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Abstract 
 
In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid 
operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic mul-
tigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this 
new approach is tested by applying it to large sparse, unsymmetric and ill-conditioned matrices from Tim 
Davis collection of sparse matrices. Proposed preconditioners have potential in reducing cputime, operator 
complexity and storage space of algebraic multigrid V-cycle and meet the desired accuracy of solution com-
pared with that of orthogonal wavelets. 
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Iterative Methods 

1. Introduction 
 
The linear system of algebraic equations    

Ax b               (1.1)  

where A  is  non-singular matrix and b is vector 
of size n arise while discretising various equations using 
finite difference, finite element and domain decomposi- 
tion schemes etc. 

n n

One of the useful schemes to solve (1.1) is multigrid. 
For multigrid (geometric/algebraic), if one has used the 
proper smoother, restriction and prolongation operators, 
then the multigrid algorithm will require so few cycles to 
reach the level of truncation error. But unfortunately 
such operators are not always known for all problems. In 
such cases, acceleration of Krylov subspace iterative me- 
thods will help. Equivalently, one can also consider mul- 
tigrid as a preocnditioner for one of the Krylov subspace 
iterative methods [1]. 

In classical schemes, designing/constructing a suitable 
preconditioner for unstructured matrix A -arising from 
nonsmooth region or mesh free type problems is an im-
possible/tough task. Furthermore, Algebraic multigrid-a 
general purpose purely algebraic scheme which relays 
only on the elements of A  and works as universal pre-

conditioner heralds a cutting edge of current research on 
preconditioners. 

Orthogonal (Daubechies) wavelet based precondition-
ers are developed for various types of large sparse ma- 
trices [2-4]. Kumar and Mehra [2] developed matrix 
splitting based preconditioners, where as in [3] and [4] 
wavelet based algebraic multigrid as preconditioners for 
Krylov subspace iterative methods are developed. In 
these articles authors have shown that wavelet based 
algorithms are efficient and robust compared with that of 
classical schemes such as matrix splitting, algebraic mul- 
tigrid and incomplete LU factorization(ilu) based precon-
ditioners for Krylov subspace iterative methods. These 
studies motivate us to develop biorthogonal wavelet based 
preconditioners for Krylov subspace iterative methods. 
 
2. Discrete Biorthogonal Wavelet Transform 
 

For a given ,p p 

p
( , )p p

, such that  is even, there 
exists compactly supported biorthogonal spline wavelets 
of order  called Cohen Daubechies Feauveau wave- 
lets (CDF ) which form biorthogonal bases for 

p p 

,p

 2L R

Ws

 [5]. Let be a vector (signal) of length , its 
one level biorthogonal wavelet transform is given by 

. For CDF

s n

 2,2 , its wavelet transform matrix is 
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Matrix W contains first 2n  rows which are lowpass 
filter coefficients and remaining 2n rows are highpass 
filter coefficients. W can be derived for various  
by symmetric extension of filters [6] and  is any 
natural number [3]. Here first half of  is a represen-
tation of s at a lower resolution level. This representation 
has to preserve average, first moment and so on of the 
original signal s. Preservation of these moments depends 
on the accuracy of the scaling function used [6,7]. 

and p p
n

Ws

To create wavelets on higher dimensional domains, 
one of the approaches is to perform the wavelet trans-
form independently for each dimension. For two dimen-
sional cases, let A  be a n n  matrix then its wavelet 
transform is 



 TA WAW  

Here A  contains four types of coefficients/subbands: 
LL-lowpass in both the horizontal and vertical directions 
(approximation/average coefficients), LH-lowpass in the 
vertical, highpass in the horizontal direction, HL and HH 
(detail coefficients). When iterated on the approximation 
coefficients, the result is multiresolution decomposition 
as shown in the Figure 1. 

This LL subband contains lowpass information, which 
is essentially a low resolution and represents a coarser 
version of the original matrix A very much. This concept 
has been used in obtaining the hierarchy of matrices in 
the algebraic multigrid (AMG) context. 
 
3. Wavelet-Based AMG 
 
Wavelet Transform will be used to generate the hierar- 
chy of matrices in the AMG method. As a result, the 
coarsening process is eliminated and the setup phase is 
summarised by a simple choice of the lowpass filters and 
assembly of the intergrid (restriction and interpolation) 
operators. In the algebraic multigrid context it is not ne- 
cessary to rebuild the matrix. Thus, the detail coefficients 
produced by wavelet transform can be discarded [3,4]. In 
other words, the transformation must produce only one 
approximation of the original matrix in each decomposi- 
tion level. Therefore, only the lowpass filters that capture  

 

Figure 1. Two-dimensional wavelet transform: iteration on 
the LL subbands (average coefficients). 
 
the approximation are used in the construction of the 
matrix W and it is used as a restriction operator for the 
wavelet based AMG. Using CDF  lowpass filters, 
the restriction operator takes the following form: 

2,2
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1 0 1 /2
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The prolongation operator  and the next 
matrix of hierarchy, in the corresponding level, are de-
fined by , where  is transpose of . 

 TP R 
TRAR TR R

 
4. Cost of Orthogonal and Biorthogonal 

Wavelet Transforms 
 
Let s  be a vector of length n and let  an accuracy of 
orthogonal (Daubechies) and biorthogoanal(CDF) scal-
ing functions used. One of the lowpass filter lengths of 
CDF wavelets is 

p

1p  , whereas for Daubechies it is 
. Lowpass filtered version of wavelet transform ap- 

plied to s is of length 
2 p

2n . Number of operations (mul- 
tiplication and addition) to obtain this for Daubechies 
filters is , where as for CDF filters it is of  pn
( 1p ) 2n . For large , we can save the number of 
operations and setup time (performing WT) by using 
biorthogonal scaling filters compared with that of or-
thogonal scaling filters. Similar arguments hold for cost 
of individual wavelet transform in higher dimensions. 

n

Grid complexity and operator complexity are two sim- 
ple criteria used to provide a posterior cost estimates as 
defined in [3] for AMG V-cycle. Here grid complexity is 
same for both families of wavelets. The advantage of 
reduction of the cost and setup time for biorthogonal 
wavelet transform results into the reduction of operator 
complexity compared with that of orthogonal wavelet 
transform for fixed accuracy of scaling functions. Ope- 
rator complexity indicates the total storage space re- 
quired by the hierarchy of matrices over all levels and is 
generally considered as a good indicator of the expense 
of the AMG V-cycle. 

We have calculated operator complexity and setup 
time for both families of wavelets for various unsymmet- 
ric matrices given in Table 1, from Tim Davis [8] col- 
lection of sparse matrices. The number of levels chosen  
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Table 1. Operator complexity and setup phase cputime in seconds (number in square bracket) for various matrices. 

Matrix Name and size Daub-2 CDF(2,2) Daub-3 CDF(3,3) 

Poisson 2D 
[367 × 367] 

6.65 
[0.0156] 

4.62 
[0.0156] 

10.02 
[0.0312] 

6.59 
[0.0312] 

Sherman4 
[1104 × 1104] 

4.23 
[0.0372] 

3.35 
[0.0364] 

6.09 
[0.0374] 

4.20 
[0.0312] 

Thermal 
[3456 × 3456] 

2.23 
[0.0936] 

1.89 
[0.0728] 

2.56 
[0.1248] 

2.26 
[0.0988] 

Airfoil_2D 
[14214 × 14214] 

6.35 
[0.9100] 

4.79 
[0.7800] 

9.00 
[1.3988] 

6.34 
[0.9880] 

Epb1 
[14734 × 14734] 

3.08 
[0.6136] 

2.53 
[0.5720] 

4.25 
[0.8840] 

3.08 
[0.7124] 

Epb2 
[25228 × 25228] 

3.25 
[1.5756] 

2.62 
[1.3468] 

4.52 
[2.3192] 

3.25 
[1.7316] 

 
Table 2. Convergence details: Numbers in the columns represent the required number of iterations for the convergence of the 
respective method and number in square bracket represents the cputime in seconds. 

Matrix Name Daub-2 CDF(2,2) Daub-3 CDF(3,3) 

Poisson 2D 
12 

[0.2496] 
13 

[0.2340] 
13 

[0.3120] 
13 

[0.2704] 

Sherman4 
9 

[0.2236] 
9 

[0.2288] 
8 

[0.2496] 
9 

[0.2444] 

Thermal 
4 

[0.5148] 
5 

[0.6084] 
5 

[0.7176] 
5 

[0.7020] 

Airfoil_2D 
80 

[72.9821] 
78 

[59.9510] 
82 

[103.6990] 
75 

[70.8433] 

Epb1 
129 

[67.7866] 
111 

[52.3933] 
124 

[87.9266] 
92 

[52.6299] 

Epb2 
49 

[35.3999] 
45 

[28.2733] 
48 

[46.7166] 
41 

[31.3933] 

 
6. Conclusions is such that in the coarsest level the dimension is less 

than 100, using the expression levels = ceil(log2(n/15)), 
where n is the dimension of the matrix and ceil(x): 
rounds x to the nearest integer towards minus infinity. 

 
For a given accuracy of scaling functions, precondition-
ers designed here have shorter cputime and lower opera-
tor complexity leading to reduction of cumulative trun-
cation errors, storage space and improvement of overall 
accuracy, which are illustrated with examples given in 
Tables 1 and 2. These two concepts play a crucial role in 
scientific computing. The preconditioners developed 
here can also be used for other Krylov subspace iterative 
methods. 

 
5. Numerical Experiments 
 
To test the efficiency of biorthogonal wavelet based 
AMG preconditioners and compare with orthogonal wave- 
let based AMG preconditioners, we have considered the 
examples given in Table 1. The right hand side of linear 
system was computed from the solution vector x  of all 
ones (except for Sherman4 matrix). The initial guess is 
always x0 = 0 and stopping criteria is relative residual is 
less than or equal to  and the Krylov subspace me- 
thod adapted is GMRES (20) [1]. Besides these Gauss- 
Seidel is used as smoother with number of iterations 
taken as two. These algorithms are implemented using 
Matlab-7.5 and Mathematica-7 over machine with Intel 
Core 2 Duo processor of 1.5 GHz, 667 MHz FSB and 3 
GB RAM corresponding results are shown in Table 2. 
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