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Abstract 
 
The purpose of the present work is to construct new geometrical models for motion of plane curve by Dar-
boux transformations. We get nonlinear partial differential equations (PDE). We have obtained the exact so-
lutions of the resulting equations using symmetry groups method. Also, the Gaussian and mean curvatures of 
Monge form of the soliton surfaces have been calculated and discussed. 
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1. Introduction 
 
Kinematics of moving curves in two dimension is for- 
mulated in terms of intrinsic geometries. The velocity is 
assumed to be local in the sense that it is a functional of 
the curvature and its derivatives. Plane curves have 
received a great deal of attention from mathematics, 
physics, biology, dynamic system, image processing and 
computer vision [1,2]. Evolution of plane curve can be 
understand as a deformation of a plane curve in arbitrary 
direction according to arbitrary a mount in a conti- 
nuously process that has the time as a parameter. Phy- 
sically this arbitrary a mount is a function of velocity, so 
this process create a sequence of evolving planer curve 
moving by a funcion of velocity, the type of the motion 
(evolution) of this family of planer curves classified 
depend on our choice of velocity function. 

Let  is the position vector of a curve C  
moving in space and let   denote respectively 
the unit tangent, principal normal and binormal vectors 
vary along . If we introduce the darboux vector (see 
[3]), 

 ,r s t

C


, ,T n b

= T kb                   (1) 

then the Serret-Frenet equations may be written as the 
following [4]:  
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where s  is the arc length parameter along ,  the 
curvature and 

C k
  the torsion. In the present moving 

curve context, the time t  enters into the system (2) as a 
sparameter. The general temporal evolution in which the 
triad  , ,bT n  remains orthonormal adopts the form 
(darboux formula) [3] 
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where   is the geodesic curvature,   is the normal 
curvature and   is the geodesic torsion. Here, it is 
required that the arc length and time derivatives com- 
mute. This implies inextensibility of . Accordingly, 
the compatibility conditions 

C
=st tsTT , =stn nts  and 

=stb tsb , applied to the systems (2) and (3) yield  
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                 (4) 

If the velocity vector = tr  of a moving curve  
has the form 

C

= T n b,                  (5) 

then imposition of the condition  yields stts rr =

=s s s s s st t n n b b n b.                (6) ,T            (2) 

Substitute about Serret-Frenet equations 
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           (7) 

The temporal evolution of the curvature  and the 
torsion 

k
  of the curve  may now be expressed in 

terms of the components of velocity 
C

,   and   by 
substitution of (7) into (4) to obtain 

  
 

= ,

= ,

t s s

t s s

k k

k

s     

   

   

 
       (8) 

where 

  1
= .s ss

k
k

                 (9) 

Motion in a plane occurs if = 0  and = 0 . Then 
Equation (8) becomes 

 = =t s s ss
k k k k .ss             (10) 

From Equation (7), we have  then Equation 
(10) becomes 

= dk s 

2=t ss sk k k     d .k s          (11) 

If we take  then     d = d =k s F k F k 
    

dF k k
d = d =

d
sk s F k = F k

k s k
  , hence the equa-  

tion (11) becomes 

     2= .s s
t s

ss

k k
k F k k F k k F k

k k
        
   

   (12) 

 
2. Symmetry Group 
 
Now, we want to present the most general Lie group of 
point transformations, which apply on obtaining equa- 
tions 

Definition 1. We consider a scalar  order 
PDE represented by  

m th

  Δ , =0, where  is natural numberms k m   (13) 

where  = is s ,  is a vector for which the 
components i

= 1, ,i  p
s  are independent variables and  = jk k , 

 is a vector cosest of = 1,j , q jk  dependent vari-  

ables, and   =
m

m

m

k
k

s




. The infinitesimal generator of  

the one-parameter Lie group of transformations for equa- 
tion (13) is  

 
=1
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i

lX s k
s

 
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

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
q
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

  ,s k ,
k
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    (14) 

where  ,i s k ,   , s k  are the infinitesimals, and 

the th  prolongation of the infinitesimal generator (14) 
is (see [5-8]) 

m
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
j

j
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where 
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and  is the total derivative operator defined by  D

k
k

k
k

s
=

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,  = ,  = 1, ,j j

k
k j
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
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
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(17) 

A vector field X  is an infinitesimal symmetry of the 
system of differential Equations (13) if and only if it 
satisfies the infinitesimal invariance condition 

   
=0

= 0mlpr


X             (18) 

 
3. Soliton Geometry 
 
In this paper, we construct the soliton surfaces associated 
with the single soliton solutions (similarity solution) of 
the Equation (12). For this purpose, if  = ,k k s t  is a 
similarity solution of Equation (2), we have a solution 
surface   given from the Monge patch  

  ,k s t= ,f s ,t . The tangent vectors sf tf,  for the 
soliton surface   are given by  

 


= 1,0, ,

= 0,1, .
s

t t 
sf k

f k
              (19) 

The normal unit vector field on the tangents pT  is 
given by 

= .
fs f

N t

s tf




               (20) 
f

The  and  fundamental forms on 1st 2nd   are de- 
fined respectively by 

2 2
11 12 22

2 2
11 12 22

= d ,d = d 2 d d d ,

= d ,d = d 2 d d d ,

I f f g s g s t g t

II f N L s L s t L t

 
  

  (21) 

where the tensor  and  are given by ijg ijL

11 12 22

11 12 22

= , ,  = , ,  = , ,

= , ,  = , ,  = , .
s s s t t t

ss st tt

g f f g f f g f f

L f N L f N L f N
  (22) 

The Gauss equations associated with   are 
1 2
11 11 11
1 2
12 12 12
1 2
22 22 22

= ,

= ,

= ,

ss s t

st s t

tt s t

f f f L N

f f f L N

f f f L

   
   
   N

          (23) 

Copyright © 2011 SciRes.                                                                                  AM 



N. H. ABDEL-ALL  ET  AL. 668
 

 

while the Weingarten equations comprise 

12 12 22 11 12 11 11 12

12 22 22 12 12 12 11 22

=

= ,

,s s

t s

g L g L g L g L
N f

g g

g L g L g L g L
N f

g g
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

 


t

t

f
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    (24) 

where 
2 2

11 22 12= =s t .g f f g g g          (25) 

The functions i
j  in (23) are the usual Christoffel 

symbols given by the relations 

 , , ,

1
=

2
i il
j jl l j j lg g g g            (26) 

The compatibility conditions 
t s   =ss stf f  and  

t s   =st ttf f  applied to the linear Gauss system (23) 
produce the nonlinear Mainardi-Codazzi system 

2 2 211 12 11 12 22
22 12 11

1 1 122 12 11 12 22
22 12 11

2 =

2 =

t s

s t

L L L L L

g g g g g

L L L L L

g g g g g

   
            

   

   
            

   

0,

0,

(27) 

or, equivalently, 

 
 

1 2 1
11 12 11 12 12 12 11 22 11

1 2 1
12 22 11 22 12 22 12 22 12

= ,

= ,

t s

t s

L L L L L

L L L L L

      

     

2

2
  (28) 

The Gaussian and mean curvatures at the regular 
points on the soliton surface are given by respectively 

2
11 22 12

1 2 2
11 22 12

= = = ,  
L L LL

K k k g
g g g g





0       (29) 

  11 22 12 12 22 11
1 2 2

11 22 12

21 1
= =

2 2

L g L g L g
H k k

g g g

 



.   (30) 

where  = det ijg g ,  = det ijL L

k

 and 1 2  are the 
principal curvatures. The surface for which  is 
called parabalic surface, but if 1  and 2  
constant or 1 constant and 2 , we have surface 
semi round semi flat (cylinderial like surface).The 
integrability conditions for the systems (2) and (3) are 
equivalente to the Mainardi-Codazzi system of PDE (27). 
This give a geometric interpretation for the surface 
defined by the variables 

,  k k
K

= 0
= 0

kk
= 0

=
=k

ts,  to be a soliton surface 
[9,10]. 
 
4. Applications 
 
4.1. Case I:   = F k k  
 
The Equation (12) becomes 

3 2 3 4
1 = 3 2 2 =t s ss sss s sk k kk k k k k k k     0.   (31) 

The infinitesimal point symmetry of Equations (31) 
will be a vector field of the general form  

=X
s t k

    
 

  
           (32) 

on 3=M R ; our task is to determine which particular 
coefficient functions ,   and   are functions of the 
variables ,s t  and  and will produce infinitesimal 
symmetries. In order to apply condition (18), we must 
compute the third order prolongation of  which is 
the vector field 

k

,X

 3pr = J

J

,
J

X
s t k k

      
  

        (33) 

whose coefficients, in view of (31), are given by the 
explicit formulae 

 
 
 
 

= ,

= ,

= ,

= .

s
s s t ss st

t
t s t st tt

ss
ss s t sss sst

sss
sss s t ssss ssst

D k k k k

D k k k k

D k k k k

D k k k k

     
     
     
     

   
   
   
   

  (34) 

The vector field X  is an infinitesimal symmetry of 
the Equation (31) if and only if 

   3 3 2
1

2

2 3 4

pr = 0 = 3 3 3

                          3 2

                         6 8 2 = 0.

t s
s ss ss

ss sss
s sss

s s
s s

X k k k k k

kk kk k

k k k k

k   
  
  

   
  
  

 (35) 

Substituting the prolongation Formulae (34), and 
equa- ting the coefficients of the independent derivative 
mono- mials to zero, leads to the infinitesimal 
determining equations which together with their 
differential conse- quences reduce to the system 

1 1
= ,  = ,  = = = = 0

2 2t s t k k s tk        .   (36) 

The general solution of this system is readily found 

3 1 3 2 3

1 1
= ,  = ,  =

2 2
c s c c t c c k     ,    (37) 

where the coefficients ic  are arbitrary constants. 
Therefore, Equation (31) admits the three-dimensional 
Lie algebra of infinitesimal symmetries, spanned by the 
three vector fields 

1 2 3

1 1
= ,  = ,  =

2 2
X X X s t k .

s t s t k

   
 


    

  (38) 

The combination of space and time translations 
 1 2X X

=y s ct

 lead to a reduction of (31) to an ordinary 
differential equation (ODE) by the transformation 

  and  =k w y  where c  is the speed of the 
travelling wave. That is 

Copyright © 2011 SciRes.                                                                                  AM 
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4 = 0. 4.2. Case II:   1
=F k

k
 

2 3 33 2 2w w ww w cw w w w w           (39) 

Now, the solution of the Equation (39) is,  

 
32

2 1

1
d

2ln 2 2
w y c

w w c w cw c


   
 = 0,   (40) 

 
In this case Equation (12), becomes  

5 2 39 12 =t sss s ss sk k k k kk k k   0,        (45) 
where 1 2  and 3  are the integration constants, if 
we consider it equal zero, hence the solution of Equation 
(39) becomes  

,c c c
Lie point symmetry for this equation is given by  

1 2

3 4

= , = ,

1
= , =

3

X X
s t

X s k X t k ,
s k t

 
 

 2 2 22

2 2
= =

1 1

c c
w

c y c s ct
 

  
.       (41) 

k

  
 


   

   (46) 

this solution is a similar solution to Equation (31), This 
solution is in the Monge form    = = ,w w y w s t  
which define a regular surface as show in Figure 1 
( ).  = 1,  1 5,  0.1 2c s t   

The combination 1 2= =X X cX c
s t

 
 

 
 gives rise  

to travelling wave solutions a wave speed . The vector 
field 

c
X  has invariants  and  which 

reduces (45) to the ODE  
=y s ct = kwThis surface is a soliton surface . From (29) 

and (30), one can see that the Gaussian and mean 
curvatures of the soliton surface ( ) are given by 
respectively  

1 1 

2 59 12w w ww w cw w w       3 = 0.    (47) 

 
 

3 2
1

24
1 2

4 1 3 6 3
= 0,   = ,

32

t ts s
K H

t s

    

   

2



      (42) 
Now, solving the equation with the Lie symmetry 

spanned by 

1

2

= ,

2
= .

3

Y
y

Y y w
y w



 


 

           (48) 
where  

 
   

  
 

2 2
1

8 7 2 4 6 8 6 2
2

5 2 3 2 4

4 2 4 2 4 6

2 2 4 6

= 1 2

= 1 8 36 6 4 4 1 7

       8 3 7 8 3 10 7

       6 60 70 8 9 3 3

        4 9 9 15 7 .

t ts s

t t s s s s s t s

t s s t s s s

t s s ts s s s

t s s s

   

        

    

      

   

 

(43) 

If we take the vector field  we obtain solution  2Y
2

3=w y


, and substituting  in Equation (47) we get  w
1

32
=

9c
   

 
 and the solution  

 

1

3

2

3

2

9
=

c
k

s ct

  
 


              (49) 

The symmetry generator 3

1 1
=

2 2
X s t k

s t k

  
 

  
  

leads to invariants 
2

=
t

y
s

 and . These the in-  =w sk

variants transform Equation (31) to the following ODE, 

 

 

3 2 2 2 3

2 3 2 3 2 4

2 3

8 36 24

24 36 16 4

2 1 = 0

' '

y w w y w y ww w

yw w y ww y w yw w

w w

   

    

 

  (44) 

Remark 1. For regularity the parameters of the 
soliton surface must be satisfied s ct , i.e., for =s ct  
we have singularity  cuspidedge  as shown in Figure 3.  

The Gaussian and mean curvatures respectively are 
(shown in Equation (50)) 

If we take the vector field 1 3X X  we here the in-  

riants  and =y t
1

=
1

kThe numerical solution of Equation (44) is shown in 
Figure 2 (intial condition  and  

). 
   1 = 1, 1 = 2w w

 1 = 3w

w
s

, that is  then   = 0w =w

constant and 
 

 

             

7
3 3

10 2 2 1 1 1 1
3 2 2 33 3 3 3 3 3 3

= 0,

270 6
= .

81 8 6 8 6 81 243 243 81

K

s t
H

s t t t s t s t s ts s t s s t



           
 

         (50)
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Figure 1. Soliton surfaces of (41). 
 

=
1

a
k ,

s
                (51) 

thus we have Figure 4. 
The vector field  leads to the invariants 4X sy =   

and the tarnsformation 
1

3=k t w  reduces (45) to an ODE  
in the form  

6 227 3 36 = 0,w ww w w w w      3      (52) 

this equation can be solved numericaly (intial condition 
 and    0 = 2, 0 = 2w w  0 = 3w ) as shown in Fig- 

ure 5. 
 

4.3. Case III:   =
2

1
F k

k
 

 
In this case Equation (12) takes the form 

6 2 3 42 24 40 =t sss s ss s sk k k k kk k k k k    0,    (53) 

Lie point symmetry of this equation is given by 

1 2 3= , = , =X X X s t k ,
s t s t

   
  

    k


   (54) 

The combination 1 2= =X cX X c
s t

 
 

 
 gives rise  

to travelling wave solutions with wave speed c . The 
vector field X  has invariants  and  
which reduces (53) to 

=y s ct =w k

6 2 3 42 24 40 =cw w w w ww w w w w         

solving Equation (55) hence 

32 4 2
2 1

6
d

24 18 24 9
w y c

w c w cw c w


 

   
 = 0,  (56) 

If we take the integration constants to be zero hence 
the solution takes the form  

 2 2

2 2
= =

8 8
w

c y c s ct
 

    
,    (57) 

For regularity the parameters of the soliton surface 
must be satisfied 18s ct c    at 1 , i.e., for =c c

1= 8s ct c   we have singularity (cuspidaledge) as 
shown in Figure 6. 
 

 
0.  (55) Figure 2. Numerical solution of (44). 
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Figure 3. Soliton surfaces of (49). 
 

 

Figure 4. Solution of (51). 
 

Gaussian and mean curvatures are  

  
 

2 2 2 2

22
2 1

4 8 2 4 2
= 0,   =

8

t ts s t s ts
K H

s t

      

    
 (58) 

where 

 

   
   

1

6 2 2 4
2

4 2

2 4 2 2

= 8

= 8 188 96 24 6

      6 4 188 96 15

      4 4 15

s t

t ts s ts s ts

t ts t ts t s

s s t s

   

     

     

     

 

Figure 5. Numerical solution of (52). 
 

 

Figure 6. Soliton surface of (57). 
 

The symmetry generator 3 =X s t k
s t k

 
  

  


 leads  

to the invariants  and . After some 
detailed and tedious calculations, (53) becomes ODE 

=y st =w sk

 




3 2 2 2 3

6 2 2

3 2 4 3

2 18 24

72 36

40 1 4 = 0

'

'

y w w y w y ww w

w y ww yw

y w yw w w

   

  

   

     (60) 

5

2 2     (59) 

Copyright © 2011 SciRes.                                                                                  AM 



N. H. ABDEL-ALL  ET  AL. 672
 

 

The numerical solution of Equation (60) is shown in 
Figure 7 (intial condition  and  

). 
   1 = 1, 1 = 2w w

 1 = 3''w
 

4.4. Case IV:   =
1

1
F k

k 
 

 
In this case Equation (12) becomes  

7 6 5 4 3 4

3 3 3 2 3 3

3 2 2

5

4 6 4

2 8 2 12 2

9 12

3 = 0,

t t t t t sss
4

sss s s s s s

s ss sss s ss

s ss s

k k k k k k k k k k k k

k k kk k k k k k k k

k k k k k k k k

kk k k k

    
     
  
 

  (61) 

Lie point symmetry of this equation is given by 

1 2= , =X X
s t


 


              (62) 

The combination 1 2= =X cX X c
s t

 
 

 
 gives rise  

to travelling wave solutions with wave speed c . The 
vector field X  has invariants  and  =y s ct =w k

 

 

Figure 7. Numerical solution of (60). 

which reduces (62) to  
7 6 5 4 3 4

3 3 3 2 3 3 4

3 2 2 5

4 6 4

2 8 2 12 2

9 12 3

cw w cw w cw w cw w cw w w w

w w ww w w w w w w w

w w w w w w w w ww w w w = 0

          

          

           

(63) 

solving the Equation (63) we get  

  3

1
d

1
w y c

w w
 

  = 0       (64) 

where  

   
   
   
     

   
 

2 2
1 2 2

2 2 2
1 2

2

2

2 2

2 1

= 3 4 2 ln 2 ln 1

2 ln 1 2 2 ln 2

4 ln 2 2 4 ln

4 ln 1 4 ln 1 2ln

2 ln 2 2 2ln 1

2 ln 1 2 ,

wc c w w c w w

w w c w w w c w

w w cw w c w w

c w w w w w

c w c c w

c w c

     
    
   
    
    
  

 (65) 

If we take , 1 =c c 2 = 1c   and   3 = 0c

  2

1
d =

1 1 2 2
w y

w w cw cw


   
 0,    (66) 

then  

 

1

2

1

2

1 2 4
= tan

2 4 4 1

1 6 4
      .tan

2 4 1 4 5

w
y

w w

w

w w





  
    
         

    (67) 

Hence, we have a soliton surface given by the implicit 
equation  

 

1

2

1

2

1 2 4
= tan

2 4 4 1

1 6 4
          ,tan

2 4 1 4 5

w
s ct

w w

w

w w





  
     

         

    (68) 

Gaussian and mean curvatures of implicit surface are 

    
   

2 2

3
2 2 3 4 5 6 2

= 0,

1 1 1 4 18 12
=

2 1 1 2 11 12 4

K

c w w w w w
H

c w w w w w

     

     

3

 

(69) 

This surface is illustrated as in Figure 8.  
 
4.5. Case V:    = lnF k k  
 
In this case Equation (12) becomes 
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Figure 8. Soliton surface of (68). 
 

 4 2 3 4 46 6 lnt sss s ss s s sk k k k kk k k k k k k k     = 0  (70) 

Lie point symmetry for this equation is given by  

 1 2 3= , = , =X X X t s t k ,
s t s t

   
  

    k


 (71) 

The combination 1 2= =X cX X c
s t

 
 

 
 gives rise  

to travelling wave solutions with wave speed c . The 
vector field X  has invariants  and  
wkich reduces (70) to 

=y s ct =w k

  
2

4 2 4 4

6

6 ln

w w ww w

cw w w w w w

   

     = 0.
    (72) 

We have solved the Equation (72) with intial condition 
(  and ) numerically, 
which represented in Figures 9(a), (b). The Figure 9(a) 
represents the numerical solution at the forword wave, 
while Figure 9(b) at the backword wave. 

   0 = 2, 0 = 2w w  0 = 3w

 
4.6. Case VI:   = e kF k   
 
In this case Equation (12) becomes  

4 2 2 3 3 2

3 4 3

3 2

3 2 = 0,

k
t ss s s sss

s ss s s s

e k k k ksk k k kk k k

kk k k k k k k

   
   

   (73) 

Lie point symmetry for this equation is given by  

 
(a) 

 

 
(b) 

Figure 9. Numerical solution of (72). 
 

1 2= , =X X ,
s t

 
 

               (74) 

the travelling wave solution is obtained by  
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=X c
s t

 


 
 by which (73) becomes the o.d.e (with  

the new independent variable ,  being the 
speed of the wave)  

=y s ct c

 


2 2

2 2 4 2 2 4 3

3 3

2 2 =w

w w w w w w

w w ce w ww w w w w

   

          0,



(75) 

by numerical (intial condition  and 
, range of  to 5)  Figures 10(a), (b), This 

solution represents a curve on the soliton surface 
 and .  

   0 = 2, 0 = 2w w
 0 = 3w

=w w s 

0

=ct y s  ct
 

4.7. Case VII:   =F k k  

 
In this case Equation (12) becomes  

7
2 328 4 18 15 12 = 0,t sss s ss s sk k k k kk k k k k    4   (76) 

Lie point symmetry for this equation is given by  

1 2 3

2 2
= , = , =

3 3
X X X s t k ,

s t s t

   
 

    k


  (77) 

the travelling wave solution is obtained by  

=X c
s t

 


 
 by which (76) becomes the ODE (with  

the new independent variable ,  being the 
speed of the wave)  

=y s ct c

7
2 224 18 15 12 ='w w ww w cw w w w

 
         

 

4 0,  (78) 

solving the Equation (78) we get  

3
7 9

4 32 2
2 1

d =

2 2

w
w y c

w c w w cw c w

  0,
 

     
 

   

(79) 

If we take the integration constants to be zero 
Equation (79) becomes  

 
3

2 2

9
2 42

2

= ,

3 2

w c w cw

y

c w w cw

 
    


 

   
 

         (80) 

we have a soliton surface given by the implicit equation 

 
3

2 2

9
2 42

2

= ,

3 2

w c w cw

s ct

c w w cw

 
    

  
 

   
 

      (81) 

Gaussian and mean curvatures of implicit surface are 

  

 

5
2 2

3
7 7

= 0,

1 7 4
= ,

K

c c w
H

  

2
2 42 21 4 1 2 2c w cw w

  

  

  (82) 

 

       

 
(a) 

 

 
(b) 

Figure 10. Numerical solution of (75). 

Copyright © 2011 SciRes.                                                                                  AM 



N. H. ABDEL-ALL  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

675

 

Figure 11. Soliton surface of (81). 
 
this surface is illustrated in Figure 11. 
 
5. Conclusions 
 
We have discussed motion of curves in a plane and 
analysed nonlinear equations and related generalisations 
like vector using symmetry methods. These lead to exact 
solutions like travelling wave, soliton and other simi- 
larity solutions. Gaussian curvature equal zero and mean 
curvature don’t equal zero lead to be surfaces cylinder of  
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