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Abstract

The purpose of the present work is to construct new geometrical models for motion of plane curve by Dar-
boux transformations. We get nonlinear partial differential equations (PDE). We have obtained the exact so-
lutions of the resulting equations using symmetry groups method. Also, the Gaussian and mean curvatures of
Monge form of the soliton surfaces have been calculated and discussed.
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1. Introduction

Kinematics of moving curves in two dimension is for-
mulated in terms of intrinsic geometries. The velocity is
assumed to be local in the sense that it is a functional of
the curvature and its derivatives. Plane curves have
received a great deal of attention from mathematics,
physics, biology, dynamic system, image processing and
computer vision [1,2]. Evolution of plane curve can be
understand as a deformation of a plane curve in arbitrary
direction according to arbitrary a mount in a conti-
nuously process that has the time as a parameter. Phy-
sically this arbitrary a mount is a function of velocity, so
this process create a sequence of evolving planer curve
moving by a funcion of velocity, the type of the motion
(evolution) of this family of planer curves classified
depend on our choice of velocity function.

Let r(s,t) is the position vector of a curve C
moving in space and let {T,n,b} denote respectively
the unit tangent, principal normal and binormal vectors
vary along C . If we introduce the darboux vector (see
EJ)2

Q=7T +kb 0]
then the Serret-Frenet equations may be written as the
following [4]:

T, =QxT =kn,
n, =Qxn=7rb—kT, 2)
b, =Qxb=-7zn

Copyright © 2011 SciRes.

where s is the arc length parameter along C, k the
curvature and 7 the torsion. In the present moving
curve context, the time t enters into the system (2) as a
sparameter. The general temporal evolution in which the
triad {T,n,b} remains orthonormal adopts the form
(darboux formula) [3]

T, =an+ pbh,
n=-al +yb 3)
b =-BT—yn

where « is the geodesic curvature, £ is the normal
curvature and y is the geodesic torsion. Here, it is
required that the arc length and time derivatives com-
mute. This implies inextensibility of C . Accordingly,

the compatibility conditions T, =T, , ng=n, and
b, =by, applied to the systems (2) and (3) yield
a, =k + pr,
ﬂs = k7_ o, (4)
Vs =0 — kﬂ

If the velocity vector v =1, of a moving curve C
has the form

v=AT + un+vb, (5)
then imposition of the condition r, =r, yields

AL+ At + un+un +vb+vb, =an+pb.  (6)

Substitute about Serret-Frenet equations
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A —uk =0,
AK+pu, —vr =a, @)
HT+V, = f.

The temporal evolution of the curvature k and the
torsion 7 of the curve C may now be expressed in
terms of the components of velocity A,u4 and v by
substitution of (7) into (4) to obtain

k, =(/1k+ys—vz')s—(,ur+vs)r, ®
7, =y, +(ur+vy )k,
where
1
=E[(,ur+vs)s+T(/”Lk+,us—w)]. )

Motion in a plane occurs if v=0 and z=0. Then
Equation (8) becomes

k. = (AK + 11, ), = Ak + Ak + 1. (10)

From Equation (7), we have A= f,ukds then Equation
(10) becomes

K = sty + p2k” + K, [pakds. (1n
If we take [ukds = [dF (k)=F (k) then
dF (k .
kds = dF (k) = —%Z%F(k),hencetheequa—

tion (11) becomes

k{—(%F(k)'ls+k2[%F(k)'j+ksF(k). (12)

2. Symmetry Group

Now, we want to present the most general Lie group of
point transformations, which apply on obtaining equa-
tions

Definition 1. We consider a scalar m—th order
PDE represented by

A(s, k(m)):O, where m is natural number  (13)

where s=(s;), i=1---,p is a vector for which the

components S, are independent variables and Kk = (k i ) ,

i=1--,9 is a vector cosest of k; dependent vari-

ables, and k(m 8 k

. The infinitesimal generator of

the one-parameter Lie group of transformations for equa-
tion (13) is

IX = Z( (s, k)

where ¢ (s,k),

+Z¢/ (s.k) 6k , (14)

¢ (s.k) are the infinitesimals, and
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the m,, prolongation of the infinitesimal generator (14)
is (see [5-8])

Ipr™x = X+9212¢1 (sk ) o (15)

where
5 m) i b P
I¢J4(S’k( ): Dj [¢4 _Zé/lki,tj_"_zézlkfi. (16)

and D is the total derivative operator defined by

o o o ok
D = k= k=, K =, =1,
Tes T ke ks RPNl P
(17)

A vector field X is an infinitesimal symmetry of the
system of differential Equations (13) if and only if it
satisfies the infinitesimal invariance condition

Ipr™ X (A)‘A_0 =0 (18)

3. Soliton Geometry

In this paper, we construct the soliton surfaces associated
with the single soliton solutions (similarity solution) of
the Equation (12). For this purpose, if k=k(s,t) is a
similarity solution of Equation (2), we have a solution
surface o given from the Monge patch

f :(S,t,k(s,t)). The tangent vectors f,, ffor the
soliton surface o are given by
f, =(1,0,k,),
= :) (19)
f, =(O,1,kt).

The normal unit vector field on the tangents T o is
given by

_ kAt
N_|f/\fl|' (20)

S

The 1Ist and 2nd fundamental forms on o are de-
fined respectively by
| =(df ,df ) = g,,ds’ +2g,,dsdt + g,,dt?,

21
Il =(—df ,dN) = L,,ds’ + 2L,,dsdt + L, dt’, @)

where the tensor g; and L; are given by
9, = <s’ s> 9, = < t> gzz=<f f)
(22)
L, =(f..N), L12—<fst,N), , = (f,N).
The Gauss equations associated with o are

fo=0,f+T;f+L,N,
fo=T),f +T,f +L,N, (23)
ftt - Flzz fs +F§2 ft + Lzst
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while the Weingarten equations comprise

N = ngLIZ_gzlel f o+ 912L11_911L12 f“

g g (24)
Nt — ngLZZ — 0 L12 fs + ngLIZ _gllLZZ ft’
g
where
g:|fs/\ ft|2 2911922_9122- (25)

The functions Fij , in (23) are the usual Christoffel
symbols given by the relations

o
FIJ-;L = E
The compatibility conditions ( fg ) =(fy), and

(fs), =(fy), applied to the linear Gauss system (23)
produce the nonlinear Mainardi-Codazzi system

0" (9, + 9,05 (26)

L L L L
(5% e

27
Lzz] (lej Ly Ly 22 1
- | - =y -2, +—=T, =0,
[JES Vo) e e e
or, equivalently,
Ly —Lis = Lnriz +L, (Flzz _F}I) I—zz 11>
(28)

L = Loy = L11r122+|-12<r§2 ) Lzz 12>

The Gaussian and mean curvatures at the regular
points on the soliton surface are given by respectively

2
K =kk, _Lohibymhy ,9=0 (29)
g gllg22 ng
H:l(k1+k2):lLlng2_2L12912—2i_L22911. (30)
2 2 gllgz2_912
where g:det(gij), deet(Lij) and kj, k, are the

principal curvatures. The surface for which K =0 is
called parabalic surface, but if k =0 and Kk, =
constant or k =constant and k, =0, we have surface
semi round semi flat (cylinderial like surface).The
integrability conditions for the systems (2) and (3) are

equivalente to the Mainardi-Codazzi system of PDE (27).

This give a geometric interpretation for the surface
defined by the variables S,t to be a soliton surface
[9,10].

4. Applications

4.1.Casel: F(k)=-k

The Equation (12) becomes
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A, =Kk 3Kk Ky, + Kk +2k +2k*k, =0.  (31)

The infinitesimal point symmetry of Equations (31)
will be a vector field of the general form

o o 0
X=¢Ztn—+d— 32
‘T 32)

on M =R’; our task is to determine which particular
coefficient functions ¢,7 and ¢ are functions of the
variables s,t and k and will produce infinitesimal
symmetries. In order to apply condition (18), we must
compute the third order prolongation of X, which is
the vector field

Ox =¢ 1y Qg l iy O 33
St LS a O

whose coefficients, in view of (31), are given by the
explicit formulae

¢° =D, (§—Ck =1k )+ Ky +1kg,

¢ = Dt (¢_§ks _nkt)+gkst +17Ky,

¢SS = ss (¢_§k _77k )+é’ksss +’7ksst’

¢Sss = sss (¢ gk _nkt)+ é/kssss +77kssst

The vector field X is an infinitesimal symmetry of
the Equation (31) if and only if
prYX (A, = 0) = k’¢' +3k*¢ -3k kb — 3kk 4°

—3kk,$* + 2Kk B + K™ (35)
+6k2g° +8gk’k, +2k*g° =0

(34

Substituting the prolongation Formulae (34), and
equa- ting the coefficients of the independent derivative
mono- mials to zero, leads to the infinitesimal
determining equations which together with their
differential conse- quences reduce to the system

¢__ k’7t’ é/s ’7t’ é/k =17 :é/t =0. (36)

The general solution of this system is readily found

§:%c3s+cl, n=ct+c,, ¢:_%C3k’ (7

where the coefficients c; are arbitrary constants.
Therefore, Equation (31) admits the three-dimensional
Lie algebra of infinitesimal symmetries, spanned by the
three vector fields

X, =£, X, :ﬁ, X, =lsg+ g——k— (38)
0s ot 2 0s ot 2 ok
The combination of space and time translations
(X, +X,) lead to a reduction of (31) to an ordinary
differential equation (ODE) by the transformation
y=s—ct and k=w(y) where c is the speed of the
travelling wave. That is
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W W = 3WW'W + —cwWW +2wW" +2w'w = 0. (39)

Now, the solution of the Equation (39) is,

J- 1

*
w\/—z In(w)c, —w* +2cw+2c,

dw-y+c, =0, (40)

where C;,C, and c, are the integration constants, if
we consider it equal zero, hence the solution of Equation
(39) becomes
2¢c 2c
t—o——== . 41
2 2
cy +1  c?(s—ct) +1

this solution is a similar solution to Equation (31), This
solution is in the Monge form w=w(y)=w(s,t)
which define a regular surface as show in Figure 1
(c=1,1<s<5,0.1<t<2).

This surface is a soliton surface (1+1). From (29)
and (30), one can see that the Gaussian and mean
curvatures of the soliton surface ( ) are given by
respectively

AT} (143t — 6ts +35°)
K=0, H=

= , (42)
Jri +32(t-s)' T,
where
[, =1+t* -2ts+s

T, =1+t =85 +365" +65* +4s° +5" +4t° (1+757)
—~8t's(3+75)—8t's(3+10s” +7s")
+1*(6+60s> +70s" ) - 8ts (9+3s> +3s* +5°)
+47 (9495 +155* +75°).

(43)

o o 1.0

The symmetr enerator X :—S—+t———k—
ymmetty 8 T a2 ok

leads to invariants Yy = St_z and w=sk . These the in-
variants transform Equation (31) to the following ODE,
8y3wzw’”+(36yzw2 —24y3ww')w”
+(24yw’ — W =36y’ wWw +16Y°W* +4yw' )W (44)
+2(W +1)w’ =0

The numerical solution of Equation (44) is shown in

42 Casell: F(k)=

x|~

In this case Equation (12), becomes

Kk, + KKy —9KK K +12k} =0, (45)
Lie point symmetry for this equation is given by
Xl = g, X2 = ga
(%a 0 6t6 1, 0 (46)
X;=8—-k—, X,=t—+-k—,
os ok ot 3 ok

The combination X = X, +cX, = §+ C% gives rise
S

to travelling wave solutions a wave speed C. The vector
field X has invariants y=s-ct and w=Kk which
reduces (45) to the ODE

WW” —9ww'w’ —cw' W' +12w” = 0. (47)

Now, solving the equation with the Lie symmetry
spanned by

(48)

If we take the vector field Y, we obtain solution
2

w= py_g , and substituting W in Equation (47) we get
1

2\ .
p= (——j and the solution

9c
(_2 );
k = A%/ (49)

2
(s—ct)s
Remark 1. For regularity the parameters of the
soliton surface must be satisfied s=ct, i.e., for s=ct
we have singularity (cuspidedge) as shown in Figure 3.
The Gaussian and mean curvatures respectively are
(shown in Equation (50))
If we take the vector field X,+ X, we here the in-

. 1 .
riants y=t and k=——w, thatis w'=0 then w=

Figure 2 (intial condition w(1)=1,w'(1)=2 and I+s
w'(1)=3). constant and
K =0,
7
2703/6 (s +1t)3 - (50)

H=
10 2 2 1 1 1 1
\/81(s+t)? +8(6)3 (8(6)3 +81t7 (t+5)5 +243t>s(t+5)5 +243ts” (s +1)3 +81s’ (s+t)3]

Copyright © 2011 SciRes.
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Figure 1. Soliton surfaces of (41).

k=—1o!, (51)

thus we have Figure 4.

The vector field X, leads to the invariants y =S5
1

and the tarnsformation k =t3w reduces (45) to an ODE
in the form

Wo = 27WwW'W” + 3w W +36W” =0, (52)
this equation can be solved numericaly (intial condition

w(0)=2,w(0)=2 and W'(0)=3) as shown in Fig-
ure 5.

1

4.3.Case lll: F(k)= 2

In this case Equation (12) takes the form
k°k, + 2K’k — 24Kk Kk + 40k +k*k, =0,  (53)
Lie point symmetry of this equation is given by
0 0 o ,0 0

X ==, X, =— X, =-S—+t—+k—, (54
R A S o ot ok (54

The combination X =cX, + X, = c§+% gives rise
S

to travelling wave solutions with wave speed C. The
vector field X has invariants y=s—ct and w=KkK
which reduces (53) to

—CoWOW + 2WPW" — 24wWw'W” + 40W" + ww = 0. (55)

Copyright © 2011 SciRes.

solving Equation (55) hence

J~ 16

dw-y—-c, =0, (56)
w2 \[-24c,w — 18w’ +24c,W—9

If we take the integration constants to be zero hence
the solution takes the form

IR 2
\/—80— y? \/—80—(s—ct)2

For regularity the parameters of the soliton surface
must be satisfied S—Ctii@ at ¢, =-c, ie., for
s—ct =i\/§ we have singularity (cuspidaledge) as
shown in Figure 6.

. (57

5

2 4 6 8 10 12 14 16 18 20
y

Figure 2. Numerical solution of (44).
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2.5 4

S=ct 1

2 <

1.5 4

w |

14

0.5 1

0 1 2 3 4 5
Figure 3. Soliton surfaces of (49). y
5 Figure 5. Numerical solution of (52).
200
S=-1
100
I 1 T L] L] T 1
-4 -3 -2 )1 0 1 2 3 4
s

-100 4
-200 4
-300+
-400+

Figure 4. Solution of (51).

Gaussian and mean curvatures are

4(—8 T2 4 0ts4 52 )(4 2424 2,[5) Figure 6. Soliton surface of (57).
K=0, H= (38)
2
1"2\/—\/1"]2 _8(5 +t) The symmetry generator X, = —s£+tg+ k 9 leads
os ot ok
where to the invariants y=st and w=sk . After some
[, =-8+ (S + t) detailed and tedious calculations, (53) becomes ODE
[, =t° —8ts +188s” — 96ts” —24s" + 6ts” 2y’ wrw” +(18y2W2 —24y3ww')w"
59 .
+6t* (—4+ts)+ (188 —96ts + 1575 ) (59) (W —72y>ww +36yw? (60)
+87 (445 )+ (-4+155) H0YW? + yw' 1) — 4w =0

Copyright © 2011 SciRes. AM
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The numerical solution of Equation (60) is shown in
Figure 7 (intial condition w(1)=1,w'(1)=2 and
w (1)=3).

‘ -

4.4.Case IV: F(k)=

=~

+1

In this case Equation (12) becomes
K7k, +4k°k, + 6K’k +4k*k, +k’k, +k K
+2K Kk, +8KK? + 2k +12k%k] —k’k, — 2k *k,

61
-9k k kg, + kK, —12k>k K (61)
—3Kk.k, —k’k, =0,
Lie point symmetry of this equation is given by
0 0
X =—,X,=— 62
1 65 2 (3'[ ( )

o o 0 . .
The combination X =cX, + X, = C8_+5 gives rise
S

to travelling wave solutions with wave speed c. The
vector field X has invariants y=s—-ct and w=Kk

1.4 <

0.8 1

0.4 1

0.2 7

LN L L R AL BN BN B SNLE BN BRI
2 4 6 8 10 12 14 16 18 20
y

Figure 7. Numerical solution of (60).
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which reduces (62) to

Aa

—cw’ W' —4eww — 6ew W — dewtw — cwPw + wtw

"

F2WW A+ 8WW” 42w +12WPW” —wrw - 2wiw (63)

—OWWW + WW” —12WW'W’ - 3ww'w” —w’w' =0
solving the Equation (63) we get
dw-y+c¢, =0 (64)

1
'[W(W+l)ﬁ
where

¥ =-3+4wc, —2¢,W’ In(w)+2¢,w’ In(w+1)
+2w* In(w+1)+2cw* —2w* In(w)—2¢,w
—4wln (W) —2cw—2w —4c,wln (w)
+4c,wln(w+1)+4wln(w+1)—2In(w)
—2¢, In(w)—2c—2c, +2In(w+1)
+2¢, In(w+1)+2c,,

(65)

If wetake ¢,=c, ¢c,=-1 and ¢, =0

| ! dw—-y=0, (66)

w(w+1)v-1+2cw+2cw’

then

(1 244w ]
y=tan | -—/—
2 Jaw® +4w-1

(67)
11 —6—4w

2\/4(w+1)2—4w—5 '

—tan

Hence, we have a soliton surface given by the implicit
equation

ot t[z&}
2 Jaw® +4w-1
(68)
A1 —6—4w

—tan - )
2\/4(w+1)2—4w—5

Gaussian and mean curvatures of implicit surface are
K=0,
(1+c2)w(l+w)(—1+4w+18w2 +12W3)

H=
3
2(1-(1+¢7) (W — 2w’ — 11w - 12w — 4w ) ?
(69)
This surface is illustrated as in Figure 8.
45.Case V: F(k)=In(k)
In this case Equation (12) becomes
AM
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-5.6

5.0

Figure 8. Soliton surface of (68).

k'K, — k?Kq + 6Kk ks — 6k —k*k, —k*k, In(k)=0 (70)
Lie point symmetry for this equation is given by
0 0 o ,0 0

X =— X, =—, X, =(t+s)—+t——k—, (71
16526t3( )65 ot ak()

The combination X =cX, + X, = C§+§ gives rise
S

to travelling wave solutions with wave speed c. The
vector field X has invariants y=s-ct and w=KkK
wkich reduces (70) to

—WW” + 6ww'w”
4 2 4 4 (72)
—(cw +6W” + W +w ln(w))w’zo.

We have solved the Equation (72) with intial condition
( w(0)=2,w'(0)=2 and W'(0)=3 ) numerically,
which represented in Figures 9(a), (b). The Figure 9(a)
represents the numerical solution at the forword wave,
while Figure 9(b) at the backword wave.

4.6.Case VI: F(k)=e™

In this case Equation (12) becomes
e k*k, —3k>ksk, + kK] +2Kk? + kK

73
3Kk kg, + 2k +k*k, —k’k, =0, 73)

Lie point symmetry for this equation is given by

Copyright © 2011 SciRes.

2.6 1

2.2 1

w

(b)
Figure 9. Numerical solution of (72).

0 0
X =< x,=2, 74
YesTTT ot (74

the travelling wave solution is obtained by
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X =C§+§ by which (73) becomes the o.d.e (with
S

the new independent variable y=s—ct, c being the

speed of the wave)

WW” (3w -+ 3w ) w'w’

(75)
+(W2W'2 —ce"w* +2ww? + 2w +wt —w? )W' =0,

by numerical (intial condition w(0)=2,w'(0)=2 and
w"(0)=3, range of 0 to 5) Figures 10(a), (b), This

solution represents a curve on the soliton surface
w=w(s—ct) and y=s-ct.

4.7.Case VII: F(k)=+k

In this case Equation (12) becomes
7
8k 2k, —4k’k,, +18Kkk .k —15k> —12k*k, =0, (76)
Lie point symmetry for this equation is given by

L YT
0s ot 3 0s ot 3 ok

the travelling wave solution is obtained by

X =C§+§ by which (76) becomes the ODE (with
S

X, =

the new independent variable y=s—ct, c being the
speed of the wave)

7

—4W2w’"+18ww’w"—[cw2 +15w2 +12W4JW' =0, (78)

solving the Equation (78) we get

B Jw
7 £l
2\/—JW[C2W2 +w? +2cw? —CIW3J

dw-y—-c, =0,

(79)
If we take the integration constants to be zero
Equation (79) becomes

(«/W + 20)(—w2 + cwij

9
302\/—«/W[w2 + ZCW4J
we have a soliton surface given by the implicit equation

(\/W+ZC)[—W2 +CW3J

9
3c? \/—\/W(WZ + ZCW“j

y=- ’ (80)

s—ct=-

, (81)

Copyright © 2011 SciRes.

w

Gaussian and mean curvatures of implicit surface are

3.4

3.2 4

2.8

2.6

2.4

2.2 4

K=0,

o —(1+c2)(7c+4JW)5 )

7 7
(1—4(1+cz)(2W2 +2cw? +W4JJ

| w

2.3 1

2.2 1

1.9 1

1.7 A

—
[\
w
=
w

(b)
Figure 10. Numerical solution of (75).
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\ -0.61 ,af‘((’::
o -161 £
~ )
- 4(64‘

g a
-2.5d<

Figure 11. Soliton surface of (81).
this surface is illustrated in Figure 11.
5. Conclusions

We have discussed motion of curves in a plane and
analysed nonlinear equations and related generalisations
like vector using symmetry methods. These lead to exact
solutions like travelling wave, soliton and other simi-
larity solutions. Gaussian curvature equal zero and mean
curvature don’t equal zero lead to be surfaces cylinder of

Copyright © 2011 SciRes.

these equations.
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