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Abstract 
 
A numerical study is performed on steady natural convection inside a porous cavity with cooling from the 
side walls. The governing equations are solved by finite volume method. Representative results illustrating 
the effects of the thermal Rayleigh number, density inversion parameter, buoyancy ratio and Schmidt num-
ber on the contour maps of the fluid flow, temperature and concentration are reported. It is found that the 
number of cells which form in the cavity varies primarily with the density inversion parameter and is always 
even due to the symmetry imposed by the cold sidewalls. In addition that the flow becomes weaker as the 
Darcy number decreases from the pure fluid limit towards the Darcy-flow limit. 
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1. Introduction 
 
Natural convection in enclosures containing a fluid- 
saturated porous medium has received much attention 
recently because the data concerning buoyant enclosure 
flow are in great demand for many traditional and con-
temporary applications such as insulating systems for 
buildings and heat exchanger devices, energy storage 
systems, material processing and geothermal systems 
[1,2]. Another reason leading to study of the convection 
in porous medium enclosures is the interest in funda-
mental phenomena of double diffusive and density of the 
convective flow. A comprehensive review of the litera-
ture on double diffusion, natural convection in saturated 
porous media may be found in [3-6].  

Convection in water behaves differently around the 
temperature region of 4˚C due to the anomalous behavior 
of density around this temperature and the density of 
water at both side walls of the cavity various linearly 
with the temperature. A number of studies have investi-
gated the effect of the density extremum for water in 
detail. Nansteel et al. [7] studied the natural convection 
of cold water in the vicinity of its density maximum in a 
rectangular enclosure in the limit of small Rayleigh 
number. They observed that the strength of the counter 
rotating flow decreases with decreasing aspect ratio. Ma-
hidjiba et al. [8] investigated onset of convection in a 
horizontal anisotropic porous layer saturated with water 

near 4˚C. It is found that the onset of motion dependent 
permeability ratio and inversion parameter. The Brink-
man’s extension of Darcy’s law has been used in a study 
by Bannacer et al. [9] to investigate double diffusive 
convection in anisotropic porous media with high poros-
ity. It is demonstrated that the anisotropic properties of 
the porous medium considerably modify the heat and 
mass transfer rates from that expected under isotropic 
conditions. 

Very recently, Muthtamilselvan et al. [10] studied 
numerically convection in a two-sided lid-driven heat 
generating porous cavity with alternative thermal bound-
ary conditions. They found that the variation of the av-
erage Nusselt number is non-linear for increasing values 
of the Darcy number with uniform and non-uniform 
heating condition. The aim of the present study a double 
diffusive natural convection flow in a square cavity filled 
with a fluid saturated porous medium when the bottom 
wall is heated. 
 
2. Mathematical Analysis 
 
Consider a steady-state two-dimensional square cavity 
filled with a porous medium of length L as shown in 
Figure 1. Different temperature and concentrations are 
imposed between the bottom ( h , ch) and vertical side 
walls ( c , cc), where the h c   and h c . The top 
wall is considered to be adiabatic. The physical proper-  

c c
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Figure 1. Flow configuration and coordinate system. 
 

ties are considered to be constant except the density 
variation in the body force term of the momentum equa-
tion which is satisfied by the Boussinesq’s approxima-
tion. The density of the cold water is assumed to vary 
with temperature according to the following equation 

   2
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where T  and c  are the coefficients for thermal and 
concentration expansions. In the present investigation the 
porous medium is assumed to be hydrodynamically and 
thermally isotropic and saturated with a fluid that is in 
local thermal equilibrium (LTE) with the solid matrix. A 
general Brinkman-Forchheimer extended Darcy model is 
used to account for the flow in the porous medium. Us-
ing the above assumptions, the governing equations for 
mass, momentum and energy can be written in the di-
mensional form as 
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The appropriate initial and boundary conditions are: 
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Dimensionless variables are defined as follows: 
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The non-dimensional form of the Equations (1)-(5) is 

obtained as: 
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The initial and boundary conditions in dimensionaless 
form are: 

0 : 0, 0,0 1,0 1U V C T X Y           
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3. Method of Solution 
 
The governing equations along with the boundary condi-
tions are solved numerically employing finite volume 
method using staggered grid arrangement. The semi- 
implicit method for pressure linked equation (SIMPLE) 
is used to couple momentum and continuity equations as 
given by Patankar [11]. The third order accurate deferred 
QUICK scheme of Hayase et al. [12] is employed to 
minimize the numerical diffusion for the convective 
terms for both the momentum equations and energy 
equation. The solution of the discretized momentum and 
pressure correction equations is obtained by TDMA 
line-by-line method. For complete details and code vali-
dation, the author is referred to the prior publication [10, 
13]. The grid independence test is performed using suc-
cessively sized uniform grids, 21 × 21 to 91 × 91. After 
grid independence check considering the accuracy and 
the computational time, all the computations are per-
formed with a 41 × 41 grid. 
 
4. Results and Discussion 
 
Computations have been carried out for various values of 
the Darcy number (Da = 10–4 - 10–1), the thermal 
Rayleigh number (RaT = 102 - 105), the buoyancy ratio 
number (N = 0.2 - 0.8), the density inversion parameter 
(R = 0.1 - 0.3), the Schmidt number (Sc = 5 - 50) and 
fixed value of Pr = 11.573 and porosity (ε = 0.4). The 
results are presented as streamlines, isotherms and iso-
concentrations. The rate of heat and mass transfer in the 
enclosure is measured in terms of the average Nusselt 

and Sherwood numbers. 
Figure 2 illustrates the streamlines, isotherms and iso-

concentration of the numerical results for various thermal 
Rayleigh number. When RaT = 102 the flow is seen to be 
very weak as observed from streamlines. Therefore, the 
temperature and isoconcentration distributions are simi-
lar to that with stationary fluid and the heat transfer is 
due to purely conduction. When RaT = 103, streamline 
show the major cells occupied entire cavity and the mi-
nor cells are visible near bottom corners of the cavity. 
During conduction dominant mass transfer, the isocon-
centration contours with c = 0.06 occur symmetrically 
near the side walls of the cavity. The other isoconcentra-
tion contours with c ≥ 0.13 are smooth curves which 
span the entire cavity and they are generally symmetric 
with respect to the vertical symmetric line. As thermal 
Rayleigh number increases from 104 to 105 streamline 
shows that the bottom corner minor cells are reduced its 
strength and size. The corresponding temperature con-
tour illustrates the smooth cure bended towards bottom 
of the cavity. It should be noted in Figure 2, with in-
creasing RaT from 102 to 104 the minor cells grow its size 
and reduced when RaT = 105. It is observed that the con-
duction heat transfer switches to convection heat transfer 
with increasing RaT from 102 to 104. Again the conduc-
tion heat transfer dominates when RaT = 105. 

Streamline, isotherm and isoconcentration contours 
are displayed in Figure 3, for different values of Schmidt 
number. The streamline shows the minor cells are occu-
pied top corners of the cavity and it increases its size and 
strength when Sc increases. The circulations are greater 
near the center and least at the wall due to no slip 
boundary conditions. The greater circulation in each half 
of the box follows a progressive wrapping around the 
centers of rotation and a more pronounced compression 
of the isotherms toward the boundary surfaces of the 
cavity occurs. Due to greater circulations near the central 
core at the top half of the cavity, there are small gradi-
ents in temperature whereas a large stratification zone of 
temperature is observed at the vertical symmetry line due 
to stagnation of flow. 

Figure 4 shows the average Nusselt and Sherwood 
numbers for different density inversion parameter with 
different Darcy number. Decreasing of Darcy number 
decreased the heat and mass transfer rate. In such situa-
tion the heat transfer is dominated by conduction. Figure 
5 illustrate that the average Nusselt and Sherwood num-
ber for thermal Rayleigh number Vs density inversion 
parameter. Decreasing of thermal Rayleigh number de-
creased the heat and mass transfer rate. Figure 6 shows 
the behavior of the average Nusselt and Sherwood num-
ber for different N Vs Sc. It is found that the average 
Nusselt and Sherwood number gets minimum in the den-  
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Figure 2. Streamlines, isotherms, iso-concentration for different RaT, Da = 10–2, N = 0.5, Sc = 5, R = 0.2. 
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Figure 3. Streamlines, isotherms, iso-concentration for different Sc, Da = 10–2, N = 0.2, RaT = 105. 

 

 
Figure 4. Average Nusselt number and Sherwood number for Da Vs R. 
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Figure 5. Average Nusselt number and Sherwood number for RaT Vs R. 

 

 
Figure 6. Average Nusselt number and Sherwood number for Sc Vs N. 

 
sity maximum region. For such a situation, the dual cell 
structure inhibits the direct convective transfer of energy 
from one cell to another. This phenomenon results essen-
tially from the inversion of the fluid density at 4˚C and is 
one of its most significant effects on the mechanism of 
heat transfer by convection of water within the cavity. 
 
5. Conclusions 
 
Numerical computations are performed to study natural 
convection heat and mass transfer in a porous enclosure 
containing water near its density maximum. It is ob-
served that the density inversion leaves strong effects on 
fluid flow, heat and mass transfer due to the formation of 
bi-cellular stature. The heat and mass transfer rate be-
haves nonlinearly with density inversion parameter and 
Schmidt number. The heat and mass transfer rates are 
found to decrease with decreasing thermal Rayleigh 
number. At the onset of convection dominant mode, the 

temperature contour lines get compressed toward the side 
walls and they tend to get deformed towards the upward 
direction. 
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Nomenclature 
 

C dimensional concentration 
Da Darcy number 
G gravitational acceleration 
Gr Grashof number 
L enclosure length 
KT thermal diffusion ratio 
K effective thermal conductivity of the porous medium 
Nu Nusslet number 
Nuavg average Nusslet number 
P Pressure 
Pr Prandtl number 
R dimensional density inversion parameter 
Rac solute Rayleigh number 
RaT thermal Rayleigh number 
Sc Schmidt number 
Sh Sherwood number 
Shavg average Sherwood number 
T dimensionless temperature 
U, V dimensionless velocities in X- and Y-direction 
u, v velocities in x- and y-direction 
X, Y dimensionless Cartesian coordinates 
x, y Cartesian coordinates 
 
Greek symbols 

 

  effective thermal diffusivity of porous medium, m2·s–1 

T  coefficient of thermal expansion, K–1 

c  coefficient of solute expansion 

  temperature difference 

  temperature, ˚C 

K permeability of porous medium, m2 
  effective dynamic viscosity 
v  effective kinematic viscosity 
  fluid density, kg·m–3 
  Porosity 
  dimensionless time 
 
Subscripts 

 

Avg Average 
C cold wall 
H hot wall 
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