state to another. The network-wide
coordination and collaboration of the DIME network
orchestrate the global policies to implement the managed
cognitive process using the MICE network. The Oracle
“network effect” provides a synergy that is greater than
the sum of its parts by effectively using global knowl-
edge.

The DIME network provides the self-identity at the
element level, group level and at global system level. The
recursive distributed computing network created by the
descriptions of managed computing elements at the node,
sub-network and network level provides the required

Configuration Fluntuations

R
es

po
ns

e
tim

e

Figure 5. Meta-stable equilibriums.

Copyright © 2012 SciRes. AM

R. MIKKILINENI 1833

scale-invariant structure processes at element, group and
system level cognition.

6. Conclusions

According to Andrew Wells [30] thinking is an ecologi-
cal activity. The brain part manages the resources avail-
able and deploys them effectively to interact with the
environment using well defined descriptions and execu-
tion mechanisms to execute and regulate the cognitive
processes. He points out that the Turing machine has two
principal components. “One is a model of the individual
mind, the other a model of the part of the environment.
The mind part of the model, when functioning in isola-
tions, is provably less powerful than the combination of
the mind part and the environment part.” He also cor-
rectly emphasizes that the mind part Turing defined is
constrained to the mind model dealing with the specific
context of paper and pencil calculation executed by a
human computer. Louise Barrett [31] making a case for
the animal and human dependence on their bodies and
environment—not just their brains—to behave intelli-
gently, highlights the difference between Turing Ma-
chines implemented using von Neumann architecture and
biological systems. She argues following Andrew Wells
that the Turing machines based on algorithmic symbolic
manipulation using von Neumann architecture, gravitate
toward those aspects of cognition, like natural language,
formal reasoning, planning, mathematics and playing
chess, in which the processing of abstract symbols in a
logical fashion and leaves out other aspects of cognition
that deal with producing adoptive behavior in a change-
able environment. Unlike the approach where perception,
cognition and action are clearly separated, she suggests
that the dynamic coupling between various elements of
the system, where each change in one element continu-
ally influences every other element’s direction of change
has to be accounted for in any computational model that
includes system’s sensory and motor functions along
with analysis.

The DIME network architecture extrapolates Turing’s
Oracle machine with the recursive representation of the
computer and the computed to create a parallel control
network to manage the computing algorithms executed
by the individual nodes acting as Oracle machines. This
model incorporates a way to encapsulate not only the
algorithm that is executed by a Turing machine but also a
meta-model that provides the context, constraints, com-
munication and control. The meta-model along with
monitoring and management of the execution of the al-
gorithm provides a way to incorporate dynamic coupling
between various elements of the system, where each
change in one element continually influences every other

element’s direction of change.
The DIME network architecture introduces parallel

FCAPS management of Turing machine node with an
Oracle-like intervention and a signaling network overlay
to provide system-wide self-management. The introduc-
tion of a signaling network overlay over computing net-
work with a system-wide Oracle-like intervention adds a
new dimension in distributed computing by incorporating
the architectural resilience of cellular organisms into
computing machines. It allows specification of equilib-
rium patterns in computation process flows, and monitor
and control exceptions system-wide. It allows contention
resolution based on system-wide view and eliminates
race conditions and other common issues found in cur-
rent ad-hoc distributed computing practices. In systems
with strong dynamic coupling between various elements
of the system, where each change in one element con-
tinually influences the other element’s direction of chan-
ge, signaling in the computation model helps implement
system-wide coordination and control based on global
priorities, workload fluctuations and latency constraints.

Signaling and the separation of specification and exe-
cution of a computation provide a mechanism to intro-
duce self-replication, self-repair, recombination and re-
configuration of computing network at run-time. These
genetic transactions are essential to provide a computing
environment to model, execute and regulate cognitive
processes.

While we cannot answer if the brain is super-me-
chanical and how, we argue that injecting cognitive pro-
cesses into computing is possible by extending the cur-
rent von Neumann stored program control implementa-
tion of a Turing machine to execute an algorithm with
Oracle-like intervention. The monitoring and control of
both the algorithm execution and the resources executing
the algorithm using the context, constraints, communica-
tion and control provide self-management with a sys-
temic view to implement the system’s intent. The DIME
networks are restricted to a class of cognitive computing
that involves the reciprocal influence of “bottom-up” and
“top-down” processes. This we believe is the first step in
addressing the computation and its limit by incorporating
both the computer and the computed in modeling the
physical world. This is analogous to how cellular organ-
isms use their DNA (deoxyribonucleic acid) descriptions
to both execute and regulate their process flows. As
Mitchell Waldrop explains in his book on Complexity
[32], “the DNA residing in a cell’s nucleus was not just a
blue-print for the cell—a catalog of how to make this
protein or that protein. DNA was actually the foreman in
charge of construction. In effect, was a kind of molecu-
lar-scale computer that directed how the cell was to
build itself and repair itself and interact with the outside
world.”

Copyright © 2012 SciRes. AM

R. MIKKILINENI 1834

7. Acknowledgements

The author is extremely grateful to Pankaj Goyal for
showing that DIME network architecture can be one of
the computing architectures for π-calculus and sharing his
results before publication. The author wishes to express
his gratitude to Giovanni Morana, Daniele Zito and Mar-
co Di Sano for their enthusiasm and effort in implement-
ing the self-regulating Linux, Apache, MySQL, and PHP
(LAMP) cloud using the DIME network architecture thus
demonstrating the elimination of the complexity of Hy-
pervisors and Virtual Machines. The author also is grate-
ful to Ian Seyler for implementing the native operating
system converting each core in a multi-core processor
into a DIME to demonstrate system-wide resiliency in
workflow execution spanning across multiple many- core
processors, and servers.

REFERENCES

[1] P. Cockshott, L. M. MacKenzie and G. Michaelson, “Com-
putation and Its Limits,” Oxford University Press, Oxford,
2012.

[2] J. V. Neumann, “Probabilistic Logic and the Synthesis of
Reliable Organisms from Unreliable Components,” In: C.
E. Shannon and J. McCarthy, Eds., Automatic Studies,
Princeton University Press, Princeton, 1956, pp. 43-98.

[3] W. Aspray and A. Burks, “Papers of John von Neumann
on Computing and Computer Theory,” MIT Press, Cam-
bridge, 1989.

[4] A. M. Turing, “The Essential Turing,” Oxford University
Press, Oxford, 2004.

[5] A. M. Turing, “Computing Machinery and Intelligence,”
Mind, Vol. 49, 1950, pp. 433-460.
doi:10.1093/mind/LIX.236.433

[6] P. Stanier and G. Moore, “Embryos, Genes and Birth
Defects,” 2nd Edition, John Wiley & Sons, London, 2006,
p. 5.

[7] S. B. Caroll, “The New Science of Evo Devo—Endless
Forms Most Beautiful,” W. W. Norton & Co., New York,
2005.

[8] A. M. Turing, “Systems of Logic Defined by Ordinals,”
Proceedings London Mathematical Society, Vol. 2, No.
45, 1939, pp. 161-228.

[9] B. J. Copeland, “Turing’s O-Machines, Searle, Penrose
and the Brain,” Analysis, Vol. 58, 1998, pp. 128-138.
doi:10.1093/analys/58.2.128

[10] H. R. Maturana, “Biological Computer Laboratory Re-
search Report BCL 9.0,” University of Illinois, Urbana,
1970.

[11] H. R. Maturana and F. J. Varela, “Autopoiesis and Cogni-
tion: The Realization of the Living (Boston Studies in the
Philosophy of Science),” D. Reidel, Dordrecht, 1960.

[12] E. Thompson, “Mind in Life: Biology, Phenomenology,
and the Sciences of the Mind,” Harvard University Press,
Cambridge, 2007.

[13] P. Johnson-Laird, “How Could Consciousness Arise from
the Computations of the Brain?” In: C. Blakemore and S.
Greenfield, Eds., Mindwaves, Basil Blackwell, Oxford,
1987.

[14] R. Mikkilineni, “Designing a New Class of Distributed
Systems,” Springer, New York, 2011.
doi:10.1007/978-1-4614-1924-2

[15] R. Mikkilineni, A. Comparini and G. Morana, Turing O-
Machine and the DIME Network Architecture: Injecting
the Architectural Resiliency into Distributed Computing,
in Turing-100,” In: A. Voronkov, Ed., EPIC Series, Easy
Chair, 2012.
http://www.easychair.org/publications/?page=877986046

[16] A. M. Turing, “The Essential Turing,” Oxford University
Press, Oxford, 2004.

[17] G. Piccinini, “Alan Turing and the Mathematical Objec-
tion,” Minds and Machines, Vol. 13, No. 1, 2003, pp. 23-
48. doi:10.1023/A:1021348629167

[18] A. M. Turing, “Systems of Logic Defined by Ordinals,”
Proceedings London Mathematical Society, Vol. 45, 1939,
pp. 161-228.

[19] S. Feferman, “Turing’s Thesis,” Notices of the AMS, Vol.
53, No. 10, 2006, p. 2.

[20] R. Soare, “Turing Oracle Machines, Online Computing,
and Three Displacements in Computability Theory,” An-
nals of Pure and Applied Logic, Vol. 160, No. 3, 2009, pp.
368-399. doi:10.1016/j.apal.2009.01.008

[21] A. Kurakin, “Retrieved from the Universal Principles of
Self-Organization and the Unity of Nature and Knowl-
edge,” 2007.
http://www.alexeikurakin.org/text/thesoft.pdf

[22] A. Kurakin, “Theoretical Biology and Medical Model-
ing,” 2011. http://www.tbiomed.com/content/8/1/4

[23] R. Milner, “Communicating and Mobile Systems: The Pi-
Calculus,” Cambridge University Press, Cambridge, 1999.

[24] P. Goyal and R. Mikkilineni, “Implementing Managed
Loosely-coupled Distributed Business Processes: A New
Approach using DIME Networks, Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE),”
21st IEEE International Conference, Toulouse, 25-27
June 2012.

[25] P. Goyal, “A Recursive Computing Model for DIME Net-
work Architecture Using π-Calculus,” Private Communi-
cation, 2012.

[26] R. Mikkilineni and I. Seyler, “A New Operating System
for Scalable, Distributed, and Parallel Computing,” IEEE
International Symposium on Parallel and Distributed Pro-
cessing Workshops and PhD Forum (IPDPSW), Anchor-
age, 16-20 May 2011, pp. 976-983.

[27] R. Mikkilineni and I. Seyler, “Implementing Distributed,
Self-Managing Computing Services Infrastructure Using
a Scalable, Parallel and Network-centric Computing Mo-
del,” In: M. Villari, C. I. Brandic and F. Tusa, Eds.,
Achieving Federated and Self-Manageable Cloud Infra-
structures: Theory and Practice, IGI Global, pp. 57-78.

[28] R. Mikkilineni, I. Seyler, G. Morana, D. Zito and M. Di
Sano, “Service Virtualization Using a Non-Von Neumann
Parallel, Distributed, and Scalable Computing Model,”

Copyright © 2012 SciRes. AM

http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1093/analys/58.2.128
http://dx.doi.org/10.1007/978-1-4614-1924-2
http://dx.doi.org/10.1023/A:1021348629167
http://dx.doi.org/10.1016/j.apal.2009.01.008

R. MIKKILINENI

Copyright © 2012 SciRes. AM

1835

Journal of Computer Networks and Communications,
2012, in Press.

[29] G. Morana and R. Mikkilineni, “Scaling and Self-Repair
of Linux Based Services Using a Novel Distributed Com-
puting Model Exploiting Parallelism,” 20th IEEE Inter-
national Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises (WETICE), Paris,
27-29 June 2011, pp. 98-103.

[30] A. Wells, “Rethinking Cognitive Computation: Turing

and the Science of Mind,” Palgrave Macmillan, London,
2006.

[31] L. Barrett, “Beyond the Brain,” Princeton University Press,
Princeton, 2011.

[32] M. Mitchell-Waldrop, “Complexity: The Emerging Sci-
ence at the Edge of Order and Chaos,” Penguin Books,
London, 1992, p. 218.

