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Abstract

A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect
to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the
smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the
Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching
lines and branching-off solutions of this equation are constructed and justified. Numerical examples are pre-
sented.
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1. Introduction

A variational problem about mean-square approximation
of a real finite function by the modulus of double Fourier
integral with use of smoothing functional [1] is studied.
The nonuniqueness and branching of solutions is an es-
sential feature of nonlinear approximation problem. The
problem of finding a set of branching points is insuffi-
ciently investigated nonlinear two-parameter spectral
problem. The existence of connected components of the
spectrum, which in the case of real parameters, similarly
as in [2], are spectral lines, is essential difference of
two-dimensional spectral problems compared with one-
dimensional ones.

The algorithms for finding the lines of possible bran-
ching of solutions of the Hammerstein type nonlinear
equation, which are based on implicit functions methods,
are proposed and justified. The algorithms for numerical
finding the optimal solutions of the approximation prob-
lem are constructed and justified also. Numerical exam-
ples are presented.

Note that this class of problems are widely used at
solving the inverse problems of radio physics, acoustics
and so on [3,4].
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2. Problem Formulation, Basic Equations
and Relations

Consider the linear integral operator
f (s1 ,sz) =AU
= ”U X,y exp( i(cxs, +czysz))dxdy - (D)

which is the double Fourier transform of function
U(x,y)€L,(G), dependent on the real two-dimen-
sional parameter ¢=(c,c,), 0<c¢ <o (i=12)".
Operator U acts from space L, (G) into the solid
angle L, (Q) , where Q c R’ is some limited domain
in which a real continuous nonnegative and nonzero
function F(s,,s,) is given. In the spaces L,(G) and
L, (Q) we introduce scalar products and generable by

them norms
HU X, y

1/2

L(6)°

'Parameters c;, ¢, are physical parameters of the object being investi-
gated. In particular, in the antennas synthesis problems these parame-
ters characterize the electrical sizes of aperture of radiating system and
a solid angle in which the necessary energetic characteristic of radiation
is given [4].

UI,U xy dy
( U, (. y)dr .

91,6, = (U:U )
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(fl’fz )LZ(Q) = Ufl (SI’SZ )fz (SI’SZ )s,ds,

1£11= (7 1Yoy Q)

Since the domain G — R* is limited, the integral in
(1) exists in the usual sense [5] for an arbitrary function
U e L,(G). Here the function f(s,,s,) is continuous
and quadratically integrable.

Consider the problem about approximation of a real
continuous and nonnegative function F(s,s,) in the
domain Q by the modulus of the Fourier integral (1).
We shall formulate it as a minimization problem of the
smoothing functional

. 2 2
min o, (U)= "F -4 U|||L2(Q) + a”U”LZ(G)

Uel, (G)
=[F =11 o @Vl o)

Here the first summand describes the mean-square de-
viation of the modulus of the Fourier integral from the
given function F(s,s,) inthe domain Q. The second
summand imposes constraints on the norm of the Fourier
integral prototype, « is a weight (regularizing) pa-
rameter.

Equating the Hato differential of the functional (4) to
zero and taking into account (1), we write the equation
concerning the function U that describes the fixed
points o, (U) inthe space L,(G):

QU =—A"AU + 4" (Fe'**'), 5)

where

G%
(2n)’
is conjugate operator with 4 .

Further we introduce to shorten records the following
notations:

Q:(slssz)s dQ:dsldSZ’ Pz(st), dP:dXdy

Af=

Hf (Sl , Sz )ei(qxx] +czysz)dsldsz
Q

Taking into account that a set of zeros N(4) con-
sists only of zero element, and acting on both parts of (5)
by operator A4, we obtain equivalent to (5) equation
with respect to function f'(s,,s,) inthe space L,(G)

af =—AA"f+ A4 (Fé™ ). (6)

Accordingly to the introduced above notations this
equation in the expanded form takes the form

af (0)=Bf =—[[K(0.0'¢) f(©)d0'
()@ ()
+J.JK(Q, 0',¢)F(Q')e™ @dg,

where
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K(0.0%¢)

= (211:;2 .U exp [i(clx(sl’ =5,)+ ey (s) =5, ))] dxdy

®)

is a kernel dependent on the form of the domain G. In
the case of symmetric domain G (8) can be simplified.
In particular, if the axis OX is the axis of symmetry of
the domain G and its upper and lower limits are de-
scribed, respectively, by the functions y=+n(x) at
x €[-1,1], the kernel (8) is real and it has the form

K(0.0%c)

1 : r_
_ iz f cos(cx(si ) sin(c, (s’2 5,)7(x)) " )
2n° 7 (s2 -8, )

Lemma 1. Between solutions of Equations (5) and (6)
there exists bijection, that is if U, is the solution of (5)
then f, = AU, is the solution of (6). On the contrary, if
f. is the solution of (6) then
U, =4 {—a"f* +a ' Fexp(iarg(f, ))} is the solution
of (5).

Proof. Let U, be a solution of (5). Then
U +a ' 44U, —a' 4" (Fe"*"gw* ) =0. Acting on this
equality by the operator A , we obtain
AU, +a ' AA" AU, —a ' AA" (Fe™ " )=0 . The ope-
rator acts from the space L, (G) into the space L, (Q),
and a set of its zeros consists only of zero element. Then
from the last identity follows that AU, = f, € L, (Q) is
a solution of the equation

fo+a A4 f,—a” A4 (Fe™ ) =0, that is (6).

On the contrary, let f, € L, (Q) be a solution of (6).
The operator A4° acts from the space L, (Q) into the
space L, (G) [6], and the Hilbertian space L, coin-
cides with the space L, [5]. From here follows, that
A" acts from the space L, (Q) into the space L,(G).
Taking into account that F and f, are continuous
functions, the function F exp(i arg( /. )) is quadrati-
cally integrable in the domain . From here follows

{—a’lf* +a’'F exp(iarg(f* ))} el, (Q)
Thus,
A {—a'lf* +a'1Fexp(iarg(f*))} =U, eL,(G)

and the right part of (6) is a result of action of operator
A onthe element U, , thatis

AU, = AL (=o' [+ o ' Fexp(iarg(£.))} = /..

Thus owing to the fact that AU, = f,, we write this
equality in the form

A{U* +a ' A"AU, —a ' A'F exp(iarg (AU, ))} =0.

Since a set of zeros of operator A consists only of

AM



1078 P. SAVENKO ET AL.

zero element we have
U,=—a'4" AU, +a’1A*Fexp(iarg(AU*)).
So,
U, =4 {—a"ﬂ +a"Fexp(iarg(f*))} (10)
solves (5). Lemma is proved.

Using the general expression (8) for the kernel
K(0Q,0',¢) we shall consider a self-adjoint operator

Df =A4'f=[[K(0.0'.¢) f(Q)dQ"  (11)
and corresponding to it quadratic form for arbitrary func-
tion f(Q)eL,(Q):

(or.7)=[[[[K (00"

SEllINC

G

(0)d0'f (00

2

0)exp(ic(P,0))dQ| dP=0.

This equahty to zero is achieved only as f (Q) =0.
From here follows that the operator D is nonnegative
in LZ(Q) [7] and, respectively, in C(f_z). Based on
this property, the operator D retains the nonnegative
functions cone KCC(Q) invariant, that is DK c K
[8].

Since a set of values of operator 4 1is a set of con-
tinuous functions [5], belonging to the space L, (Q),

and a set of continuous functions in the domain Q, is
dense in the space L,(Q) [5], we shall investigate the
solutions of (6) in the space L, ().

On the basis of decomplexification [7] we consider the
complex space C(Q) as a direct sum

(C(f_l) = C(f_z) S C(f_z) of two real spaces of continuous
functions in the domain Q. The elements of this space
have the form: f = (u,v)T € (C(ﬁ) ,

u=Re(f)eC(§_2) , v=Im(f)eC(£_2) . Norms in
these spaces we shall introduce as:
"”" = fggg o). "|c(fz) = mal v(Q)),
(12)

[ (e [ g

The Equation (6) in decomplexified space C((_Z) we
reduce to equivalent to it system of equations

u=h, (u,v) =—a'Bu+a'B, (u,v),
(13)

v=_h, (u,v) =—a 'B,v+a'B, (u,v),

where
2= [[K(0.0%e)u(2)d0.
’ ’ (Q,) ’

By =[[F(Q)K (0.0 ¢)— a0'; (14)

g (0)+v*(0)
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= [[k(0.0'¢)v(0)dQ’,

Q

B =[[F(Q)K (0.0 JuZ(er(ﬁ,L@

are linear integral operators and

do’. (15)

Note, B,, B,
B, =B,.

Denote a closed convex set of continuous functions as
S, (C(Q) supposing that

~{ueSy, lulq <aM},

Sy, = {veS ||v|| <qM}

Sy =S8y, ©Sy .Sy,

where

= ”(1+a"311)71

>

C(Q)-c(0)

M = mag(HF(Q')|K(Q,Q',C)| do’, (16)

Q v
QeQ 5

[ is a unit operator in C(Q) .

We show that operator B=(5,,B, )T determined by
(13) acts in the space C(Q). At first consider B, (u,v).
The first component of this operator, defined by (14), is a
linear integral operator with the kernel K(Q,0Q',c)
which is continuous on both arguments. Consequently,
B,:C (ﬁ) -C (ﬁ) is a continuous operator [9].

Show that B,,:C(Q)—>C(Q). Let f=(u,
an arbitrary function belonging to C (Q) . For
0<c <o (i=12) the kernel K(Q,0',¢) is a con-
tinuous function with respect to its arguments in the
closed domain Q x Q. Then according to the Cantor
theorem [10] K(Q,0',¢) is a uniformly continuous
function in Qx€Q. From here follows: at fixed ¢ for
any points (Q,,0/) and (Q,,0,) such that whenever

(2,0)-(2,,0;)|< 5 , then
[K(0-01¢) =K (0:.0%-¢) <

On this basis we have

|“ Q1 Qz )|

V)T be

& ’ !
~ here az_gF(Q)dQ :

=[[F(@)[x(@.0"0)-K(0:.0"¢)]
9 (17
i (@) +v (@)
sLlr@)ag=e
since max| u(Q) |<1. Thus, i = B,, (u,v)
oca| [ (Q)+v (Q)‘
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is a continuous function and B, :C(Q) > C(Q) . Ana-
logously we show that B,,: C(Q) - C(Q) .

Consider corresponding to (13) linear homogeneous
equation

~au(Q)=[[K(0.0\¢)u(Q)dQ".  (18)

Above it is shown that the integral operator in the right
part of (18) is self-adjoint and positively determined.
Hence, its eigenvalues are real and nonnegative [9].
From here follows that o cannot be eigenvalue of (18).
Then this equation has only zero solution u(Q)=0.
Thus it is shown that necessary and sufficient condition

. . — 71 . .
for existence of inverse operator (1 +a™'B, 1) is satis-

fied [11]. Since B,, =B, , then <I+0le21 )71 exists
too. Easily to show [12] that

‘(1+oﬂBll )IH
B (([+0:’IB”)_1 u, (I-i—clell)_1 u) .
T, (w0) —a=!

From here follows, that (1 +a'B, )_1 is a limited
operator.

Using existence and limitations of the operators
(1+a’lBH) and (1+a"BZI) we write (13) in the form

u=B(uyv)=a" (1+0{'IB“)71 By, (u,v), 19)
v=B8,(uy)=a' (I+ a'B,, )_1 B, (u,v).

Theorem 1. The operator B=(B,,B, )T determined
by (19) maps a closed convex set Sy, of the Banach space

C(Q) in itself and it is completely continuous.
Proof. Before it was shown that B:C(Q)— C(Q).
To prove the property of complete continuity of the
operator B =(B,,B, )T it is necessary to prove its com-

pactness and continuity [7]. We consider each of opera-
tors B, (u,v) and B,(u,v) in a system of Equations
(19) as the product of linear limited (continuous) and non-

1 1
linear operators. Since (I+a’lBll) , (I+a’1321)

are limited operators, then for complete continuity of the
operator B=(B,,B,) it is sufficient to show complete

continuity of operators B, (u,v), By, (u,v). We shall
show it on the example B, (u,v).

Let f,=(u,v) and f,=(u,,v,) be arbitrary fun-
ctions belonging to S,,, and u, #0 or v, #0. It is
necessary to show, that ||B,, f; — B, f2|| )0 as

I/ - f2||(C — 0. Letus assume u, =u, +Au,

W=V + Ay Takmg into account these equalities we obtain®

“Further for reduction of notations the dependence of functions u,, i,
Au, Av on the variable Q is omitted in (22) and (23) .

Copyright © 2011 SciRes.

u, +Au

\/u2+v2 2uAu+2vAv+Au +AV
2TV, 2, 2 1
u; +v; |1+
u? +v?
1 1

At ||Au|| -0, ||Av|| —)O we have:

{O |

Y R ||
Au|—0, 2
Av\Lo ”\/”1 +v1 ”2 V2 Hc(ﬁ)
u
< 11‘1'11 max ﬁ
au|0, 0e0 || |
A0 U+
| (20)
1-
\/1 2u,Au +2v,Av+Au +AV
u +v;
Au ‘
+ =0,
7 2 2u,Au +2v1Av+Au +AV
u, +vi 1+
ul +v;

. 2u,Au+2v,Av + Au® + AV?
since lim max| [1+ =1.

AuH—)O 0eQ ul +V1
AVH~>O

Analogously we obtain

|—— 0. (21
Au[—0, 0cQ 2, .2
JLO QE ‘\/” +V1 \/”2 TV, ‘

Thus, from equalities (20) and (21) follows
||BIZ ”1>V1) B, (”2"’2 )"C(ﬁ)

Au‘
Av‘

—0,
—0

A14H~>0 P ”F )K(Q.Q',¢)x
A0

Jo_we) o w(@) |
i () (Q) 2 (Q)+2(Q)

Analogously

ooy 0. B2 (11:71) = B (”2’V2)||c(f>) =0
(D)

1Al ()0

Therefore, B=(B,,B,) isa continuous operator
from C(ﬁ) into (C(K_l).

Show that a set of functions S, =B,,S,, satisfies
conditions of the Arzela Theorem [5], that is we show
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1080 P. SAVENKO ET AL.

that functions of a set S. are uniformly bounded and
equapotentially continuous. Let w=B,, (u, v) , Where

f= (u, v)T is an arbitrary function of a set S, . Then
for |(Q1,Q’)—(Q2,Q')| <& analogously with (17) we

have
w(0)-w(@:) <= [[F(0)d0' <.

e}

Thus the functions of a set S, = B,,S,, are equapoten-
tially continuous.

Uniform boundedness of a set S, =5,S, follows
from inequality
"W"C(é)
’ ! u(Q,) ’
=max||| F(Q")K(0Q,0,¢c do
B0 o))
<max [ F(Q')|K(0.0'¢ | ”(Q’) |dQ’SM,
“ @
(22)

where f =(u,v)" is an arbitrary function of a set S),.
Thus the operator B, is completely continuous in the
first equation of system (19). Complete continuity of
operator B, is proved analogously.
Let f =(u,v)" be an arbitrary function of a set Sy,
and (g,h)" =B(u,v)" . Show that the function (g,h)"
belongs to a set S, . Using the inequalities

x| <[4Jx] and H(Ha-lgu)*H:qg we have
e (Q)"c(fz) =8, V)"c(ﬁ

<|(1+a8,)"

= <gM
c(@)-c(a) "W"c(g) <
Analogously we obtain:
"h (Q)Hc(ﬁ) ”BZ (u, v)”c(fz)ac(g)

<|(1+a'B,)"

_ <
c@c(@) [l =

From these inequalities follows that BS,, < S,, . So,
the operator B=(B, B) is completely continuous
mapping the closed convex set S,, = C(QQ) into itself.

The theorem is proved.

As a corollary of Theorem 1 satisfaction of the
Schauder principle conditions [7] in accordance to which
the operator B = (B,.B )T has a fixed point
f. =(u*,v) belonging to a set S, , follows. This
point solves (13) and, respectively, (6). Substituting
fo=(u,,v. )T into (10), we obtain the solution of (5),
which is a stationary point of functional (4).

Concerning the synthesis problems of linear radiator
for the case of one-dimensional domains Q the solu-

Copyright © 2011 SciRes.

tions of system of equations similar to (13) are investi-
gated, in particular, in [13]. The obtained there results
show that nonuniquness and branching of solutions, de-
pendent on the size of physical parameters of the prob-
lem are characteristic for special case of equations of
type (13) (when variables are separated). The results [13]
can not be transferred directly to two-dimensional
nonlinear integral equations of type (7). Here unlike the
branching points [13] there exist branching lines of solu-
tions, and the problem of finding the branching lines is
not enough investigated nonlinear two-parameter spectral
problem.

3. Equations of a Set of Branching Points
In the case when the kernel of (7) determined by (8) is

real, (7) in a space of real continuous functions C (Ez)
has the form

(0)+][K(0.0,¢) f(0")d0’
—HF VK (Q.0.sen(f(Q))d0.

Assuming in (23) signf(Q')=1 we obtain the sec-
ond kind Fredholm integral linear equation with sym-
metric and even kernel

0)+a ' [[K(0,0'¢) f(Q')dQ' =F(Q).  (24)

Here the right part
F(Q)= a’IUF(Q’)K(Q,Q’,c)dQ’

is a nonnegative function. It was shown that correspond-
ing to (24) homogeneous Equation (18) has only zero
solution. From here follows that (24) has unique solution
/fo(0), belonging to the space C(Q) and
sign f,(Q) =1, that is solution f;(Q) is nonnegative.
Further we shall call the solution f,(Q,¢) as initial
solution of (7). Corresponding to it solution
uO (Q’c) = f;) (Qac);
v (0.¢)=0
we shall call as initial solution of a system of Equa-
tions (13).
To find the branching lines and complex solutions of
(7), which branch-off from the real solution f; (Q, c)

we consider the problem on finding such a set of values

of parameters ¢ :(cf"),cg‘” ) and all distinct from

fo (Q,c) solutions of (13), which satisfy the conditions

max (0.¢)- f(Q,c(O)) -0

(25)
rgggh Q,c |—>O,
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as ‘c - c(o)‘ — 0. Conditions (25) mean that it is necessary

to find small continuous solutions in Q
w(0.c)=u(0.¢)~ £, (0.e”). @(Q.c)=v(Quc).

converging uniformly to zero as ¢ — ” . In addition, it
is necessary also to take into account the direction of
convergence of vector ¢ to ¢

Put

¢ = cl(o) +U, ¢ = cgo) +v (26)

and we shall find the desired solution in the form

u(Q,¢)=f, (Q,c(o))+ w(Q, u,v)
v(0.¢)= (0, u,v).

Further we omit the dependence of functions
w(Q,u,v) and a)(Q,y,v) on parameters g and v
for reduction of notations.

Present some properties of integrands in (13). They are
continuous functions of arguments. We substitute (26)
and (27) in (13). Then integrands expand in the uni-
formly convergence power series with respect to the
functional arguments w, @ and numerical parameters

M, v in the neighborhood of point (c(o),f0 (Q, ¢ ),O) :

@7

u(0')
Y (2)+v(2)
Ay (0.0 ) ()@ (07,

K(Q.0'.¢)x| ~u(Q)+F(Q')

-3

v(Q)
Z42 (Q/) + vZ (Q!) (28)
anpq (Q9 0, c(o) ) w" (Q’) " (Q’) uive,

K(0.0'¢)x| v(Q)+F(Q)

>

m+n+p+q=1

Here 4, (Q,Q’,c(o)) s B (Q,Q’,c(o) are coef-
ficients of expansion continuously dependent on argu-
ments. Substituting (28) in (13) and considering
fO(Q',c(O) as a solution of this system, we obtain a
system of nonlinear equations with respect to small solu-
tions w and w:

+[[K(0.0.¢" Jw(0)dgr
alO( )ﬂ+%1(QC )V+
+ W [y (0.0 )" (0) 0" (€)d0

m+n+p+q>2

(29)

Copyright © 2011 SciRes.

0)) »(Q)

a0(0)- [[(F(0)-1)K(2.0¢ AT
= Y uv ﬂanpq(Q 0,")w" (0)e" ()0,
gz o
where
iy (0. ) - g Ao (Q, Q',cw)) do',
ay (0.¢") = {J Ar (0.0 d0"

Extracting in a system of Equations (29), (30) the lin-
ear members for w and @, to find a set of branching
points of the solution f; (Q',c) we have an integrated
system of linear integral equations

w(Q)=-a'[[K(0,0'e)w(Q)d0",  (31)

) , , (Q')
=a'|(F - ,c d
(7 (@)-£(Q )k (0.0 ) 40"
(32)

We shall call a set of values of parameter
” {Ff( ) ¢ ) , at which the system of linear homoge-
neous Equations (31), (32) has distinct from zero solu-
tions as a set of points of possible branching of initial
solution fO(Q',c). Note that the system (31), (32) is
noncoherent relatively the functions w and @ . Previ-
ously it has been shown that equation of type (31) has
only a zero solution. Therefore the problem of finding a
set of branching points under condition f; (Q’,c) >0, is
reduced to equation

2(0)=T(c)p

Ea’lg(F 0')-

0(0)

OO0 g

Q!
(33)
that is to a nonlinear two-dimensional spectral problem
[14,15]. The eigenvalues of this equation form a set of
points of possible branching of solutions of a system of
nonlinear Equations (29), (30). Corresponding eigen-
functions are used to construct the branching-off solu-
tions of equations [16].

Note, that construction and justification of conver-
gence of numerical algorithms to solve the nonlinear
two-parametric spectral problem on eigenvalues (33) it is
necessary to solve the corresponding auxiliary one-pa-
rameter nonlinear spectral problem [14]. In this connec-
tion at first we consider two-parameter nonlinear spectral
problem on the general (operational) level in the Banach
spaces.
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4. Two-Dimensional Nonlinear Spectral
Problem

4.1. Statement of the Problem. Existence
Conditions of Descrete Spectrum of
Operator-Function

Note that different approaches are used to discretization
of the original problems [7,14] at construction of the
numerical algorithms to find the solutions of various
types of nonlinear spectral problems. That is to say that
original problems in the Banach functional spaces E
are replaced by the corresponding problems in the fi-
nite-dimensional spaces E, (neN). In addition the
question of convergence of approximate solutions of
discretization problems to exact solutions of initial prob-
lems, whenever dimE, - o, n—co is important,
since the input and approximated equations are consid-
ered in various spaces.

Let £ be a complex Banach space, A =(4,4,) be
a vector parameter belonging to the domain
A=A, xA, (open connected set) of the complex space

C*=CxC.Here 4 €A, cC,
A, ={4 €A, :|A|<r} (i=12), 5 be some real con-

stant. Consider the operator-function
A(-):A—>L(E,E), which to each A=(4,4)eA
assigns the operator A(4,4,)€L(E,E), where
L(E,E) is the space of bounded linear operators [7].

Let us consider the nonlinear two-parameter spectral
problem of the form

A(A4,4,)x=0, (34)

in which it is necessary to find the eigenvalues
A= (1}"),22‘0) ) e A and corresponding to them eigen-

vectors xVeE (x”#0) suchthat A (,11(0)’,12(0) )X(O) -0,

In particular, in view of (33), the operator-function
A(4,4,) is represented as

A(42)=(T (A, 4)=1): ASL(EE).  (39)

Here T(4,4,) is a linear completely continuous op-
erator acting in the Banach space E = C(ﬁ) and ana-
lytically dependent on two-dimensional parameter
(4,4,), I isaunique operatorin E .

Let the Banach spaces E, E, (n=1,2,---) and also
the system P =(p,),.y of linear bounded operators
p, £ — E,  such that

||p"x||E” - ||x||E ,neN,VxeE (36)

be given. Operators p, are called conjunctive opera-
tors [7,14]. From the principle of uniform boundedness
[14] for p, the inequality follows

Copyright © 2011 SciRes.

|p,|<const (neN).

Let in every space E, the element x, be selected.
Writing these elements in order to increase the numbers
we shall form the sequence {x, } .

Using either approach to discretization of original
problem the operator-function A(-,-):A —>L(E,E) is
approximated, respectively, by the approximate opera-
tor-functions A, (-,-):A ->L(E,,E,), neN. As a re-
sult, at each A =(4,4,)eA we obtain a sequence of
operators A, €L(E, ,E,) which convergences to opera-
tor Ael(E,E) at satisfaction of the corresponding
conditions.

Definition of various types of convergence of opera-
tors A, to A is given, in particular, in [14].

Discretization of original problem (33), choice of the
spaces E, and determination of operators p, : E — E,
are realized in various ways. In particular, if the opera-
tor-function is described by (35) and E is the separable
(infinite-dimensional) Hilbertian space, one of the ap-
proaches to discretization (34) consists in the following.
Consider an arbitrary complete orthonormal in E sys-
tem of functions {x,} . Each element xe E can be

0
presented as series x=Y c.x, where ¢, =(x,x,) is
k=1

the Fourier coefficient of element x.If T(4,4,) isa
linear continuous operator, acting in the separable Hil-
bertian space it admits matrix representation [9]:

Ty () =(t (2 2)) 0 (D)

where ¢, (/1,,/12)=(T(ﬂ1,/12)xk,x‘/.). In addition a se-

quence of the Fourier coefficients of element
y=T(A4,4,)x is obtained from a sequence of the Fourier
coefficients of element x as a result of multiplication
of the matrix 7,,(4,,4,) by coefficients of element x.

Using the matrix representation of operator 7}, (4,4, )
the spectral problem (34) is formulated as
AM(ﬂqsﬁz)xz(TM(ﬂwﬂz)_lM)x:O, (38)
where [, is a unit matrix in the space of sequences
[, .Thus, the operators T'(A) and T,,(A) are equiva-
lent in the sense that they to the same element xe€ E
assign one and the same element y e £ . But we obtain
the Fourier coefficients of element y =(A)x as a result
of action of the operator 7, (A) on the element x.
Obviously, that eigenvalues of these operators coincide,
that is the spectral problems (34) and (38) are equivalent.
In this cace we mmit that the finite dimensional snaces F
are generated by the bases {x,}, (n€N)and to each
element xe £ the operators p,:E — E,  assign the

element x=) c,x, where ¢, =(x,x,). As a result,
k=1
operator 7,, (A) approximated to 7, (A) is described
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by the finite-dimensional matrix-function

TM,, (’11»2'2):(6* (/7'1’2'2)):,/(:1' (39)

Apply other methods of discretization to (34), in par-
ticular, the quadrature (cubature) processes for the case
of homogeneous integral equations and change of deri-
vates by their difference analogues in differential equa-
tions. We obtain approximate problems to find approxi-
mate the eigenvalues and eigenvectors of matrix opera-
tor-functions in the form

A"(ﬂq,/”tz)xn =0, neN. (40)
Moreover, the problem of determination the eigenval-

ues is reduced to finding the roots of the determinant of
n -th order that is the roots of equation

v, (4:4)

all(ﬂ'l’ﬂ’z) alz(ﬂwﬂz) : aln(ﬂ’l’ﬂ?)
a2 ) e (0R) (B B)|
a (Ashy) @, (As4) a,, (%>%)
(neN)
(41)
If A,(4,4,) has form of (35), then
ta (A ), J#*k,

a./\k (A’%)z{l‘j’k(ﬂq,ﬂz)_l, ]=k

Note if the coefficients a,(4,4,) are continuously
differentiable functions of arguments, the partial deriva-
tives oW, (4,4,)/04, (j=1,2) are determined by the
rules of determinant derivation [17].

Consider the auxiliary nonlinear one-parameter spec-
tral problem, necessary later on, as a special case of (34).
Assume that variable A, in the operator-function
A(A4,4,) is expressed by some one-valued differenti-
ated function 4, =z(4) mapping the subdomain
Ay, <A, into some subdomain A,,cA,. In the
simplest case we put A, =4 (P is some real pa-
rameter). Introduce the operator-function
Ay (4)=A(4,2(4)) for 4 €A, ,, which is reduction
of the operator-function A(4,4,). We shall consider
one-dimensional spectral problem

Ay(4)x=0 (42)

in which we assign to each value A =(21,z(/?1 ))eA
the operator A,(4,z(4))€eL(E,E). Analogously to
(40) we consider a approximate sequence of discrete
problem of (42)

Apa(4.2(4))x, =0, neN (43)

Denote the spectrum of operator-function A, (4,) as
S(Aﬂ) . Assume that s(Aﬂ) =N .

Copyright © 2011 SciRes.

For the spectrum s (A) of the problem (34) the fol-
lowing theorem is valid.

Theorem 2. Let the following conditions be satisfied:

1) operator-function A (,) A ->L (E,E) is holo-
morphic, and S(A) A

2) operator-functions A, (--):A—>L(E, E,) are
holomorphic and for any closed bounded set A, c A
the following inequality

max "An (4.4, )" <c(Ay) =const (neN) isvalid

AeA

3) operators A(4,4,)€L(E,E),
A, (4.4 )€eL(E,,E,) (neN) are the Fredholm op-
erators with zero index for any N =(4,4)eA;

4) spectrum S(A ﬁ) # N, , and a sequence of func-
tions ¥, (A,4,) aredifferentiable in the domain A ;

5) A, (7») —>A (l) is stable for any
Aer(d)=A\s(d).

Then the following statements are true:

1) every point of spectrum ﬂq(o) Es (Aﬂ ) is isolated, it
is eigenvalue of the operator A, (4)=A (/1, 2(4 )) , the

finite-dimensional eigensubspace N (A (/1,(0) )) and the
finite-dimensional root subspace correspond 10 it;

2) for each /11(0) € S(A ﬁ) there exists a sequence
{/11(3)} from ﬂl(‘(;) € s(A ﬂ,n) (n>ny), such that
Ay = A

3) each point A = /11(0),2&/11(0) )e A is a spectrum

point of the operator-function (/11 A ) ;
4) if'in some &, - neighborhood of the point

A0 =(/11(0),Z(/11(0)))€A %(ﬂ“z(ﬂz))i 0, then in

an arbitrarily small &, -neighborhood of that point there
exists a continuous differentiable function

2. =0,(4 ), which is solution of (41), that is in some
bicylindrical domain

Ay ={(hsda) € A :|A = 2" < 6~ 27| <

there exists a connected component of spectrum of the
operator-function Ay (4,4,) (&, & are small real
constants).

Proof. The proof of Theorem is based on Theorems 1,
2 [14, p. 68, 69] and on existence of implicit functions
(see, example, [18]). At first we show that the conditions
of Theorem 1 [14, p. 68] concerning the existence of
discrete spectrum of operator-function A, (4) follow
from the conditions of formulated Theorem. Under the
conditions of Theorem the operator A(4,4,) is Fred-
holm operator with zero index for each 4 =(4,4,)eA,
and the operator-function A(-,-):A —L(E,E) is holo-
morphic. From here follows that at each 4, €A, , the
operator A, (4,), as reduction of the operator A(4,4,),
is also Fredholm operator with zero index, and the op-
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erator-function A, (4 ):A, , »L(E,E) is holomorphic.

So, for the operator-function A (ﬂq) the conditions of
Theorem 1 [14 p. 68] are satlsﬁed from which follows:
each point 21 €s(Ay) is isolated, it is the eigenvalue
of the operator A;(4), the finite-dimensional eigen-
subspace and finite root subspace correspond to it. Thus,

each point A :(A(O),Z(A(O)))GA is the spectrum

point of the operator-function A(4,4,).

In addition, the conditions of Theorem 2 [14, p. 69]
are satisfied for the operator-function
Ay(4):A,, >L(E,E). From this theorem follows: at
n larger than some n, € N for each /11 (A ﬁ)

there exists a sequence {ﬂ”} from ﬂ“ ( ﬂm)

such that 4, — 21(0) . Thus, each point ( A0, 289 ) =
(21(0),2(21(0) )) is the eigenvalue of operator-function
A,(4):A,, >L(E,E) and, respectively, the eigen-

value of operator-function A(--):A —L(E,E). Since
/11(?1) €s (A pn ) is the root of (41), then from here follows that

w400 ner

From the convergence of sequence /11 (A ﬂ’n) to
/11( ) e s(A ﬂ) follows that for an arbltranly small num-
ber ¢, > O there exists such number N, >n, that

A0 =40 <z and w,, (20,2(40.))=0.
Let /11, A, be independent variables in the domain
A, and (ﬂ,l(o),/lz(o)):(jq(o),z(ﬂq(o)))eA be a spectrum

point of the operator-function A(4,4,) belonging to
S(A ﬂ)cs(A). Under the conditions of Theorem the
functions W, (4,4,) are differentiable in the neigh-
borhood of the point (31(0),/12(0) ) = (/11(0),2(/11(0) )) and
v,

04,
(/11(0) z(ﬂl(% )) belongs to &, -vicinity of the point

(/11((2 ,2(21(33* )) # 0. In addition the point

Ny 2

(/?1(0) , /12(0) ) . According to the Theorem about implicit

0)

function in some neighborhood of point (ﬂ,l(o),ﬂz( )
there exists the continuous differentiable function

2, =@y (4), solving the equation ¥, (4,4,)=0
and ¢, (ﬂq(?\), ) =z (21(?\), ) . From here follows existence

of connected spectrum component of the operator-func-
tion A(,-):A—>L(E,E) in some bicylindrical domain

Ay ={(A k) ey |4 =27 | <e.),

where ¢, &, are smallreal constants.

<&,

Theorem is proved.
Comment. Note that in the case of real parameters A,
and A, the presence of a singular point in the equation

Copyright © 2011 SciRes.

19] is one of the sufficient criterions of

IPWAE
satisfaction of condition s(A)# A . The point
(4", 4")e A is a singular point of the curve which is
presented by the equation W (4,,4,)=0 when
8‘1’(/11(0),12(0)) 8‘1’(/11(0),12(0))
=0, =0, and the second
o4 04,
order partial derivatives are nonzero:
82‘1’(11(0),/12(0)) 62‘1’(21(0),/12(0))
3 #0, > *
oA oA,
82‘{’(]1(0),/12(0))
04,04,
These derivatives and the third-order derivatives are
continuous in the neighborhood of the point

(2", A4 ) € A . If in addition

o (4", A4%) ’ (A" AY) e (4%, A"
o402, 042 042

then the point (ﬂq(o),/iz(o)) is the second order root of

0,

#0

<0,

equation W(4,,4,)=0. Inside of a sufficiently small
radius circle with center at point (21(0) , /12(0)) the left part

of equation W(4,,4,)=0 becomes zero only at point
A2, ie. (47,447 is the isolated point of spectrum.

4.2. Finding the Connected Components of a
Spectrum

Thus assuming the existence of discrete spectrum
):t A, 5 and solving an auxiliary one-dimensional
spectral problem (42), we find a set of the eigenvalues

A0 :(k(o) z(k1 ))eA, which belongs also to the

1

spectrum of operator-function A(-,-):A >L(E,E). To
find the connected components of a spectrum in some

"= (A72(27)) e A

we consider the problem on finding the solutions of
equation ¥, (4,4,)=0, as the problem on finding the
implicitly given function Ay =4 (4) at satisfaction of

condition 6‘1’ /6/12 #0 (or 4 =4(4) at
/a/z1 #0), solv-

neighborhoods of the points Al

satisfaction of condition 8‘P
ing the corresponding Cauchy problem
(0) (0)
w_ (A Aen
o, (404 eor,
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A (A7) ==(2"). (46)
Corresponding (38) auxiliary one-dimensional spectral
problem has the form

Ay, (Aoz(2))2" = (T3, (A2 (2)) =1y, )5

Obviously, the eigenvalues of this problem are the
roots of equation

W, (4)=det(T,, (4,2(4))=1y,)=0. 48)
Solving the problem (45), (46) in some neighborhood
= (11("),2(/12("))) e A, we find the i-th

N =0.(47)

n

of the point Al

connected component of spectrum of the operator-func-
tion A, (A4s4).

Return to finding the solutions of (33), in which ¢,
c, are real spectral parameters. Let (cl,cz) €A,
A=A, %A, , where A, ={c,eA, :0<c<r}. By
dlrect check we set that for arbltrary Values of parameters
(¢1.c,) €A, the function

2 (0.¢)= £,(0.¢), (49)

is one of the eigenfunctions, where f; (Q,¢) is the ini-
tial solution of (7). Write the necessary in what follows
equation

v(Q)=T"(c)y
‘/’(Q') (50)

S(rle)=hleq) Kl 7o yee

conjugate with (33). For arbitrary (¢,,c,)eA, the
function

v, (0.¢)=F(Q)- /,(0-¢) (51)

is one of the eigenfunctions of (33).

The existence of distinct from identical to zero solu-
tions of (33) for arbitrary (c,,c,)eA, indicates that
there is a connected component of spectrum, coinciding
with the domain A_. So, the condition of Theorem 2:
S(A) # A, is not satisfied. To satisfy this condition we
exclude eigenfunctions (49), (51) from the kernel of in-
tegral equation (33) Consider the equation

9(0.¢)=T(c UK 0,0.¢)p(0)d0’",  (52)
where
. F(O')- 0 " .
k(0,006 = )10 5 01 )
/(Q'¢) (53)
¥ (0.0)p (Q'¢)
Ioll- o]

From the Schmidt Lemma [16, p. 132] follows that
4 =1 1is not characteristic value of (52) for any value
(¢1.c,), thatis @, (Q,¢) is not an eigenfunction of this
equation. Thereby the connected component coinciding
with the domain A, and corresponding to the function
¢, (0.¢) is excluded from the spectrum of operator.

Copyright © 2011 SciRes.

_Using (8) we are sure that for the kernel of operator
T(c) is fulfilled the inequality

11 k(0.0'¢)f d0do’

[ ae ) gy (@)
—az[(zn)zJ H (Q)HWQ

5 [aoie] ) oe

Here ,u(Q) is the measure of the domain Q . From

the obtained inequality follows that 7'(c) is the Fred-
holm operator with zero index [20]. Moreover, it is a
completely continuous operator in space L, (Q) [21].
Functions entering in the kernel of the operator (35),
admit the analytic continuation into the complex domain
A_,if ¢ and ¢, are assumed as complex parameters.
Holomorphy of operator-function A(c,,c,)=

=T(c,,c,)—1 follows [14] from existence of partial

M (,':1,2)

C.

1

derivatives at arbitrary point

(cl(o) , cgo) ) € A, owing to continuity of the kernel

K(0,0',¢) according to a set of their variables in the

domain QxQxA, and existence and continuity of

partial derivatives , what is easy to

K (¢,
GGICY) (i=12)
O,
verify.
Putting in (52), ¢, = fB¢,, we shall consider the one-
dimensional spectral problem

0(0)=T(c)u=[[R(0.0"¢)p(Q)d0' s (54)
where I%(Q»Q',Cl)=K(Q,Q',cl,ﬁcl). Since 7:“(01) is

reduction of the operator 7(c), from here follows that
7 (¢;) is the Fredholm operator with zero index for any

€Ny,
A(-) = (7:’()—1) :A, > L(E,E) isholomorphic.

and the operator-function

If s(K)#A,, from holomorphy of operator-function
and from the Fredholm property of the kernel

R(0,0'.¢,)=K(0,0',¢,,Bc,) satisfaction of the con-
ditions of Theorem 2 follows. In accordance with this
Theorem every point ¢\ e s(A) is isolated and it is the
eigenvalue of (54). Respectively, the points (Cl(o)’cgo)) =
= (cfo), ﬂcl(o)) are eigenvalues of (54). To find the spec-

trum connected components (52) in the vicinities of

points (cfo),cgo)) we solve the Cauchy problem (45)
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and (46), using the found solutions of auxiliary problem
(54) as initial conditions.

4.3. Numerical Finding the Eigenvalues of the
Problem

We shall construct algorithms to find numerically the ei-
genvalues of (54) what corresponds to auxiliary problem
(43). Consider some convergent cubature process [14]

gx(Q)dQ - gawx(gﬁ,)wn (x).(neN) (55

with coefficients a, e R andnodes O, € Q
(j=1+n). We reject the remainder term ¢, (x) in (55)
and replace integral in (52) by it. Giving the variable Q
values OQ=0, (i=1+n), we have the homogeneous
system of linear algebraic equations concerning
Uy, e

nn*

Uy, = TMn (cl )un = Z}aﬂ? (QWQ/"’ ) /n’( =l+n
J=
where u,, =u(Q, ). Solving the eigenvalue problem (56)
in the finite-dimensional spaces E, =C ((_Zn ) , we find
approximate eigenvalues, convergent to exact solutions
of the problem (54) as n— 0.
Finding the eigenvalues of (56) is reduced, in particu-

lar, to finding the roots of equation

v (cl)zdet(lz"Mn (cl)—ln):O. (57)
These solutions of equation we denote as cl(i) .
Return to two-dimensional spectral problem (52). Ap-
plying the (55) to (52), we obtain a system of linear
equations similar to (56)

n
w, =Ty (¢1,cy)u= Za‘/nK(Q,-,,,Q/,,,Cl,cz)ujn
=
(i = 1+n).

) (56)

(58)

Finding the solutions of equations

¥, (a0, ) =det(T, (¢.¢,)~1,)=0  (59)
we consider as a problem on finding the implicitly given
function ¢, =¢, (¢, ), reducing it to the Cauchy problem
(45), (46). Since to each isolated root of thls equation
corresponds eigenvalue (cl( ),c2 ) = (cl , ﬂcl ) of prob-
lem (58) we use solutions of (57) as the initial conditions
(46). Thus, we determine the initial conditions (46) for

the Cauchy problem as c ( ) ﬂc
8‘1’n cl,c2 /602 # 0 then solving the problem (45) (46)
in each vicinity of points cl(i) , we find the differentiable

function ¢, =y,(¢;) which satisfies the condition

y(d”)=pel’.

Copyright © 2011 SciRes.

In the case, when (cl(i), ﬂcl(i)) is a real eigenvalue of

the problem (57), ¢, =7,(c;) are real differentiable

functions describing in the vicinity of points (cl(i), ﬁcl([))

some smooth curves. That is, in this case the equations
(52) and (33) have a linear spectrum, respectively.

Thus, solving the problems (57) and (58), we find a set
of values of parameters (c,,c,)e A, at which the bran-
ching of complex solutions of Equation (7) from the real
initial solution f,(Q,¢) at x>0, v>0 is possible.

Functional {aa (U )} has smaller values on branching-

off solutions than on the solution f; (O,¢).

5. Algorithm of Finding the Solutions of
Nonlinear Equation. Numerical Examples

Present one of iterative processes for numerical finding
the solutions of system (13), based on the successive
approximations method:

u o (1+a’lB”)7lB (u,,v,),

n+l = n°’n

o (60)
Vo —a’! ([+a-1321) B,, (un’vn)’ (n :()’]’...)'

n+

Before it was shown that the inverse operators

-1 -1
(I + a’lB”) and (I + a'lBZI) exist and are limited.

In the case of even on both arguments function
F(s,,s,) and symmetric domains G and Q at exe-
cution of iterative process (60) it is appropriate to use the
invariance property of the integral operators B;(u,v) and
By(u,v) in the system (13) concerning the type of parity
of functions u(sy,s;), v(s1,52). Functions # and v hav-
ing some type of parity on the corresponding argument
belong to the invariant sets U, and ¥}, of the space
C(Q) where the indices i, j,k,/ take values O or 1. In
particular, if u(s,,s,)eU,, then
u(=s;,8,)= u(s,s,), u(s,—s,)=-u(s,s,). By the
direct check we are convinced that there are such inclu-
sions:

Bl(UijUVkl)CU B, (U UVI«Z) Vias

i
B(Uij UVkI)CUij Ur,

From these relations, in particular, follows the possi-
bility of existence of fixed points of operator B be-
longing to the corresponding invariant set, that is to solu-
tions of (13) and, respectively, (7).

Substitute into (10) the function arg £, (Q) =

= arctg(vn (Q)/”n (Q)

sive approximations (60). As a result we have a sequence
of function values which we denote as {U,}. For this
sequence the Theorem 4.3.2 and corollary 4.3.1 [4], and

(61)

) obtained on the basis of succes-
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the Theorem 4 from [22] are valid. From here follows
that the sequence {U,} is relaxation for functional (7)

and the numerical sequence {o,, (U, )} is convergent.

Consider the numerical examples of approximation of
even on both arguments function

F(sy,s,)= |sin(1tsl)||sin(7ts2 )| (Figure 1) in the domain
Q= {(sl,sz): |s1| <1, |s2| < 1} .

In Figure 2 in logarithmic scale the values of func-
tional o, (U), which it takes on different types of solu-
tions of system of (13) at change of the parameters
¢,c, on the beams c,=0.8¢ are presented. The
curve 1 corresponds to the initial solution f; (s;,s,).

The curve 2 is a branchine-off solution at point
(cl(l),cgl) ) =(2.345,1.876) with the property
arg f(s,,—s, ) =—arg f (s,,s, ) . From the analysis of

Figure 1. The function F(s,s,)= ‘sin(nsI )Hsin(nsz)‘

given in the domain Q={(s,s,): [s,|<1, [s,|<1}.

o, (U) ¢,=0.8¢,
021
-0.4
0.6 - /1
-0.8 -
2
1k
¢, =2.345
12 Ll I I SFS SRR I SR | o

2 3 4 5 6 7 &8 9 10

Figure 2. The values of functional on initial and branching-
off solutions.
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Figure follows that branching-off solutions at point

(cfl),cgl)) are more effective compared with initial solu-

tion f,, since the functional o, (U) accepts smaller
values on branching-off solutions than on initial.

The points of possible branching of solutions of (7)
(spectral lines of (33)) for given

F(sl,sz)=|sin(1tsl)||sin(7ts2 )| are shown in Figure 3.

Figures 4 and 5 present |f(s,,s,) and arg f(s,,s,)
of approximate function corresponding to the branch-
ing-off solution of system of Equations (13) at ¢; = 8 and
Cy = 6.4.

Correspoding to this solution the functions |U(x, )l
and argU (x,y) of the Fourier integral prototype in a
spatial image and image by the level lines are shown,
respectively, in Figures 6 and 7.

C2

! I

6

3 ¢,=0.8¢

4 /

3 ~
\ -~

2 o~

1

0 1 2 3 4 5 6 7

Figure 3. Points of possible branching of solutions (spectral
lines) for given F(s,,s,)= ‘sin(ﬂ:s, )Hsin(ﬂ:sz)‘ .

Figure 4. The modulus of approximation function.
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Figure 7. The argument of Fouier integral prototype.

Copyright © 2011 SciRes.

As we see in these figures, the function |U (x, y)| isa
nonsymmetric relatively to the center of the domain G
along the axis OX , and argU (x, y) accepts the value
0 or m in the corresponding subdomains of the domain
G, that is function U(x,y) is real. Thus, from the
analysis of Figures follows that the given symmetric
function F(s;,s,) (even on both arguments) on the

beam ¢, =0.8¢, at ¢ >cl(1) is approximated effec-

tively by the optimal choice of nonsymmetrical by
modulus Fourier integral prototypes, that is the functions

|U(x,y)|.
6. To Selection of Parameter o

We shall present some argumentations concerning the
choice of the weight parameter of regularization o in
the optimization criteria (4). Many of works (see, [23-26])
are devoted to this question. Efficient algorithms of
solving this problem are developed mainly for linear
operator equations of the type

Lu=F; (62)
with approximate right part F;, in which a priori the
error 0 is known. Their detailed definition is given in
[23,25]. The principle of residual is the most applicable
one in practice. Here we choose such number o, for
which with the necessary accuracy the equality

|Lu-Fy| =6 (63)

is executed (# is a minimum point of smoothing func-
tional defined on H,, ) dependent on the parameter « .
As shown in [1], the principle of residual (63) to deter-
mine the parameter « in the case of nonlinear operator
L can be applied when L is a convex operator. Gen-
erally, the residual (63) may be discontinuous or non-
monotonous function with respect to parameter o .
Therefore Equation (62) can not have any solution or
have a set of solutions.

The error & is unknown a priori, as a rule, in the
problems of nonlinear approximation. Decrease of pa-
rameter « in the functional o,(U) reduces the require-
ments to the norm |U]|. As a result, the norm of the
Fourier integral prototype minimizing the functional
o,(U), inversely depend on « . At reduction o the
accuracy of approximation in the limits of the domain
Q , as rule. increases. but the value of function
| (51,8, )| outside this domain increases also.

At concrete calculating the parameter « can be se-
lected on the basis of some physical argumentations and
numerical experiments. In particular, in the antenna syn-
thesis problems the parameter & can be selected from
the satisfaction of equal energy condition [4]

”Ua "22(0) = "F ";(Q) : (64)
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A numerical example of dependence of solutions of (7)
on the value of parameter a at approximation of the

, T, | .
function F(s,,s,)= cos71|sm ms,| is the proof of the

above presented arguments. In Figure 8 are given the
values of approximate function | (s, )| in the sec-
tions, = 0. From the analysis of the Figure, we see that
the quality of approximation of the given function on the
interval —1<s, <1 increases when parameter o de-

creases, while | 7(0,s, )| increases outside this interval.

7. Conclusions

Note the main results and problems arising at investiga-
tions of the considered class of problems:

1) The method of nonlinear approximation of finite
nonnegative functions with respect to two variables by
the modulus of double Fourier transform with use the
smoothing functionals is developed in the work.

2) It is shown that non-uniqueness and branching of
solutions is characteristic for this class of problems. The
numerical method of solving the two-parametric nonlin-
ear spectral problem enabling to find the branching lines
of solutions of Hammerstein type nonlinear two-dimen-
sional integral Equation (7) is proposed to study the
non-uniqueness of solutions dependent on the value of
parameters c,, ¢, entering the Fourier integral.

3) At finding the solutions of system of Equations (13)
by the successive approximations method (60) in the
case of even by both arguments (one argument) function
F(s,,s,) to obtain the solution of concrete type it is
necessary to select the initial approximation belonging to
the corresponding invariant set of nonlinear operators

1/(0, s2)|
1 -

F(0,52)

0.8 1

0.6

0.4

0.2

0 ——H— e B
-3 -2 -1 0 1 2 3

Figure 8. The modulus of approximate function
ns
F(s,s,)= cosi\sinnsz\ in the section s, =0 correspond-

ing to various regularization parameters o .
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B, B, (61).

4) Investigations of branching of existing solutions de-
pendent on physical parameters c,, ¢, entering the Fou-
rier integral are the main difficulty at solving this class of
problems. As follows from the presented researches, in
particular, in [4,13], for a special case when
F(s,s,)=F (s )-F,(s,), the quantity of existing solu-
tions with increase of parameters c,, ¢, significantly
increases. Note, that in many practical applications, par-
ticularly in the synthesis problems of radiating systems,
obtaining the best approximation to the given function
F(s,,s,) at concrete values of parameters c,, c, is
important. It allows to limit oneself to investigations of
few first points (lines) of branching.

5) Obtaining the complete answer about exact quantity
of existing solutions of (7) at concrete values of the pa-
rameters c;, ¢, are the subject of separate studies.
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