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ABSTRACT 

Modulational instability conditions for the generation of localized structures in the context of matter waves in Bose- 
Einstein condensates are investigated analytically and numerically. The model is based on a modified Gross-Pitaevskii 
equation, which account for the energy dependence of the two-body scattering amplitude. It is shown that the modified 
term due to the quantum fluctuations modify significantly the modulational instability gain. Direct numerical simula- 
tions of the full modified Gross-Pitaevskii equation are performed, and it is found that the modulated plane wave 
evolves into a train of pulses, which is destroyed at longer times due to the effects of quantum fluctuations. 
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1. Introduction 

Bose-Einstein condensates (BEC) made of ultracold 
atomic alkali gases have proven to be a fertile field in the 
last years for the study of nonlinear matter waves in re- 
cent reviews and monographs [1,2]. Mean-field theory 
provides a consistent framework for the modeling of the 
principal characteristics of condensation and elucidates 
the role of the interactions between the particles. A ge- 
neric theoretical model widely employed involves the 
Gross-Pitaevskii (GP) equation, which bears the form of 
a nonlinear Schrödinger-type equation with a cubic non- 
linearity, taking into account boson interactions, in addi- 
tion to the confinement potential imposed on the BEC in 
a potential trap. The scattering length as, although ini- 
tially taken to be positive (accounting for repulsive in- 
teractions and prescribing condensate stability), has later 
been sign-inverted to negative (attractive interaction) via 
Feshbach resonance, in appropriately designed experi- 
ments. This allowed for the prediction of BEC state in- 
stability, eventually leading to wave collapse, which is 
only possible in the attractive case  0sa   [3]. Modu- 
lational instability (MI) is also an interesting issue in 
BEC [4]. MI is an indispensable mechanism for under- 
standing pattern formation from a uniform medium. This  

phenomenon appears in continuum as well as in discrete 
models and finds its applications in many physical set- 
tings [5,6]. MI occurs when a constant-wave background 
becomes unstable to induced sinusoidal modulations un- 
der the combined effects of nonlinearity and dispersion. 
The slow modulation of a monochromatic plane wave in 
BEC can leads to an exponential growth of the unstable 
modes and eventually may results in the formation of 
envelope soliton train, which is described by the GP 
equation. Hence, it is important and worthful to study the 
properties of the MI in trapped BEC. A description based 
on the GP equation with cubic nonlinearity, however, is 
adequate only at low densities. 

For higher densities or stronger confinement, it has 
become clear that a better description of atom-atom in- 
teraction will be required. For homogeneous systems, it 
has been demonstrated in a recent work by Cowell et al. 
[7] that different potentials having the same scattering 
length can lead to a vastly different ground-state energy. 
For inhomogeneous systems, recent works on two atoms 
in a trap have shown that the shape-independent ap- 
proximation becomes less valid under strong confine- 
ment [8]. Then, a modified GP equation, which incor- 
porates the energy dependence of the two-body scattering 
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amplitude through an effective-range expansion has been 
derived [9]. To the best of our knowledge, MI in this 
system has not been investigated. The principal objet of 
this paper is to show analytically conditions stability for 
the generation of localized structures in BEC via MI and 
to discuss the comparison between the linear analysis of 
plane wave solutions and the direct numerical simula- 
tions of the full modified GP equation. 

2. Modified Gross-Pitaevskii Equations 

The dynamic behaviour of the three dimensional (3D) 
modified GP equation which take into account quantum 
fluctuations and the shape dependence on the interaction 
potential can be described by [9] 
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where  ,r    denotes the BEC wave function at 
position  , ,r r x y z   and time ,   is the Lap- 
lacian,  is the mass of the condensate, 

2
m

2
3 4πD sg a m   characterizes the two-body interac-  

tions, 3 2
3

32

3 π
D sg g a   is the correction term due to  

quantum fluctuation. The extra correction term 3Dg   
incorporates the shape dependence on the interaction po- 
tential. For a hard sphere potential, 2

3 8π 3D sg a m    
[9]. The potential  confines the atoms in a trap. 
For harmonic trapping,  is given by  
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where , ,x x y y z z ,          
, ,

 are the trap fre- 
quencies, x y   and z  are the coupling constants 
along the ,x y z and  axes. When the trapping in the 
transverse directions is stronger, the BEC is cigar-shaped 
and the 3D modified GP equation can be reduced to the 
one dimensional (1D) modified GP equation. In order to 
normalize the modified GP equation, we introduce the 
dimensionless variables 

, , , ,a m x x a y y a z z a t 2,       

and 32a N   . By substituting these new variables 
into Equation (1), we obtain 
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We focus our attention on the trapped BEC with at- 
tractive interaction. In this respect, the coefficient g  is 
a complex number. The following physical parameters 
have been used in the rest of the paper 

2.75 nm, 1.576 μmsa a   [10]. 
We assume a separable ansatz for the solution of Equa- 

tion (2) such that [11] 
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the respective ground state wave functions in y- and 
z-directions. Using this ansatz in Equation (2), multiply- 
ing by    0 0y z  , integrating over  and , we 
obtain 
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3. Linear Stability Analysis 

g
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In order to investigate the MI process in the presence of 
harmonic trapping potential, we begin with the modified 
lens-type transformation of the form [12,13] 

 
 

    21
, , exp ,x t X T if t

l t
    x       (6) 
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where  f t  is a real function of time, 
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Upon the above conditions, the equation for  ,X T  
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Now, we analyze the MI of the modified GP equation 
described by Equation (7). We consider the evolution of 
the small modulation   according to 

    0 , exp d .X T i T   T            (8) 

where  is a nonlinear frequency shift. Substitut- 
ing Equation (8) into Equation (7) and neglecting sec- 
ond-order terms in 
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To perform a precise analysis of Equation (10), we use 
the complex representation .U iV    Then, Equa- 
tion (10) is transformed into the following two coupled 
equations 
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where K  and   are, the wave number and frequency 
of the modulation, respectively. Substituting these ex- 
pressions in Equation (11), we obtain the following 
time-dependent nonlinear dispersion relation 
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If 2 0,   the system is stable under modulation, 
otherwise if 2 0,   the system is unstable. Therefore, 
the instability growth rate can be written as 

 Im .g                   (13)

For 1 2 0,g g   we recover the GP equation with 
two-body interaction whose MI properties have been 
analyzed in detail by Xu [14]. Next, we are interested in 
MI conditions in BEC taking the modified GP equation 
as model equation and discuss the following two cases. 

For a first case, we set 1  (absence of quantum 
fluctuations) and 2
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0.g   In this situation, the MI may 
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From Equation (14), one can see that the external 
trapping parameter x  enhances the instability which 
occurs at short time scale for stronger trapping. Figure 1 
portrays the MI gain provided by Equation (11), as a 
function of K, for three values of the trapping parameter 

x . When x  increases, both the peak gain and the MI 
bandwidth decrease. We have also observed that the pa- 
rameter 2g  essentially does not influence the MI peak 
gain and the MI bandwidth. 

For the second case, the effects of quantum fluc- 
tuations have been taken into account ( 1 0g   and 

2 0g  ). In this case, it has been extremely difficult to 
perform a complete analytical analysis to obtain the MI 
critical time. However, as can be seen from Figure 2, the 
parameter 1g  extends the bandwidth of MI to the whole 
spectrum of the wave number ,K  contrary to the pre- 
vious case where the instability is of the finite bandwidth 
type. This is one of the main result of present paper. 
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Figure 1. The MI gain in the modified GP equation for g1 = 
0, and g2  0. The parameters used are φ0 = 10, N = 50, αy 
= 1, αz = 1, t = 30, αs = –2.75 nm, α = 1.576 μm. 



 

 

Figure 2. The MI gain in the modified GP equation for g1 
 0, and g2  0. Other parameters are φ0 = 10, N = 50, αy 

= 1, αz = 1, t = 30, αs = –2.75 nm, α = 1.576 μm. 
 

4. Numerical Simulations 

To verify our results and get more insight on the deve- 
lopment of the instability, we solve numerically Equation 
(4) by using the split-step Fourier method with periodic 
boundary conditions on the spatial domain. The initial 
condition used is 

   0, 1 cos ,TFx Kx               (15) 

where  max 0;1TF V x     is the background 
wave function in the Thomas-Fermi approximation. In a 
region close to the center  and for convenient val-  0x 

ues of the potential, 21
1

2TF x x   [13,14]. In all nu-  

merical simulations, we set 0.001   (small compared 
to 0 ). To illustrate our theoretical predictions, we con- 

sider two special cases. We first consider the case 

1 0g   and 2 0g  . Figure 3 depicts the spatial evolu- 
tion of a modulated amplitude of the wave for the wave 
number 0.15K  . The initial wave breaks up into a 
pulse chain [Figure 3(a) at  and Figure 3(b) at 20t 

50t  ] as the time increases. 
Figure 4 shows the time evolution of the maximal 

amplitude in Figures 4(a) and (c); and the spatiotem- 
poral evolution of the modulated envelope 

2  in Fig- 
ures 4(b) and (d). By comparing Figures 4(a) and (b), 
we realize that for the strong trapping case in Figure 4(a), 
the rate of MI increases. Secondly, we consider the gen- 
eral modified GP equation with , and 21 0g 0g  . 
From Figure 2, we choose , which belongs to 
the MI zone. Figure 5 portrays the time evolution of the 
maximal amplitude in Figures 5(a) and (c); and the spa-
tiotemporal evolution of 

0.15K 

2  in Figures 5(b) and (d). 
We obtain also a soliton wave train, formed as a result of 
the instability. However, by comparing Figure 5 and 
Figure 4 obtained in the previous case, we realize that 
the quantum fluctuations destroyed the wave trains, 
which is also one of the main findings of this work. 
 

 
(a) 

 
(b) 

Figure 3. Spatial evolution of the modulated waves in terms 
of solitary waves on top of the Thomas-Fermi cloud, in- 
troducing the occurrence of the modulational instability 
through the system. (a) t = 20; (b) t = 40. The other 
parameters used are αx = 0.0004, αy = 1, αz = 1, K = 0.15, ε = 

.001, N = 20, αs = –2.75 nm, α = 1.576 μm. 0 
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(a)                                                              (b) 

   
(c)                                                              (d) 

Figure 4. Spatiotemporal evolution of the maximum amplitude of the waves showing the formation of wave trains in the case 
g1 = 0, and g2  0. The parameters used are K = 0.15, ε = 0.001, αy = 1, αz = 1, αs = –2.75 nm, α = 1.576 μm. (a)  max   for N 

= 50, αx = 0.0004 (weak trapping); (b)   2
, x t  for N = 50, αx = 0.0004 (weak trapping); (c) max   for N = 20, αx = 0.0004 

(strong trapping); (d)   2
, x t  for N = 20, αx = 0.0004 (strong trapping). 

 

   
(a)                                                              (b) 
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(c)                                                              (d) 

Figure 5. Spatiotemporal evolution of the maximum amplitude of the waves showing the formation of wave trains in the case 
g1 = 0, and g2  0. The parameters used are K = 0.15, ε = 0.001, αy = 1, αz = 1, αs = –2.75 nm, α = 1.576 μm. (a)  max   for N 

= 50, αx = 0.0004 (weak trapping); (b)   2
, x t  for N = 50, αx = 0.0004, (weak trapping); (c) max   for N = 20, αx = 0.0004 

(strong trapping); (d)   2
, x t  for N = 20, αx = 0.0004 (strong trapping). 

 
5. Conclusion 

In summary, we have investigated analytically and nu- 
merically the MI in the modified GP equation. By using a 
theoretical model which includes the energy dependence 
of the two-body scattering amplitude, our results show 
that MI in the modified GP equation is qualitatively dif- 
ferent. By taking the modified terms as 1 0g   and 

2 , a new explicit time-dependent criteria for MI has 
been obtained. Moreover, both the MI gain peak and 
bandwidth decrease with the trapping of the condensate. 
In the case 1  and 2

0g 

0g  0g  , it is shown that the 
quantum fluctuations extend the MI gain in the whole 
spectrum of the wave number K. By numerical simula- 
tions, we have observed that when the quantum fluctua- 
tions are not introduced in the system, wave patterns 
propagate in the medium without vanishing. When the 
quantum fluctuations are introduced, the wave trains are 
destroyed at long time. These wave trains can be ex- 
ploited for the realization of laser sources adapted to ul- 
trahigh bit-rate optical transmissions. It open also the 
possibilities for future applications in coherent atom op- 
tics, atom interferometry and atom transport. 
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