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ABSTRACT 

In this study, we introduce a numerical method to reduce the solute transport equation into a reduced form that can 
replicate the behavior of the model described by the original equation. The basic idea is to collect an ensemble of data 
of state variables (say, solute concentration), called snapshots, by running the original model, and then use the proper 
orthogonal decomposition (POD) techniques (or the Karhunen-Loeve decomposition) to create a set of basis functions 
that span the snapshot collection. The snapshots can be reconstructed using these basis functions. The solute concen- 
tration at any time and location in the domain is expressed as a linear combination of these basis functions, and a 
Galerkin procedure is applied to the original model to obtain a set of ordinary differential equations for the coefficients 
in the linear representation. The accuracy and computational efficiency of the reduced model have been demonstrated 
using several one-dimensional and two-dimensional examples. 
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1. Introduction 

Accurate predictions of radionuclide transport in general 
come from process models, which are defined as detailed 
flow and contaminant transport model that best replicate 
the available data for a site. They usually are the most 
complex and sophisticated models of flow and transport 
at a particular site. A significant technical issue arises 
when one tries to use those model results in probabilistic 
systems modeling: it is impractical to directly solve the 
computationally intensive model for each Monte Carlo 
realization that would be necessary to properly span the 
range of uncertainty for every model parameter. 

On contrast to process models, systems models have 
been proposed to represent complex process models with 
simplified models that are suitable for Monte Carlo 
analysis. Systems models incorporate streamlined ver- 
sions of one or more process models, along with uncer- 
tain estimates of the contaminant source term. Systems 
models integrate knowledge of all of the processes rele- 
vant to assessing risk, and therefore are critical to support 
remedies or decisions to monitor groundwater. Process 
models synthesize knowledge of one component of the 
transport path; the systems models integrate knowledge 
of all aspects of contaminant transport. 

The groundwater pathway in the systems model should 
be an abstraction model that we believe captures the es-  

sential features of the groundwater process model, al- 
though there is a risk that the simplification process will 
filter out something important. When the groundwater 
pathway is simulated in a process model, it is generally 
not practical to embed the entire model in the systems 
model-computational limitations intercede. Consequently, 
we often settle for one or a few simplified models. These 
simplified models are called abstraction models. Within 
these simplified or other types of transport modules, pa- 
rameters that can be varied in a probabilistic analysis 
include the groundwater velocity, dispersion coefficient, 
and sorption parameters. In the best case, the process 
model is used to justify these parameter distributions, but 
often this is not done in great detail due to the complexity 
of the process models and the lack of a convenient tool to 
formally abstract the process model results. The result 
may be a systems model that does not fully consider, or 
indeed even contradicts, one or more of the process 
models. The credibility of the systems model is placed in 
jeopardy when this happens. 

If an efficient and accurate model abstraction proce- 
dure can be implemented for groundwater contaminant 
transport, we largely avoid the issue of justifying the va- 
lidity of our abstraction model: the original process mo- 
del is effectively incorporated in the systems model. Al-
ternatively, if a modeling analysis stops short of sys-  
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tems analysis, the reduced model can still be used to ex-
plore uncertainties much more efficiently, thereby al-
lowing better sensitivity analyses to be conducted. 

To date, methods for proceeding from complex pro- 
cess models to simplified systems models have not been 
formally determined or defined. In this study, a method is 
developed to obtain efficient and accurate reduced mo- 
dels, alternatively referred to as abstraction models. The 
technique, called the proper orthogonal decomposition 
(POD), also known as principal component analysis or 
Karhunen-Loeve expansion, uses the results from a pro- 
cess model as “data” that provides the basis for a reduced 
model. The procedure, in general terms, calls for the run- 
ning of the process model, in this case a contaminant 
transport simulation, forward in time, recording “snap- 
shots” of contaminant concentration. The mathematical 
technique transforms the results into a set of basis func- 
tions that span the behavior of the transport problem 
throughout the model domain. The reduced model is then 
constructed by assuming that the solution of the transport 
problem can be formulated as a linear combination of the 
basis functions. A Galerkin procedure using the basis 
functions results in a small set of ordinary differential 
equations that are solved in time. 

There are a variety of applications in various fields of 
science for which this technique has been applied. For 
example, researchers in the field of fluid dynamics have 
used POD methods to discern so-called coherent struc- 
tures within a turbulent flow field [1], and to characterize 
the spatio-temporal patterns in two-phase, fluidized bed 
reactors [2]. Due to the need for compact models suitable 
for integration into process control systems, the techni- 
ques have been applied to the modeling of non-linear 
heat transfer [3], natural convection [4], and transport of 
chemicals in chemical vapor deposition (CVD) reactors 
[5,6]. In the field of groundwater hydrology and reservoir 
engineering, techniques to develop reduced models have 
been explored [7-9], although these applications focus on 
fluid flow rather than contaminant transport. 

An excellent summary of the underpinning theoretical 
development of POD is presented by [10], and several of 
the aforementioned references contain detailed descrip- 
tions of the implementation of the POD technique. Of 
greatest relevance in the present study are the CVD 
model studies [5,6]. In these models, fluid flow (a carrier 
gas) is assumed to be at steady state, and a reacting che- 
mical species is transported in the fluid. Except that the 
flow is compressible in the CVD case, this is analogous 
to the problem of chemical transport in groundwater. 
Thus, although the POD technique has not been deve- 
loped for contaminant transport in groundwater, the 
scope of work required to develop this capability is rea- 
sonably constrained due to this previous work. 

2. Transport Equations 

The governing equation for transport of a single solute in 
porous media can be written as [11]: 
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subject to an initial condition  and ap- 
propriate boundary conditions. Here  is the porosity, Sl 
is the liquid saturation, l is the liquid density, C is the 
solute concentration, D is the dispersion tensor, ul is the 
Darcy velocity, Cr represents the adsorption of the solute 
onto the porous media, rdCr/dt is an equilibrium sorp- 
tion term, and q is sources or sinks. All parameters in 
Equation (1) can be space-dependent, but for simplicity 
the coordinate 1 2 3
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The general equilibrium model for adsorption of species 
onto the porous media is given by [12] 
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where α1, α2, and β are parameters defining different 
sorption-isotherm models. In this study, the linear iso- 
therm model (α1 = Kd, α2 = 0, and β = 1) is used: Cr = Kd 
C, where Kd is the partition or distribution coefficient. 

If we assume that flow is in saturated porous media at 
the steady state condition, it follows that l, D, and ul are 
independent of time, and saturation Sl = 1. In this case, 
Equation (1) can be simplified as 
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This is the full model we deal with in this study. Given 
appropriate initial and boundary conditions, as well as 
other parameter fields such as permeability, one can first 
solve for the velocity field and then the concentration 
field from Equation (3). 

3. Proper Orthogonal Decomposition (POD) 

Let    C , , 1, 2, ,i iC t i  x x

1,

s , denote a set of Ns 
observations (or snapshots) of a state variable (in this 
case, solute concentration) observed or simulated from 
the full model run at time ti, 

N

2, , si  N . The basic 
idea of the POD method is to find a set of functions 
 x

iC
 , called basis functions that have a structure typical 
of the members of the ensemble . The basis func- 
tions are chosen to give the best representation of the 
ensemble of snapshots, which maximizes 
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where  ,iC   is the inner product of the basis function 
  and the concentration field i . It can be shown that 
the basis functions can be expressed as a linear combina-
tion of snapshots [10]: 

C
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,      1, ,
sN

n kn k
i

sf C k
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 x x N    (5) 

where fkn is the kth component of the nth eigenvector of 
the kernel K that is computed from 
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By Equation (5), each snapshot can be reconstructed 
exactly using these basis functions as 
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To summarize, for a given ensemble of Ns snapshots, one 
first computes the kernel K from Equation (6) and solves 
the eigenproblem KF = F, which gives Ns eigenvalues 
n, 1, 2, , si  

1,2, ,

N , sorted from largest to smallest, and 
their corresponding eigenvectors ,  T

1 2,  , ,i i i iNsf f f f 
si N . The basis functions are computed from 

Equation (5) and any snapshot can be reconstructed using 
Equation (7). Since the matrix K is real, symmetric, and 
positive semi-definite, all eigenvalues are non-negative. 
The importance of the nth eigenvectors depends on its 
relative “energy”, characterized by the ratio of the nth 
eigenvalue to the sum of all eigenvalues (total energy):  

1
sN

n i i 
 . In many cases, the first few eigenvalues  

carry most of the total energy and thus concentration C(x) 
in Equation (7) can be approximated by truncating the 
first M terms ( sM N ). 

To find the spatial distribution of concentration at a 
time that is not in the ensemble of snapshots, one has to 
solve for the coefficients in Equation (7). In the follow- 
ing section, a reduced model is introduced, in which or-
dinary differential equations for these coefficients are 
derived from the original (partial differential) transport 
equations. 

4. Reduced Model 

Suppose that the full model, i.e., Equation (3), is solved 
to obtain a set of snapshots of the concentration distribu- 
tion C(x, ti), 1,2, , si  
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,

. Based on the algorithm de- 
scribed in the previous section, one can find a set of basis 
functions s  Then the Galerkin’s 
method can be employed by seeking an approximation of 
concentration C(x, t) as 
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where M < Ns, and am are time-varying coefficients that 

are independent of spatial locations. The physical mean 
of (8) is that the concentration field is approximated by a 
linear combination of some pre-determined, space-de- 
pendent “structures”, weighted by some time-dependent  
coefficients. Since  in (8) is an approximation   ˆ ,C tx
of the true concentration, replacing  in the full 
model, i.e., (3), by  will produce a model error. 
In the Galerkin’s method, this error is forced to be or- 
thogonal to all basis functions, i.e., 
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for 1,2, ,i   , where  l l r dp K    . Here 
the orthogonality of any two functions is defined as the 
integration of the product of two functions over the 
simulation domain being zero. Substituting (8) into (9) 
and recalling the orthogonality of basis functions yield 
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which can be written as  
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The initial condition for Equation (11) is derived from 
the original initial condition C(x, t) = C0(x): 

     0 ,0 d ,      1,i ia C i M


  x x x .       (14) 

Thus the partial differential equation (PDE) has been 
reduced to a system of M ordinary differential equations 
(ODE). Provided that M is fairly small, the reduction in 
computational time should be significant compared to the 
numerical solutions of the PDE in the original model. 

5. Illustrative Examples 

In this section, several examples are presented to illus- 
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trate how the model reduction techniques can signifi- 
cantly reduce computational efforts in solute transport in 
porous media, while retaining accuracy. This is accom- 
plished by comparing results from the reduced models 
against those from the full model runs. Note that, in solv- 
ing the full model numerically, it is quite often that nu- 
merical errors may be introduced. To avoid this, in the 
first two examples, simple one-dimensional transport 
problems were chosen because analytical solutions for 
these simple cases are available, which made it easy to 
assess the accuracy of the reduced model. 

5.1. One-Dimensional Solute Transport with 
Linear Sorption 

In the first example, we consider a one-dimensional 
transport problem in a saturated column of 1 m in length, 
uniformly discretized into 200 elements. The hydraulic 
conductivity is a constant Ks = 1.0 m/day for the entire 
column, and the flow is driven by a hydraulic gradient of 
J = 0.001, which produces a uniform flow with Darcy 
velocity of 1.1813 × 108 m/s. Other transport parameters 
are given as: the dispersivity coefficient αL = 0.03333 m, 
partition coefficient Kd = 0.1, water density l = 1000.0 
kg/m3, rock density r = 2500 kg/m3, and porosity  = 
0.25. Under the given initial condition C(x, 0) = 0, a 
fixed concentration C(x, t) = 1.0 at the inlet (x = 0), and a 
zero concentration gradient C(x, t)/x = 0 at x = , this 
problem can be solved analytically [13]: 
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L L
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where  1 r d lR K    is the retardation factor, and 
erfc is the complementary error function. Twenty-five 
concentration snapshots are computed using Equation 
(15) at time t = nt, where t = 20 days and n ranges 
from 1 to 25. Some selected snapshots are illustrated in 
Figure 1. 

Using these 25 snapshots, the kernel K is computed 
from (6), and the eigenvalues and eigenvectors associ-
ated with this kernel are solved from KF = F. These 
eigenvalues and eigenvectors depend significantly on the 
choice of snapshots. It is critical that each snapshot be 
significantly different from all others.  

The eigenvalues for this set of snapshots are depicted 
in Figure 2. The figure indicates that the first eigenvalue 
carries about 91% of the total energy and the first 6 ei- 
genvalues carry more than 99.99% of the total energy. 
The ratio of the accumulative energy to the total energy 
is a measure that can be used to determine the number of 
modes needed to achieve a given accuracy. 

 

Figure 1. Selected snapshots computed from Equation (15) 
for the one-dimensional solute transport with linear sorp- 
tion. 
 

 

Figure 2. (a) The eigenvalues and their cumulative value as 
functions of modes; and (b) Selected basis functions for one- 
dimensional solute transport with linear sorption. 
 

The first few basis functions are illustrated in Figure 
2(b). It is seen from the figure that the magnitude of the 
first basis function is much larger than that of other basis 
functions. In addition, the magnitude decreases as the 
mode number increases, which makes it possible to ap- 
proximate the concentration field using only a few terms 
rather than Ns (=25) terms. 

Based on these basis functions, all snapshots can be re- 
constructed using Equation (7). Comparisons of the true 
snapshots and reconstructed snapshots indicate that at 
most 6 basis functions are enough to reconstruct these 
snapshots with sufficient accuracy. Of course, in general, 
the number of basis functions required to obtain an accu- 
rate solution will depend on the parameters (Ks, and αL, L) 
in the solute transport problem.  

The spatial distribution of solute concentration at any 
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given time can be derived from solving the reduced mo- 
del. The ordinary differential Equation (11) with the ini- 
tial condition (14) was solved using the fourth-order 
Runge-Kutta method with a time step of  = 1000 s. In 
particular, the ensemble of those snapshots can be solved 
from the reduced model (rather than reconstructed from 
(7). Four selected concentration distributions computed 
from the reduced model, as functions of the number of 
basis functions included, are illustrated in Figure 3. Also 
plotted in the figure is the true (exact) solution from 
Equation (15). The figure clearly shows that the accuracy 
of the estimated concentration distribution depends on 
the number of basis functions included. For this example, 
including 10 basis functions is enough to produce very 
accurate results as compared to the exact solutions. 

model can reproduce the true solution accurately. 

5.2. One-Dimensional Transport with Pulse 
Input 

In the second example, all transport parameters are the 
same as in the previous example except that (1) the parti- 
tion coefficient Kd is zero in this case, and (2) instead of 
a fixed constant concentration at the inlet (x = 0), a unit 
pulse input is imposed at the inlet for a duration of 5 days. 
For this simple case, analytical solution is also available 
[13]: 
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   (16) 

It should be pointed out that, if the number of basis 
functions included in the reduced model is not enough, 
the results could be completely wrong. As illustrated in 
Figure 3, for snapshots 10 and 20, when a small number 
of basis functions were used, the concentration value is 
larger than 1.0, which is physically impossible, as the 
concentration at the inlet is 1.0. 

It is interesting to investigate how well the reduced 
model can predict the concentration distribution at an 
elapsed time that is different from those times at which 
the ensemble of snapshots are taken. Figure 4 compares 
the concentration profiles at time t = 75 and 525 days 
computed from the analytical solution and those solved 
from the reduced model with 15 basis functions. Note 
that t = 525 days is larger than the maximum time of all 
snapshots used in constructing the reduced model. The 
comparison in the figure demonstrates that the reduced 

where t0 is the duration of the pulse input, which starts at 
zero. Using this equation, 25 snapshots were calculated 
from t = 10 to 250 days at an increment of 10 days. Seve- 
ral selected snapshots are illustrated in Figure 5. 

Following the POD method, the kernel K was com- 
puted from these 25 snapshots using (6); eigenvalues and 
eigenvectors were solved from KF = F; and then basis 

 

 

Figure 3. Accuracy of computed snapshots using the model reduction method with different numbers of basis functions. 
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Figure 4. Comparison of exact solution and reduced model 
solution at time t = 75 days and 525 days. 
 

 

Figure 5. Selected snapshots computed from Equation (16) 
for the one-dimensional solute transport with pulse input. 
 
functions were computed using (5). The set of eigenval- 
ues as a function of the mode is depicted in Figure 6(a). 
Unlike in the previous case where the first eigenvalue 
carries about 90% of energy, in this case the first one has 
only 40% of energy and the first 8 eigenvalues carry 
about 99.99% energy, which means that more basis func- 
tions may be required to approximate the solution. This 
can also be seen from Figure 6(b), where the relative 
magnitudes of the first few basis functions are more or 
less the same, while in the previous example the magni- 
tude of the first basis function is much larger than that of 
other basis functions. A larger number of required basis 
functions may be attributed to the fact that the patterns of 
different snapshots are quite different in this example 
while in the previous example all snapshots have a very 
similar pattern. 

Figure 7 compares four snapshots computed from the 
analytical solution and those solved from the reduced 
model with different numbers of basis functions included 
in the reduced model. It is seen from the figure that the 
reduced model with 10 basis functions is accurate enough. 
We also compared concentration profiles at time t = 75 
and 275 days derived from the analytical solution and 
those from solving the reduced model with 10 basis fun- 
ctions (not shown). Again, the solutions from the reduced 
model are nearly identical to the true solutions. 

 

Figure 6. (a) The eigenvalues and their cumulative value as 
functions of modes; (b) Selected basis functions for the one- 
dimensional solute transport with pulse input. 

5.3. Two-Dimensional Solute Transport with 
Heterogeneous Conductivity and Sorption 
Coefficients 

In the third example, solute transport is modeled in a 
two-dimensional rectangular domain of size 1 m × 0.5 m, 
uniformly discretized into 100 × 50 square elements. Non- 
flow conditions are prescribed at two lateral boundaries. 
The hydraulic head is fixed at the left and right boun- 
daries as 10.001 m and 10.0 m, respectively, with a hy- 
draulic gradient J = 0.001. The porous medium is het- 
erogeneous in both the hydraulic conductivity Ks and the 
sorption coefficient Kd. It is assumed that the log hydrau- 
lic conductivity Y = ln(Ks) has a normal distribution and 
is second-order stationary following an isotropic, expo- 
nential covariance function with a correlation length of 
0.3m. The statistics of the log hydraulic conductivity are 
given as Y  = 0 (i.e., the geometric mean of the satu- 
rated hydraulic conductivity KG = 1.0 m/day) and 2

Y  = 
0.693 (the coefficient of variation CV = 100%). Figure 
8(a) shows the log hydraulic conductivity field generated 
using the sgsim code in GSLIB [14]. In this case, the 
velocity field is no longer uniform in the flow domain 
and has to be solved numerically. The steady-state, satu- 
rated flow problem was solved using the Finite-Element 
Heat- and Mass-Transfer code (FEHM) developed by 
Zyvoloski et al. [11]. This velocity field was used as in- 
put to the solute transport model. 

For the transport problem, it is assumed that the initial 
concentration is zero in the domain and concentration of 
C(x, t) = 1.0 is fixed at the middle of the upstream bound-
ary, (0.0 m, 0.25 m). It is also assumed the log partition 
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Figure 7. Accuracy of computed snapshots with different numbers of basis functions using the model reduction method for 
the one-dimensional solute transport with pulse input. 
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Figure 8. Gaussian random fields for (a) log Ks, and (b) Kd. 
 
coefficient is uncorrelated with the log hydraulic conduc- 
tivity and that ln(Kd) is also second-order stationary field 
following an isotropic, exponential covariance function 
with a correlation length of 0.3 m. The statistics of ln(Kd) 
are given as  ln dK  = 1.6094 (i.e., the geometric 
mean G

dK  =0.2) and 
d

2
ln K  = 9.95 × 103 (the coeffi- 

cient of variation CV = 10%). The spatial distribution of 
Kd generated using the sgsim code of GSLIB is illustrated 
in Figure 8(b). Other transport parameters include the 
longitudinal dispersivity coefficient αL = 0.02 m, and the 
transverse dispersivity coefficient αT = 104 m. 

The full transport model was run for 200 days using 

the FEHM code and the concentration distribution was 
recorded at t = 10n days, where n ranges from 1 to 20, 
and these 20 concentration fields were taken as snapshots 
for the model reduction method. Basis functions were 
then computed from these snapshots using the POD me- 
thod, and Equation (11) with initial condition (14) were 
solved numerically.  

Figure 9 compares the spatial distribution of concen- 
tration as contour maps at two elapsed times, t = 100 
days and t = 200 days, derived from both the full model 
run and the reduced model with 5 basis functions. The 
comparison clearly shows that the results from the re- 
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Figure 9. Comparison of true concentration fields and modeled fields using the reduced model at two elapsed times for the 
case with heterogeneities in both the permeability and the distribution coefficient. 
 
duced model can reproduce the full model results very 
well, even for a contour level as low as C = 0.01. 

To compare the computational efficiency of these two 
methods, the CPU time required for the full model run 
was recorded, in which the maximum time step was set 
to 2 days while the actual size of the time step was auto- 
matically adjusted during the solution process by the 
program itself. For the transport problem as described 
above, the FEHM code takes 23.3 hours. The computa- 
tion time needed for the reduced model depends on the 
time step used in the fourth-order Runge-Kutta method, 
which is fixed at  = 1000 seconds in this case. The 
CPU time for the reduced model run is only 78 seconds. 
Of course, this run time will increase if a smaller time 
step was used or a great number of snapshots and func- 
tions is required. However, the comparison of model 
results from the full model and the reduced model indi- 
cates that the time step of  = 1000 seconds used in the 
reduced model is small enough for this problem, and the 
overall comparison indicates that the number of snap- 
shots and basis functions were sufficient. 

6. Conclusions 

In this study, we have demonstrated that the advection- 
dispersion equation can be cast in a reduced model form, 
and a reduced numerical model can be developed that 
replicates the behavior of the original model. We have 
derived, from the original model equations, a method for 
reducing the transport model, a partial differential equa- 
tion with unknowns at each numerical grid point, to a 
small number of ordinary differential equations solved in 
time. The method consists of running the original model 
to obtain the snapshots of concentration in the model 

domain, computing the basis functions for the model 
using the POD technique, and using these basis functions 
in a Galerkin procedure to obtain the ordinary differential 
equations of the reduced model. 

The accuracy and computational efficiency of the re- 
duced model have been investigated using several one- 
dimensional and two-dimensional examples with variable 
conductivity field Ks and sorption coefficient Kd. These 
examples demonstrate that the reduced model can repro- 
duce the full model results very accurately while the 
computational time (in terms of the CPU time) required 
for the reduced model is much less than that required for 
the full model. 
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