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ABSTRACT 

The flow of blood through a multistenosed artery under the influence of external applied magnetic field is studied. The 
artery is modeled as a circular tube. The effect of non-Newtonian nature of blood in small blood vessels has been taken 
into account by modeling blood as a Casson fluid. The effect of magnetic field, height of stenosis, parameter determin- 
ing the shape of the stenosis on velocity field, volumetric flow rate in stenotic region and wall shear stress at surface of 
stenosis are obtained and shown graphically. Some important observations regarding the flow of blood in multi stenosed 
artery are obtained leading to medical interest. 
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1. Introduction 

Stenosis narrowing of body passage tube or orifice [1] 
can cause series circulatory disorders by reducing or 
occluding the blood supply. Stenosis in the arteries sup- 
plying blood to the brain can cause cerebral strokes, and 
in coronary arteries, myocardial infarction, leading to the 
heart failure. The actual causes of the stenosis are not 
known, but it has been suggested that cholesterol de- 
position in arterial wall and profiliferation of connective 
tissues may be responsible [2], vascular fluid dynamics is 
reported to play a significant role in the development and 
progression of the pathological conditions [3]. 

Blood is suspension of cells in plasma. Due to the 
presence of hemoglobin (an iron compound) in red cells, 
blood can be regarded as a suspension of magnetic 
particle (red cells) in non-magnetic plasma. The effect of 
a magnetic field on blood flow has been analyzed theo- 
retically by treating blood as an electrically conductive 
fluid [4]. The conductive flow in the presence of a 
magnetic field induces voltage and currents, resulting in 
a decrease in the flow. The importance of heat transfer on 
artery diseases and blood flow was mentioned by several 
researcher. Ugulu and Abby [5] claimed that, the heat 
transfer and a magnetic field have a significant effect on 
blood flow through constricted artery. 

An analytical solution for the steady flow of a viscous 
fluid through an arbitrary shaped tube of variable cross- 
section has been presented by Manton [6] using the ideas 
of steady lubrication theory. Ramachandra Rao and De- 
vanathan [7] and Hall [8] have extended the results of 

Manton [6] for unsteady pulsatile flows. The steady and 
unsteady flow through channels and tubes of variable 
cross-section have been studied by Smith [9] and Duck 
[10]. Mathematical model for analyzing pulsatile flow in 
a single stenosed vessels have been proposed by Padma- 
nabhan [11], Mehrotha et al. [12] and Mishra and Chak- 
ravorty [13]. 

The studies on the blood flow/unsteady blood flow 
through an artery with mild stenosis [14,15] ,effect of 
arterial dispensability on blood flow through model of 
mild axi-symmetric arterial stenosis [16], flow of micro- 
polar fluid through a tube with a stenosis [17] non- 
Newtonian aspects of blood flow through stenosed arter- 
ies [18], flow of couple stress fluid through stenotic 
blood vessels [19], pulsatile flow of Casson’s fluid 
through stenosed tube [20], oscillatory flow of blood in a 
stenosed artery [21] and in a single constrcted blood 
vessels [22], effect of erythrocytes on blood flow char- 
acteristics in an indented tube [23], effect of an exter- 
nally applied uniform magnetic field on the blood flow in 
a single consitricted blood vessel [24] were also re- 
ported. In recent paper Manadal et al. [25] developed a 
two dimension mathematical model to study the effect of 
externally imposed periodic body acceleration on non- 
Newtonian blood flow through an elastic stenosed artery 
where the blood is characterized by the generalized 
power-law model. 

In all the above studies none has applied magnetic 
field. But the application of magneto hydrodynamics 
principles in medicine and biology is of growing interest 
in the literature of bio-mathematics [26-28]. By Lenz’s 
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law, the Lorentz’s force will oppose the motion of con- 
ducting fluid. Since blood is an electrically conducting 
fluid, The MHD principles may be used to deaccelerate 
the flow of blood in a human arterial system and thereby 
it is useful in the treatment of certain cardiovascular dis- 
orders and in the diseases which accelerate blood circula- 
tion like hemorrhages and hypertension etc. [29]. 

Our object in the present work is to study the effect of 
an externally applied uniform magnetic field on the 
multi-stenosed artery with core region. Blood is modeled 
as a Casson fluid by properly accounting for yield stress 
of blood in small blood vessel. The analytical expres- 
sions for the velocities (normal and core region), blood 
flow rate and wall shear stress are obtained. The effect of 
external magnetic field and other parameter has been 
shown graphically in these results. 

2. Mathematical Formulation 

Let us consider the Casson fluid motion of blood through 
a multi-stenosed artery under the influence of an external 
applied uniform transverse magnetic fluid. The geometry 
of the stenosis is as shown in Figure 1. We have taken 
some assumption for solving the model. 

1) Let us take the flow of blood as axially symmetric 
and fully developed (i.e. , flow in z-direction 
only). This is entirely reasonable and reinforces the fact 
that in steady-state incompressible flow in a circular tube 
of uniform cross-section. The velocity does not change in 
the direction of the flow, except near the entrance and 
exist regions. 

0rv v 

2) Consider blood as a Casson fluid (non-Newtonian) 
and magnetic fluid. Since red cell is a major biomagnetic 
substance and blood flow may be influenced by the 
magnetic field. 

3) Consider the transverse magnetic field. Since the 
biomagnetic fluid (blood) is subjected to a magnetic field, 
the action of magnetization will introduce a rotational 
motion to orient the magnetic fluid particle with the 
magnetic field). 

The above assumptions for Navier-Stokes equation is 
given by (1) 
 

 

Figure 1. Geometry of multiple stenosed artery. 
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where andr   denote the radial and axial coordinates 
respectively, 0  magnetic permeability, M magnetiza- 
tion, H   magnetic field intensity,  pressure and cP    
the shear stress. For Casson fluid the relation between 
shear stress and shear rate is given by Fung [30], 
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where 0   denotes yields stress and   the viscosity of 
blood.  

The boundary conditions appropriate to the problem 
under study are  

1)  0 atu r R z                          (3a) 
2) c   is finite at 0r                      (3b) 
3) In core region cu u   at            (3c) cr R  
Here cu  is core velocity. 

3. Solution of the Problem 

Introducing the following non-dimensional scheme. 
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where 0H  is external transverse uniform constant mag- 
netic field. 

Using the non-dimensional scheme the governing 
equations from (1)-(3) are written as: 
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The boundary conditions (3a), (3b), (3c) reduce  
1)                       (7a) 0 at ( )u r R  z

2) c  is finite at 0r                       (7b) 

3) In core region cu u  at             (7c) cr R
The geometry of the stenosis in non-dimensional form 

is given as 
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  is maximum height of stenosis  
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where S (≥2) is the parameter for determining the shape  

of the stenosis. 
0

1
R

  . 

Solution 

On using analytical method in Equations (5)-(7) and us- 
ing boundary conditions (7a), (7b), (7c) and (8) the ex- 
pression for velocity u and core velocity  are: cu
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The volumetric flow rate Q is given by: 
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where c  and 0  are the flow rate in core and annular 
region of stenotic tube. 

Q Q

Using the Equations (11) and (12) in Equation (13) 
then, flow rate Q is: 
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The wall shear stress w  is defined as: 
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On differentiating Equation (11) with respect to r and 
substituting in Equation (14), then w  is given by: 
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4. Results and Discussions 

In Figures 2(a) shows the axial velocity (u) with radial 
axis (r) for different values of induced magnetic field 
gradient (H = d dH z ), when the magnetic field gradient 
(H = d dH z ) increases then the curve shifts towards the 
origin. This is due to the fact that as magnetic field ap- 
plied on the body, the Laurentz force oppose the flow of 
blood and hence reduces its velocity. This result compare 
with Das [29] and Ponalagusamy [31]. 

In Figure 2(b) the variation of velocity (u) with ra- 
dial axis (r) for different values of ratio of the maximum 
height of stenosis and radius of the normal tube  0R  
is shown in Figure 2(b). Velocity decreases and it ap- 
proaches zero when the ratio of the maximum height of 
stenosis and radius of the normal tube  0R   in- 
creased. Where high shearing velocity produced in order 
to attain uniform flow rate at given parameter, so the 
severity of the multi-stenosis affects the axial flow dis- 
tribution significantly. This result agrees qualitively with 
Sanyal et al. [32] and Biswas et al. [33]. 

Figure 3, illustrate the variation of core (plug) velocity 
(uc) with ratio of the stenosis height and radius of the 
normal tube  0R  for different values of induced 
magnetic gradient  d dH H z . The curves are all fea- 
tured to be analogous in the sense that they do drop to 
zero on the wall surface from their maximum stenosis 
height  0 0.5R  . The core velocity decreases with 
increasing the magnetic gradient  d dH H z . This 
observation is in good agreement with those of Tzirtzi-
lakis [34] although his studies were based on the Newto-
nian blood flow under the action of an applied magnetic 
field. 

From Figure 4(a), it is clear that the ratio of the steno-
sis height and radius of the normal tube  0R  in-
creases the rate of flow diminishes appreciably for radial 
axis (r). The characterization of blood irrespective of the 
presence and absence of the magnetic field certainly en-
sures the importance of blood rheology in the flow phe-
nomena. The flow rate diminishes as the artery gets nar-
rowed gradually. It may be noted further that the flow 
rate drops sharply with increasing severity of the con-
striction in the absence of the magnetic field. 

In Figure 4(b), it is observed from the figure that in 
the presence of magnetic field gradient  d dH H z  
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(a) 

 
(b) 

Figure 2. (a) Variation of velocity (u) with radial axis (r) for 
different value of magnetic field (H); (b) Variation of veloc-
ity (u) with radial axis (r) for different values of stenosis 
height (δ/R0). 
 

 

Figure 3. Variation of core velocity (uc) with stenosis height 
(δ/R0) for different values of magnetic field (H). 

 
(a) 

 
(b) 

Figure 4. (a) Variation of flow rate (Q) with radial axis (r) 
for different value of stenosis height (δ/R0); (b) Variation of 
flow rate (Q) with radial axis (r) for different values of 
magnetic field (H). 
 
the rate of blood flow increases at r = 0 and then di- 
minishes for become the value of (0 < r < 1). The flow 
rate becomes higher in the absence of magnetic field ant 
it gradually diminishes with increasing magnetic field 
gradient  d dH H z  which is in good agreement with 
these of Haik et al. [35]. 

Figure 5(a) shows the result of the varaition of wall 
shear stress  w  with axial axis (z) for different values 
of yield stress  0 . It is noted that the wall shear stress 
increases as the axial distance z increases from (0 to 0.5) 
and then it decreases as z increases from (0.5 to 1). The 
maximum wall shear stress occurs at the middle of the 
stenosis. The wall shear stress decreases when the yield 
stress  0  increases. The feature of these results is in 

Copyright © 2012 SciRes.                                                                                  AM 



R. BALI, U. AWASTHI 440 

 
(a) 
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Figure 5. (a) Variation of wall shear stress (τw) with axial 
axis (z) for different values of yield stress (τ0); (b) Variation 
of wall shear stress (τw) with axial axis (z) for different val-
ues of magnetic field (H). 
 
good agreement with that of Srivastava and Saxena [36], 
whose studies were based on a one-dimensional Casson 
model of the blood flow in rigid arteries under steady- 
state conditions in the absence of magnetic field. 

Figure 5(b), show the variation of wall shear stress 
 w  with axial axis (z) for different magnetic field gra-
dient  d d H H z . The wall shear stress increases ra-
pidly as the length of arterial increases z from (0 to 0.5) 
and gradually decreases for the length of arterial in-
creases z from (0.5 to 1). This is due to large velocity 
gradient and therefore the severity of the stenosis sig-
nificantly affects the wall shear stress characteristics. It is 
also clear from the figure that when magnetic gradient 
 d d H H z . Increases then the wall shear stress de-

creases. However as the characteristic of the non-New- 
tonian fluid changes from shear-thinning to Newtonian. 
The wall shear stress is observed when the flowing blood 
is subjected to externally applied transverse magnetic 
field. The present stress distribution plays an important 
role in detecting the aggregation sites of platelets as 
mentioned by Fry [37]. 

5. Conclusion 

From the above discussion, it is clear that the magnetic 
field, ratio of maximum height of stenosis and radius of 
normal tube and yield stress of the fluid are the strong 
parameters influencing the flow. It is observed that, in 
the presence of magnetic field the magnitude of velocity 
is decreased. The effect of yield stress and stenosis is to 
reduce the wall shear stress and flow rate in the presence 
of magnetic field. In view of these arguments, the present 
study may be more useful to control the blood flow in 
diseased state. 
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